
Convex optimization

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Unconstrained optimization

min
x∈Rn

 f (x)

f (x)

Rn
global
optimal
(unique)

local
optimal

local
optima

(nonunique)

Constrained optimization

[][] Rn

X := x ∈ Rn fk (x) ≤ bk, k =1,...,K{ }

f0 (x)

feasible
set

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 gk (x) = 0, k =1,...,M

Constrained optimization

[] Rn

global
optimal
(unique)

local
optima

(nonunique)

[]

f0 (x)

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 gk (x) = 0, k =1,...,M

Definition
o (Global) minimizers/optima:

o A minimizer is unique if

Constrained optimization

X* := x* ∈ X f0 (x*) ≤ f0 (x) ∀x ∈ X{ }

f0 (x*) < f0 (x) ∀x ∈ X
x* ∈ X

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 gk (x) = 0, k =1,...,M

Convex optimization

Definition
Convex optimization if

n are convex functions forfk (x) k = 0,1, ..., K

The feasible set is a convex set
Convex optimization is polynomial-time

X

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization

Questions
o How to recognize a convex program

o How to characterize minimizers?

o How to compute a minimizer?

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization

Questions
o How to recognize a convex program

n Convex set, convex function

o How to characterize minimizers?
n KKT condition, duality theorem

o How to compute a minimizer?
n First-order algorithms, Newton algorithms
n Distributed algorithms

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex set
Definition
A set is convex if for all
for all ,

S x, y ∈ S
z :=αx + (1−α)y ∈ Sα ∈ [0,1]

x
yz

S is convex

x y
z

S is nonconvex

S can be in an arbitrary space, not necessarily in Rn

Convex set
Examples
o Half-plane or half-space

S := x ∈ Rn aT x = b{ } (a ≠ 0)

S := x ∈ Rn aT x ≤ b{ } (a ≠ 0)

Convex set
Examples
o Norm ball (any norm)

o Ellipsoid

o Norm cone (any norm)

S := x ∈ Rn ||x − c ||≤ r{ }= c+ ru || u ||≤1{ }

S := x ∈ Rn (x − c)T P−1(x − c) ≤1{ } (P pd)

S := c+ Au ||u ||2≤1{ } (A nonsingular)

S := (x, t)∈ Rn+1 ||x ||≤ t{ }
||.||2 : second-order cone

Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
x2

t
−1

0
1

−1

0

1
0

0.5

1

norm balls and cones are convex

Convex sets 2–8

Convex set
Examples: polyhedra
o Linear equality and inequality:

for some

S := x ∈ Rn A1x = b1, A2x ≥ b2{ }
Aj ∈ R

m×n, bj ∈ R
m

1

1

x ∈ R2 x1 + x2 ≤1,
x1 ≥ 0, x1 ≥ 0

$
%
&

'
(
)

1

1

x ∈ R2 x1 + x2 =1,
x1 ≥ 0, x1 ≥ 0

#
$
%

&
'
(

Polyhedron: finite intersection of halfplanes and halfspaces

Convex set
Examples
o Nonlinear convex inequality:

for some convex function g(x) [see below]

S := x ∈ Rn g(x) ≤ 0{ }

1

1

x ∈ R2 x1
2 + x2

2 ≤1{ }
1

1

x ∈ R2 x1
2 + x2

2 =1{ }

nonconvex !

Convex set
Examples: positive semedifinite cones
o Hermitian matrices

o Positive semidefinite (psd) matrices

o Positive definite (pd) matrices

Sn := A ∈Cn×n A = AH{ }

S+
n := A ∈ Sn xHAx ≥ 0 for all x ∈Cn{ }

S++
n := A ∈ Sn xHAx > 0 for all x ∈Cn{ }

Convex set
To recognize a convex set S

o Verify definition

o Show S is obtained from simple convex
sets (polyhedra, balls, ellipsoids, cones,
…) by operations that preserve convexity
n intersection
n affine functions
n perspective function
n linear fractional functions

Convex set
Convexity-preserving operations
Suppose are convex.
Then the following sets are convex:

o

o

o

B := 
k
Ak

Ak ⊆ R
n,k =1,...,K,

B := Ak
k
∑ := xk xk ∈ Ak

k
∑
#
$
%

&
'
(

B := A1 ×× AK

set of sd matrices S+
n := ∩

z≠0
z∈Rn

X ∈ Sn : zT Xz ≥ 0{ }

i.e., arbitrary intersection of convex sets is convex

Convex set
Affine function: f (x) := Ax + b

S C

C = f (S) := Ax + b x ∈ S{ }

f

f −1

S = f −1(C) := x Ax + b ∈C{ }

S is convex iff C is convex

Application
o Scaling, translation, projection

Convex set
Affine function:
o Solution set of LMI

because:

S := x x1A1 ++ xnAn ≤ B{ } (A,B ∈ Sm)

f :Rn → S+
m

f :Rn → S+
m : f (x) = B− A(x)

C : psd cone S+
m := f (x) ≥ 0{ }

S := f −1(C)

symmetric
matrices

Convex set
Affine function:
o Hyperbolic cone

because:

S := x xTPx ≤ (cT x)2{ } (P ∈ Sm,c ∈ Rn)

f :Rn →Rn+1 : f (x) = P1/2x,cT x()
C := (y, t)∈ Rn+1 yT y ≤ t2{ } second-order cone

S := f −1(C)

f :Rn →Rn+1

Convex set
Definition
The convex hull of an arbitrary
set is the smallest convex set that
contains S

conv S

conv S

S

conv S

Convex set
Examples
o

conv S = (the set of psd matrices)

S := A ∈Cn×n psd, rank A ≤1{ }

S+
n

Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex function

f (x)

x yz

f (y)

Definition
is convex if dom f is a

convex set and for all ,

f is strictly convex if “<“

x, y ∈ dom f
f (αx + (1−α)y) ≤ α f (x)+ (1−α) f (y)

α ∈ [0,1]

RHS

LHS

f (x) :Rn →R

Convex function
Characterization:

is convex iff for all
and s.t.

x, y ∈ Rn

g(t) := f (x + ty) is convex
t ∈ R x + ty ∈ dom f

Note: g(t) is a function of a scalar t. It says
that start from any point x, go in any direction
y, the function g is convex.

f (x) :Rn →R

Convex function
Characterization: exists, convex dom f

is convex iff for all

strictly convex iff “<“

x, y ∈ dom f
∇f (x)()T (y− x) ≤ f (y)− f (x)

∇f (x)

f (x)

x y

f (y)
RHS

LHS

f (x) :Rn →R

Convex function
Characterization: exists, convex dom f

is convex iff for all x, y ∈ Rn

∇f (x)()T (x − y) ≥ f (x)− f (y)

∇f (x)

f (y)

xy

f (x)

RHS

LHS

strictly convex iff “<“

f (x) :Rn →R

Convex function
Characterization: exists, convex dom f

is convex on D iff for allf (x) :D→R x ∈ D

∂2 f
∂x2

x()

∂2 f
∂x2

x() ≥ 0

strictly convex iff “>“ (positive definite)

(positive semidefinite)

converse not true, e.g. f (x) = x4

Note that means

and is different from

Common mistake

∀x ∈ D ∂
2 f
∂x2 x() ≥ 0

∀y ∈ Rn yT ∂
2 f
∂x2 x() y ≥ 0

∀x ∈ D xT ∂
2 f
∂x2 x() x ≥ 0

fix any x ∈ D

Example

Then

1.

2.

Common mistake

f (x) = x1x2 ∀x ∈ D := (x1, x2) x1 ≥ 0, x2 ≥ 0{ }

xT ∂
2 f
∂x2 x() x = [x1 x2]

0 1
1 0
"

#
$

%

&
'
x1

x2

"

#
$

%

&
' = 2x1x2 ≥ 0 over D

∂2 f
∂x2 x() =

0 1
1 0
!

"
#

$

%
&

ev-ev's : 1, y1 = [1 1]T(), −1, y2 = [1 −1]T()

f is not convex on D ∵∂
2 f
∂x2 x() not psd bc y2

T ∂
2 f
∂x2 y2 ≤ 0

#

$
%

&

'
(

Convex function
Examples
o

Definition:

f (x) = x2

 α f (x)+ (1−α) f (y) − f (αx + (1−α)y)

= αx2 + (1−α)y2()− α 2x2 + (1−α)2 y2 + 2α(1−α)xy()
=α(1−α) x − y()2 ≥ 0

Convex function
Examples
o

Characterization 1:

which is clearly convex in t

f (x) = x2

g(t) := f (x + ty) = y ⋅ t + x()2

Convex function
Examples
o

Characterization 2:

f (x) = x2

 f (y)− f (x)() − ∇f (x)()T (y− x)

= y2 − x2()− 2x(y− x)

= (x − y)2 ≥ 0

Convex function
Examples
o

Characterization 3:

f (x) = x2

∂2 f
∂f 2 (x) = 2 ≥ 0

Convex function
Examples
o

o

o

o

o any norm

f (x) = x2

f (x) = ex

f (x) = − log x

f (x) = 1
x

x

Convex function
To recognize a convex function f

o Verify definition
o Apply one of 3 characterizations
o Show f is obtained from simple convex

functions (linear, quadratic, exp, -log, …)
by operations that preserve convexity
n nonnegative weighted sum
n composition with affine function
n pointwise supremum
n composition

Convex function
Convexity-preserving operations
Suppose are convex.
Then the following functions are convex:

o

o

o provided is
convex and is nondecreasing

g(x) := ak fk
k
∑ (x), ak ≥ 0

fk :Rn →R, k =1,...,K

g(x) :=max
k

 fk (x)

g(x) := h f1(x)()

g(x) := sup
y∈Y

 f (x, y)

h(x) := h(x), x ∈ dom h, h(x) :=∞, x ∉ dom h

h :R→R
h

Convex function
Composition
o Composition with affine function

Example:
o Any norm of affine function

f (Ax + b) is convex if f is convex

Ax + b

Convex function
Composition
o Composition with affine function

Example:
Log barrier for linear inequalities

f (Ax + b) is convex if f is convex

f (x) := − log bi − ai
T x()

i
∑

dom f := x ai
T x < bi ∀i{ }

λmax (X) =max
y 2=1

 yT Xy = max
y 2=1

 tr yyT()X

Convex function
Composition
o Composition with max function

Example:
o max eigenvalue of matrix

sup
y∈Y

f (x; y) is convex if f (⋅; y) is convex ∀y

X ∈ Sn

linear (convex) in X

Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex optimization

: convex functions forfk (x) k = 0,1, ..., K

min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization
Advantages
Local optimality implies global optimality

n Sufficient to focus on local optimal

First-order optimality condition is sufficient
n Not only necessary

Polynomial-time computable
n Nonconvex programs are NP-hard in general

Duality theory and Lagrange multipliers
n Important for both structure and

computation

Duality theory
min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b, A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• inequality constraints à
• equality constraints à

λ ≥ 0
µ

Dual problem
min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b, A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• inequality constraints à
• equality constraints à

λ ≥ 0
µ

Dual problem
min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b, A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• one Lagrange multiplier per constraint
• inequality constraints à
• equality constraints à

λ ≥ 0
µ

Dual problem
min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b, A ∈ Rm×n,b ∈ Rm

Lagrangian

Dual objective function

Dual problem:

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

max
λ≥0,µ

D(λ,µ)

D(λ,µ) :=min
x∈Rn

L(x;λ,µ) unconstrained
min

Dual problem
min
x∈Rn

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b, A ∈ Rm×n,b ∈ Rm

Lagrangian

Dual objective function

Dual problem:

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

max
λ≥0,µ

D(λ,µ)

unconstrained
min

Weak duality

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = bPrimal:

Dual:

Theorem
For any primal feasible x and dual feasible

In particular

(λ,µ)
D(λ,µ) ≤ f0 (x)

D(λ*,µ*) ≤ f0 (x
*)

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Weak duality

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = bPrimal:

Dual:

Theorem: weak duality
For any primal feasible x and dual feasible

In particular

(λ,µ)
D(λ,µ) ≤ f0 (x)

D(λ*,µ*) ≤ f0 (x
*)

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

weak duality holds for nonconvex programs

Strong duality

Theorem
Suppose Primal is convex and Slater’s cond holds
o

o If dual is feasible then dual is attained

Slater’s condition: s.t.∃x ∈ relint D := ∩
k≥0

dom fk

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = bPrimal:

Dual:

fk (x) < 0 if fk is not affine

D(λ*,µ*) = f0 (x
*)

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Strong duality

Theorem: strong duality
Suppose Primal is convex and Slater’s cond holds
o

o If dual is feasible then dual is attained

Slater’s condition: s.t.∃x ∈ relint D := ∩
k≥0

dom fk

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = bPrimal:

Dual:

fk (x) < 0 if fk is not affine

D(λ*,µ*) = f0 (x
*)

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Optimality condition
Theorem (KKT condition)
Suppose Primal is convex and Slater’s cond holds
x* is optimal if and only if there exist s.t.

o primal feasible:

o dual feasible:

o first-order cond:

o complementary slackness:

λ*,µ*()

∇f0 (x
*)+ λk

*∇fk (x
*)

k≥1
∑ +µ*T A = 0

λk
* fk (x

*) = 0

fk (x
) ≤ 0, Ax = b

λ* ≥ 0

Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Algorithms

o Many algorithms compute solutions to KKT condition

o Primal algorithm (if projection to feasible set is
easy)

o Dual algorithm (if unconstrained primal is easy)
o Primal-dual algorithm
o Second-order algorithm

∇ f0 (x*)+ λk
*∇fk (x

*)
k≥1
∑ +µ*T A = 0

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = b

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

Primal algorithm

o Steepest descent followed by projection to
feasible set

o First-order algorithm

x(t +1) = Proj x(t)−γ t∇f0 (x(t))()

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = b

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

stepsize

Dual algorithm

o Lagrangian is concave in y
o First-order algorithm

y(t):= (λ(t),µ(t))
y(t +1) = Proj y(t)+γ t∇yL(x(y(t)); y(t))()

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = b

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

argmin
x∈Rn

L(x;λ(t),µ(t))

Primal-dual algorithm

o Do not have to project to primal feasible set nor
compute min x

o Lagrangian is convex in x and concave in y
o First-order algorithm to approach a saddle point

x(t +1) = x(t)−γ t∇xL(x(t); y(t))

y(t +1) = Proj y(t)+γ t∇yL(x(t); y(t))()

min
x∈Rn

 f0 (x) s. t. fk (x) ≤ 0, Ax = b

max
λ≥0,µ

 D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

Newton-Raphson method

f x*() = 0

x*

xox1x2

∇f xk()

xk − xk+1

f xk()

∇f xk() xk − xk+1() = f xk()
xk+1 = xk − ∇f xk()#

$
%
&
−1
f xk()N-R iteration:

More preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation

Convex optimization

Definition
Convex optimization if

n are convex functions forfk (x) k = 0,1, ..., K

The feasible set is a convex set
Convex optimization is polynomial-time

X

min
x

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization

Questions
o How to recognize a convex program

o How to characterize minimizers?

o How to compute a minimizer?

min
x

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

Convex optimization

Questions
o How to recognize a convex program

n Convex set, convex function

o How to characterize minimizers?
n KKT condition, duality theorem

o How to compute a minimizer?
n First-order algorithms, Newton algorithms
n Distributed algorithms

min
x

 f0 (x)

s. t. fk (x) ≤ 0, k =1,...,K
 Ax = b

2nd order cone program (SOCP)

min c0
H x

s.t. Ckx + bk ≤ ck
H x + dk k ≥1

•

• || || : Euclidean norm
• Feasible set is 2nd order cone and convex
• Includes LP, convex QP as special cases
• Special case of SDP, but much simpler

computationally

Ck ∈C
nk−1()×n, bk ∈C

nk−1, ck ∈C
n, dk ∈ R

If c_k are complex, how to ensure
C_k^H x is real ?

2nd order cone program (SOCP)

min c0
H x

s.t. Ckx + bk ≤ ck
H x + dk k ≥1

•

• || || : Euclidean norm
• Feasible set is 2nd order cone and convex
• Includes LP, convex QP as special cases
• Special case of SDP, but much simpler

computationally

Ck ∈ R
nk−1()×n, bk ∈ R

nk−1, ck ∈C
n, dk ∈ R

SOCP in rotated form

min c0
H x

s.t. Ckx + bk
2 ≤ ck

H x + dk() ĉkH x + d̂k()

• Useful for OPF:

• Transformation:

min c0
H x

s.t. Ckx = bk k ≥1

 wm
2 ≤ ymzm m ≥1

w 2
≤ yz, y ≥ 0, z ≥ 0 ⇔

2w
y− z
%

&
'

(

)
* ≤ y+ z

Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑ s. t. A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Linear SDP
o What is the Lagrangian?
o What is the dual problem?
o What is KKT condition?

… let’s first review the case of linear program

Linear program

Primal: min
x∈Rn

 cixi
i=1

n

∑ s. t. a0 + xi
i=1

n

∑ ai ≤ 0

Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑ s. t. a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) := cixi
i=1

n

∑ + λ a0 + xi
i=1

n

∑ ai
"

#
$

%

&
', λ ≥ 0

 = a0λ + xi
i=1

n

∑ aiλ + ci()

Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑ s. t. a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) := a0λ + xi
i=1

n

∑ aiλ + ci(), λ ≥ 0

Dual:

D(λ) :=min
x∈Rn

L(x;λ) = a0λ +min
x∈Rn

xi
i=1

n

∑ aiλ + ci()

 =
a0λ if aiλ + ci = 0 for all i
−∞ else
$
%
&

Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑ s. t. a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) := a0λ + xi
i=1

n

∑ aiλ + ci(), λ ≥ 0

Dual:

D(λ) = =
a0λ if aiλ + ci = 0 for all i
−∞ else
"
#
$

max
λ≥0

 a0λ s.t. aiλ + ci = 0 for all i

Linear program

Primal:

Lagrangian:

min
x∈Rn

 max
λ≥0

 L(x;λ)

L(x;λ) := a0λ + xi
i=1

n

∑ aiλ + ci()

Dual: max
λ≥0

min
x∈Rn

 L(x;λ)

Complementary Slackness:

xi aiλ + ci() = 0 ∀i

Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑ s. t. A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Lagrangian: for

L(x;Λ) := cixi
i=1

n

∑ + tr Λ A0 + xi
i=1

n

∑ Ai
#

$
%

&

'
(

 = tr A0Λ() + tr (AiΛ)+ ci() xi
i=1

n

∑

Λ ≥ 0

D(Λ) =
tr A0Λ() if tr (AiΛ)+ ci = 0 ∀i
−∞ else

%
&
'

Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑ s. t. A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Dual: max
Λ≥0

 tr A0Λ() s.t. tr (AiΛ)+ ci = 0 ∀i

We will later use an inequality form:

equivalent to equality form through slack variables

max
Λ≥0

 tr A0Λ()

s.t. tr (AiΛ) ≤ ci ∀i

PSD cones are convex
Examples: positive semedifinite cones
o Hermitian matrices

o Positive semidefinite (psd) matrices

o Positive definite (pd) matrices

Sn := A ∈Cn×n A = AH{ }

S+
n := A ∈ Sn xHAx ≥ 0 for all x ∈Cn{ }

S++
n := A ∈ Sn xHAx > 0 for all x ∈Cn{ }

Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑ s. t. A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Dual: max
Λ≥0

 tr A0Λ() s.t. tr (AiΛ)+ ci = 0 ∀i

Theorem: strong duality
primal optimal value = dual optimal value

Theorem: The following are equivalent
o is primal-dual optimal
o is a saddle pt of Lagrangian

o KKT:

Semidefinite program (SDP)

(x*,Λ*)

L(x*,Λ) ≤ L(x*,Λ*) ≤ L(x,Λ*) ∀feasible x,Λ
(x*,Λ*)

A0 + xi
*

i=1

n

∑ Ai ≤ 0,

Λ* ≥ 0, tr (AiΛ
*)+ ci = 0 ∀i

tr Λ* A0 + xi
*

i=1

n

∑ Ai
&

'
(

)

*
+= 0

Mathematical preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation

QCQP

min xHC0x

over x ∈Cn

s.t. xHCkx ≤ bk k ≥1

•

• Convex problem if all Ck are psd
Nonconvex otherwise

Ck,k ≥ 0, Hermitian ⇒ xHCkx is real
bk ∈ R

n

QCQP

min xHC0x

over x ∈Cn

s.t. xHCkx ≤ bk k ≥1

• xHCkx = tr xHCkx = tr Ck xxH()

QCQP

min tr C0 xxH()
over x ∈Cn

s.t. tr Ck xxH()
X∈S+

n


 ≤ bk k ≥1

• xHCkx = tr xHCkx = tr Ck xxH()

QCQP

min tr C0 xxH()
over x ∈Cn

s.t. tr Ck xxH()
X∈S+

n


 ≤ bk k ≥1

• xHCkx = tr xHCkx = tr Ck xxH()

QCQP

min tr C0X
over X ∈ S+

n

s.t. tr CkX ≤ bk k ≥1
 rank X = 1 only nonconvexity

• Any solution X yields a unique x through
X = xxH

• Feasible sets are equivalent

Semidefinite program (SDP)

min tr C0X
s.t. tr CkX ≤ bk k ≥1
 X ≥ 0

• Feasible set of QCQP is an effective
subset of feasible set of SDP

• SDP is a relaxation of QCQP

Preview: solution strategy

OPF
nonconvex QCQP

OPF
rank constrained SDP

SDP
relaxation rank Wopt =1

Radial network: sufficient
conditions for exact relaxation

Mesh network: convexification
through phase shifters

Heuristic algorithms

OPF-sdp
convex

 rank Wopt >1
solution not
meaningful

SOCP in rotated form

min c0
H x

s.t. Ckx + bk
2 ≤ ck

H x + dk() ĉkH x + d̂k()

• Useful for OPF:

• Transformation:

min c0
H x

s.t. Ckx = bk k ≥1

 wm
2 ≤ ymzm m ≥1

w 2
≤ yz, y ≥ 0, z ≥ 0 ⇔

2w
y− z
%

&
'

(

)
* ≤ y+ z

Recap: QCQP, SDP, SOCP

min xHC0x

s.t. xHCkx ≤ bk k ≥1

min tr C0X
s.t. tr CkX ≤ bk k ≥1
 X ≥ 0

QCQP

SDP

SOCP min c0
H x

s.t. Ckx = bk k ≥1

 wm
2 ≤ ymzm m ≥1

Mathematical preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation

Graphs

Graph G = (V, E)
Complete graph: all node pairs adjacent
Clique: complete subgraph of G

n An edge is a clique
n Maximal clique: a clique that is not a subgraph of

another clique

Chordal graph: all minimal cycles have
length 3

n Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G
n Every graph has a chordal extension
n Chordal extensions are not unique

Partial matrix XG :

Partial matrices
Fix an undirected graph G = (V, E)

XG := XG[] jj , j ∈V, XG[] jk , (j,k)∈ E()
Completion X of a partial matrix XG :

X = XG on G

6

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

XG =

x11 x12 x13
x21 x22 x25

x31 x33 x34

 x43 x44 x45

 x52 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

 x42 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x25

x31 x32 x33 x34 x35

 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

(a)" (b)" (c)"

Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G) Wc(G)

c(G) c(G)G

Example
partial matrix XG := { complex numbers on G }

completion: full matrix X that
agrees with XG on G

n-vertex complete graph

Example
chordal ext Xc(G) := { complex numbers on c(G) } 6

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

XG =

x11 x12 x13
x21 x22 x25

x31 x33 x34

 x43 x44 x45

 x52 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

 x42 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x25

x31 x32 x33 x34 x35

 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

(a)" (b)" (c)"

Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G)

c(G) c(G)G

Xc(G)

Example
chordal ext Xc(G) := { complex numbers on c(G) } 6

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

XG =

x11 x12 x13
x21 x22 x25

x31 x33 x34

 x43 x44 x45

 x52 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

 x42 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x25

x31 x32 x33 x34 x35

 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

(a)" (b)" (c)"

Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Xc(G) Xc(G)

c(G) c(G)G

A partial matrix XG is psd if

Partial matrices
Fix an undirected graph G = (V, E)

XG q() ≥ 0 for all maximal cliques q

A partial matrix XG is rank-1 if

rank XG q() =1 for all maximal cliques q

Matrix completion

Theorem [Grone et al 1984]

Every psd partial matrix XG has a psd
completion if and only if G is chordal

o Motivates chordal relaxation

Chordal relaxation

min xHC0x

s.t. xHCkx ≤ bk k ≥1

min tr C0X
s.t. tr CkX ≤ bk k ≥1
 X ≥ 0

QCQP

SDP

Chordal min
Xc (G)

 tr C0XG

s.t. tr CkXG ≤ bk k ≥1
 Xc(G) ≥ 0

Example
chordal ext Xc(G) := { complex numbers on c(G) } 6

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

1"

2" 5"

3" 4"

XG =

x11 x12 x13
x21 x22 x25

x31 x33 x34

 x43 x44 x45

 x52 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

 x42 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

XF =

x11 x12 x13
x21 x22 x23 x25

x31 x32 x33 x34 x35

 x43 x44 x45

 x52 x53 x54 x55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

(a)" (b)" (c)"

Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G)

c(G) c(G)G

Xc(G)

Chordal relaxation

min
Xc (G)

 tr C0XG

s.t. tr CkXG ≤ bk k ≥1
 X q1() ≥ 0, X q2() ≥ 0

X q1() =
x11 x12 x13

x21 x22 x23

x31 x32 x33

!

"

#
#
#

$

%

&
&
&
 X q2() =

x22 x23 x24 x25

x32 x33 x34 x35

x42 x43 x44 x45

x52 x53 x54 x55

!

"

#
#
#
#

$

%

&
&
&
&

Chordal relaxation

min
Xc (G)

 tr C0XG

s.t. tr CkXG ≤ bk k ≥1
 X ' q1() ≥ 0, X q2() ≥ 0

X ' q1() =
x11 x12 x13

x21 u22 u23

x31 u32 u33

!

"

#
#
#

$

%

&
&
&
 X q2() =

x22 x23 x24 x25

x32 x33 x34 x35

x42 x43 x44 x45

x52 x53 x54 x55

!

"

#
#
#
#

$

%

&
&
&
&

ujk = x jk, j,k = 2,3

Chordal relaxation

min
Xc (G)

 tr C0
' X '

s.t. tr Ck
' X ' ≤ bk k ≥1

 X ' ≥ 0

X ' =
X '(q1) 0
 0 X(q2)
!

"
#

$

%
&

tr Cr
'X ' = 0 r =1, 2,3, 4

• This is SDP in standard form
• Size of X’ and #equality constraints depend on c(G)

Chordal relaxation

min
Xc (G)

 tr C0
' X '

s.t. tr Ck
' X ' ≤ bk k ≥1

 X ' ≥ 0

X ' =
X '(q1) 0
 0 X(q2)
!

"
#

$

%
&

tr Cr
'X ' = 0 r =1, 2,3, 4

• Simpler than SDP for sparse graph G
• Equivalent to SDP in worst case

