Convex optimization

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Unconstrained optimization

$$
\min _{x \in \mathbf{R}^{n}} \quad f(x)
$$

$f(x)$

Constrained optimization

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s.t. $f_{k}(x) \leq 0, \quad k=1, \ldots, K$

$$
g_{k}(x)=0, \quad k=1, \ldots, M
$$

feasible set

$$
\mathbf{X}:=\left\{x \in \mathbf{R}^{n} \mid f_{k}(x) \leq b_{k}, k=1, \ldots, K\right\}
$$

Constrained optimization

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s.t. $f_{k}(x) \leq 0, \quad k=1, \ldots, K$

$$
g_{k}(x)=0, \quad k=1, \ldots, M
$$

Constrained optimization

$$
\begin{array}{ll}
\min _{x \in \mathbf{R}^{n}} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& g_{k}(x)=0, \quad k=1, \ldots, M
\end{array}
$$

Definition

\square (Global) minimizers/optima:

$$
\mathbf{X}^{*}:=\left\{x^{*} \in \mathbf{X} \mid f_{0}\left(x^{*}\right) \leq f_{0}(x) \quad \forall x \in \mathbf{X}\right\}
$$

\square A minimizer $x^{*} \in \mathbf{X}$ is unique if

$$
f_{0}\left(x^{*}\right)<f_{0}(x) \quad \forall x \in \mathbf{X}
$$

Convex optimization

$$
\begin{array}{ll}
\min _{x \in \mathbf{R}^{n}} & f_{0}(x) \\
\text { s. t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Definition

Convex optimization if
■ $f_{k}(x)$ are convex functions for $k=0,1, \ldots, K$

The feasible set \mathbf{X} is a convex set
Convex optimization is polynomial-time

Convex optimization

$$
\begin{array}{ll}
\min _{x \in \mathbf{R}^{n}} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Questions
\square How to recognize a convex program
\square How to characterize minimizers?
\square How to compute a minimizer?

Convex optimization

$$
\begin{array}{ll}
\min _{x \in \mathbf{R}^{n}} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Questions
\square How to recognize a convex program

- Convex set, convex function
\square How to characterize minimizers?
- KKT condition, duality theorem
\square How to compute a minimizer?
■ First-order algorithms, Newton algorithms
- Distributed algorithms

Convex optimization

- Convex set
- Convex function
- Duality and KKT condition

■ Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex set

Definition

A set S is convex if for all $x, y \in S$ for all $\alpha \in[0,1], z:=\alpha x+(1-\alpha) y \in S$

S is convex

S is nonconvex
S can be in an arbitrary space, not necessarily in \mathbf{R}^{n}

Convex set

Examples

\square Half-plane or half-space

$$
\begin{array}{ll}
S:=\left\{x \in \mathbf{R}^{n} \mid a^{T} x=b\right\} & (a \neq 0) \\
S:=\left\{x \in \mathbf{R}^{n} \mid a^{T} x \leq b\right\} & (a \neq 0)
\end{array}
$$

Convex set

Examples

\square Norm ball (any norm)

$$
S:=\left\{x \in \mathbf{R}^{n} \mid\|x-c\| \leq r\right\}=\{c+r u \mid\|u\| \leq 1\}
$$

\square Ellipsoid

$$
\begin{aligned}
& S:=\left\{x \in \mathbf{R}^{n} \mid(x-c)^{T} P^{-1}(x-c) \leq 1\right\} \quad(P \mathrm{pd}) \\
& S:=\left\{c+A u \mid\|u\|_{2} \leq 1\right\} \quad(A \text { nonsingular })
\end{aligned}
$$

\square Norm cone (any norm)

$$
S:=\left\{(x, t) \in \mathbf{R}^{n+1} \mid\|x\| \leq t\right\}
$$

$\|.\|_{2}$: second-order cone

Convex set

Examples: polyhedra

\square Linear equality and inequality:

$$
S:=\left\{x \in \mathbf{R}^{n} \mid A_{1} x=b_{1}, \mathrm{~A}_{2} x \geq b_{2}\right\}
$$

for some $A_{j} \in \mathbf{R}^{m \times n}, b_{j} \in \mathbf{R}^{m}$
Polyhedron: finite intersection of halfplanes and halfspaces

Convex set

Examples

\square Nonlinear convex inequality:

$$
S:=\left\{x \in \mathbf{R}^{n} \mid g(x) \leq 0\right\}
$$

for some convex function $g(x)$ [see below]

$$
\left\{x \in \mathbf{R}^{2} \mid x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

$$
\left\{x \in \mathbf{R}^{2} \mid x_{1}^{2}+x_{2}^{2}=1\right\}
$$

Convex set

Examples: positive semedifinite cones
\square Hermitian matrices

$$
\mathbf{S}^{n}:=\left\{A \in \mathbf{C}^{n \times n} \mid A=A^{H}\right\}
$$

\square Positive semidefinite (psd) matrices

$$
\mathbf{S}_{+}^{n}:=\left\{A \in \mathbf{S}^{n} \mid x^{H} A x \geq 0 \text { for all } x \in \mathbf{C}^{n}\right\}
$$

\square Positive definite (pd) matrices

$$
\mathbf{S}_{++}^{n}:=\left\{A \in \mathbf{S}^{n} \mid x^{H} A x>0 \text { for all } x \in \mathbf{C}^{n}\right\}
$$

Convex set

To recognize a convex set S

\square Verify definition
\square Show S is obtained from simple convex sets (polyhedra, balls, ellipsoids, cones, ...) by operations that preserve convexity
■ intersection

- affine functions
- perspective function
- linear fractional functions

Convex set

Convexity-preserving operations

Suppose $A_{k} \subseteq \mathbf{R}^{n}, k=1, \ldots, K$, are convex. Then the following sets are convex:
$\square \quad B:=\bigcap_{k} A_{k}$
set of sd matrices $\mathbf{S}_{+}^{n}:=\bigcap_{\substack{\begin{subarray}{c}{z \neq 0 \\ z \in \mathbf{R}^{n}} }}\end{subarray}}\left\{X \in \mathbf{S}^{n}: z^{T} X z \geq 0\right\}$
i.e., arbitrary intersection of convex sets is convex
$\square \quad B:=A_{1} \times \cdots \times A_{K}$
$\square \quad B:=\sum_{k} A_{k}:=\left\{\sum_{k} x_{k} \mid x_{k} \in A_{k}\right\}$

Convex set

Affine function: $f(x):=A x+b$

$S=f^{-1}(C):=\{x \mid A x+b \in C\}$
$C=f(S):=\{A x+b \mid x \in S\}$
S is convex iff C is convex
Application
\square Scaling, translation, projection

Convex set

Affine function: $f: \mathbf{R}^{n} \rightarrow \mathbf{S}_{+}^{m}$
\square Solution set of LMI

$$
S:=\left\{x \mid x_{1} A_{1}+\cdots+x_{n} A_{n} \leq B\right\} \quad\left(A, B \in \mathbf{S}^{m}\right) \begin{gathered}
\text { symmetric } \\
\text { matrices }
\end{gathered}
$$

because:

$$
\begin{aligned}
& f: \mathbf{R}^{n} \rightarrow \mathbf{S}_{+}^{m}: f(x)=B-A(x) \\
& C: \text { psd cone } \mathbf{S}_{+}^{m}:=\{f(x) \geq 0\} \\
& S:=f^{-1}(C)
\end{aligned}
$$

Convex set

Affine function: $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+1}$
\square Hyperbolic cone

$$
S:=\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}\right\} \quad\left(P \in \mathbf{S}^{m}, c \in \mathbf{R}^{n}\right)
$$

because:

$$
\begin{aligned}
& f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n+1}: f(x)=\left(P^{1 / 2} x, c^{T} x\right) \\
& C:=\left\{(y, t) \in \mathbf{R}^{n+1} \mid y^{T} y \leq t^{2}\right\} \text { second-order cone } \\
& S:=f^{-1}(C)
\end{aligned}
$$

Convex set

Definition

The convex hull conv S of an arbitrary set S is the smallest convex set that contains S

conv S

conv S

Convex set

Examples

$\square \quad S:=\left\{A \in \mathbf{C}^{n \times n} \mid \operatorname{psd}, \operatorname{rank} A \leq 1\right\}$
conv $S=\mathbf{S}_{+}^{n}$ (the set of psd matrices)

Convex optimization

■ Convex set

- Convex function
- Duality and KKT condition
- Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex function

Definition

$f(x): \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if dom f is a convex set and for all $x, y \in \operatorname{dom} f, \alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

f is strictly convex if "<"

Convex function

Characterization:
$f(x): \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex iff for all $x, y \in \mathbf{R}^{n}$ and $t \in \mathbf{R}$ s.t. $x+t y \in \operatorname{dom} f$

$$
g(t):=f(x+t y) \text { is convex }
$$

Note: $g(t)$ is a function of a scalar t. It says that start from any point x, go in any direction y, the function g is convex.

Convex function

Characterization: $\nabla f(x)$ exists, convex $\operatorname{dom} f$ $f(x): \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex iff for all $x, y \in \operatorname{dom} f$

$$
(\nabla f(x))^{T}(y-x) \leq f(y)-f(x)
$$

strictly convex iff "<"

Convex function

Characterization: $\nabla f(x)$ exists, convex $\operatorname{dom} f$ $f(x): \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex of for all $x, y \in \mathbf{R}^{n}$

$$
(\nabla f(x))^{T}(x-y) \geq f(x)-f(y)
$$

strictly convex iff "<"

Convex function

Characterization: $\frac{\partial^{2} f}{\partial x^{2}}(x)$ exists, convex $\operatorname{dom} f$
$f(x): D \rightarrow \mathbf{R}$ is convex on D iff for all $x \in D$

$$
\frac{\partial^{2} f}{\partial x^{2}}(x) \geq 0
$$

(positive semidefinite)
strictly convex iff ">" (positive definite)
converse not true, e.g. $f(x)=x^{4}$

Common mistake

Note that

$$
\forall x \in D \quad \frac{\partial^{2} f}{\partial x^{2}}(x) \geq 0 \quad \text { means }
$$

fix any $x \in D \quad \forall y \in \mathbf{R}^{n} \quad y^{T} \frac{\partial^{2} f}{\partial x^{2}}(x) y \geq 0$
and is different from

$$
\forall x \in D \quad x^{T} \frac{\partial^{2} f}{\partial x^{2}}(x) x \geq 0
$$

P Common mistake

Example

$$
f(x)=x_{1} x_{2} \quad \forall x \in D:=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2} \geq 0\right\}
$$

Then $\frac{\partial^{2} f}{\partial x^{2}}(x)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
ev-ev's : $\left(1, y_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}\right),\left(-1, y_{2}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}\right)$

1. f is not convex on $D\left(\because \frac{\partial^{2} f}{\partial x^{2}}(x)\right.$ not psd bc $\left.y_{2}^{T} \frac{\partial^{2} f}{\partial x^{2}} y_{2} \leq 0\right)$
2. $x^{T} \frac{\partial^{2} f}{\partial x^{2}}(x) x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=2 x_{1} x_{2} \geq 0$ over D

Convex function

Examples

$\square f(x)=x^{2}$

Definition:

$$
\begin{aligned}
& \alpha f(x)+(1-\alpha) f(y)-f(\alpha x+(1-\alpha) y) \\
= & \left(\alpha x^{2}+(1-\alpha) y^{2}\right)-\left(\alpha^{2} x^{2}+(1-\alpha)^{2} y^{2}+2 \alpha(1-\alpha) x y\right) \\
= & \alpha(1-\alpha)(x-y)^{2} \geq 0
\end{aligned}
$$

Convex function

Examples

$\square f(x)=x^{2}$
Characterization 1:

$$
g(t):=f(x+t y)=(y \cdot t+x)^{2}
$$

which is clearly convex in t

Convex function

Examples

$\square f(x)=x^{2}$
Characterization 2:

$$
\begin{aligned}
& (f(y)-f(x))-(\nabla f(x))^{T}(y-x) \\
= & \left(y^{2}-x^{2}\right)-2 x(y-x) \\
= & (x-y)^{2} \geq 0
\end{aligned}
$$

Convex function

Examples
$\square f(x)=x^{2}$
Characterization 3:

$$
\frac{\partial^{2} f}{\partial f^{2}}(x)=2 \geq 0
$$

Convex function

Examples
$\square f(x)=x^{2}$
$\square \quad f(x)=e^{x}$

- $f(x)=-\log x$
- $f(x)=\frac{1}{x}$
\square any norm $\|x\|$

Convex function

To recognize a convex function f

\square Verify definition
\square Apply one of 3 characterizations
\square Show f is obtained from simple convex functions (linear, quadratic, exp, -log, ...) by operations that preserve convexity
■ nonnegative weighted sum

- composition with affine function
- pointwise supremum
- composition

Convex function

Convexity-preserving operations

Suppose $f_{k}: \mathbf{R}^{n} \rightarrow \mathbf{R}, k=1, \ldots, K \quad$ are convex.
Then the following functions are convex:
$\square g(x):=\sum_{k} a_{k} f_{k}(x), a_{k} \geq 0$
$\square \quad g(x):=\max _{k} f_{k}(x)$

$$
g(x):=\sup _{y \in Y} f(x, y)
$$

$\square \quad g(x):=h\left(f_{1}(x)\right)$ provided $h: \mathbf{R} \rightarrow \mathbf{R}$ is convex and h is nondecreasing
$\tilde{h}(x):=h(x), x \in \operatorname{dom} h, \tilde{h}(x):=\infty, x \notin \operatorname{dom} h$

Convex function

Composition

\square Composition with affine function $f(A x+b)$ is convex if f is convex

Example:
\square Any norm of affine function $\|A x+b\|$

Convex function

Composition

\square Composition with affine function $f(A x+b)$ is convex if f is convex

Example:
Log barrier for linear inequalities

$$
\begin{aligned}
& f(x):=-\sum_{i} \log \left(b_{i}-a_{i}^{T} x\right) \\
& \operatorname{dom} f:=\left\{x \mid a_{i}^{T} x<b_{i} \quad \forall i\right\}
\end{aligned}
$$

Convex function

Composition

\square Composition with max function $\sup f(x ; y)$ is convex if $f(\cdot ; y)$ is convex $\forall y$ $y \in Y$

Example:
\square max eigenvalue of matrix $X \in \mathbf{S}^{n}$

$$
\lambda_{\max }(X)=\max _{\|y\|_{2}=1} y^{T} X y=\max _{\|y\|_{2}=1}^{\operatorname{tr}} \underbrace{\left(y y^{T}\right) X}_{\text {linear (convex) in } X}
$$

Convex optimization

 ■ Convex set - Convex function - Duality and KKT condition - AlgorithmsReferences:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Convex optimization

$$
\begin{array}{ll}
\min _{x \in \mathbf{R}^{n}} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

$f_{k}(x)$: convex functions for $k=0,1, \ldots, K$

Convex optimization

Advantages

Local optimality implies global optimality
■ Sufficient to focus on local optimal
First-order optimality condition is sufficient
■ Not only necessary
Polynomial-time computable
■ Nonconvex programs are NP-hard in general
Duality theory and Lagrange multipliers

- Important for both structure and computation

Duality theory

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s. t. $\quad f_{k}(x) \leq 0, \quad k=1, \ldots, K$

$$
A x=b, \quad A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}
$$

Dual problem

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s. t. $\quad f_{k}(x) \leq 0, \quad k=1, \ldots, K$

Lagrange multipliers
$\lambda \in \mathbf{R}_{+}^{K}$

$$
A x=b, \quad A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m} \quad \mu \in \mathbf{R}^{m}
$$

(T) Dual problem

$\min f_{0}(x) \quad$ Lagrange
$\operatorname{xin}_{x}{ }^{n} \quad f_{0}(x)$
s. t. $\quad f_{k}(x) \leq 0, \quad k=1, \ldots, K$ multipliers
$\lambda \in \mathbf{R}_{+}^{K}$

$$
A x=b, \quad A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m} \quad \mu \in \mathbf{R}^{m}
$$

Lagrangian

$$
L(x ; \lambda, \mu):=f_{0}(x)+\sum_{k \geq 1} \lambda_{k} f_{k}(x)+\mu^{T}(A x-b)
$$

Convert constraints into penalties !

- one Lagrange multiplier per constraint
- inequality constraints $\rightarrow \lambda \geq 0$
- equality constraints $\rightarrow \mu$

Dual problem

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s. t. $\quad f_{k}(x) \leq 0, \quad k=1, \ldots, K$

Lagrange

 multipliers$\lambda \in \mathbf{R}_{+}^{K}$

$$
A x=b, \quad A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m} \quad \mu \in \mathbf{R}^{m}
$$

Lagrangian

$$
L(x ; \lambda, \mu):=f_{0}(x)+\sum_{k \geq 1} \lambda_{k} f_{k}(x)+\mu^{T}(A x-b)
$$

Dual objective function

$$
D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu) \longleftarrow \min _{\min }^{\text {unconstrained }}
$$

Dual problem

$\min _{x \in \mathbf{R}^{n}} f_{0}(x)$
s. t. $\quad f_{k}(x) \leq 0, \quad k=1, \ldots, K$

Lagrange

 multipliers$\lambda \in \mathbf{R}_{+}^{K}$

$$
A x=b, \quad A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m} \quad \mu \in \mathbf{R}^{m}
$$

Lagrangian

$$
L(x ; \lambda, \mu):=f_{0}(x)+\sum_{k \geq 1} \lambda_{k} f_{k}(x)+\mu^{T}(A x-b)
$$

Dual objective function

$$
D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu) \longleftarrow \operatorname{uncon}_{\min }^{\text {unctrained }}
$$

Dual problem: $\max _{\lambda \geq 0, \mu} D(\lambda, \mu)$

Weak duality

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$

Weak duality

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$

Theorem: weak duality

For any primal feasible x and dual feasible (λ, μ)

$$
D(\lambda, \mu) \leq f_{0}(x)
$$

In particular

$$
D\left(\lambda^{*}, \mu^{*}\right) \leq f_{0}\left(x^{*}\right)
$$

weak duality holds for nonconvex programs

Strong duality

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$
Slater's condition: $\exists x \in$ relint $\mathbf{D}:=\bigcap_{k \geq 0} \operatorname{dom} f_{k} \quad$ s.t.
$f_{k}(x)<0$ if f_{k} is not affine

Strong duality

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$
Slater's condition: $\exists x \in$ relint $\mathbf{D}:=\bigcap_{k \geq 0} \operatorname{dom} f_{k} \quad$ s.t.

$$
f_{k}(x)<0 \quad \text { if } f_{k} \text { is not affine }
$$

Theorem: strong duality
Suppose Primal is convex and Slater's cond holds
$\square D\left(\lambda^{*}, \mu^{*}\right)=f_{0}\left(x^{*}\right)$
\square If dual is feasible then dual is attained

Theorem (KKT condition)
Suppose Primal is convex and Slater's cond holds x^{*} is optimal if and only if there exist $\left(\lambda^{*}, \mu^{*}\right)$ s.t.
\square primal feasible: $f_{k}\left(x^{*}\right) \leq 0, A x^{*}=b$
\square dual feasible: $\quad \lambda^{*} \geq 0$
\square first-order cond: $\nabla f_{0}\left(x^{*}\right)+\sum_{k \geq 1} \lambda_{k}^{*} \nabla f_{k}\left(x^{*}\right)+\mu^{* T} A=0$
\square complementary slackness: $\lambda_{k}^{*} f_{k}\left(x^{*}\right)=0$

Convex optimization ■ Convex set - Convex function - Duality and KKT condition - Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013

Algorithms

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$
\square Many algorithms compute solutions to KKT condition

$$
\nabla f_{0}\left(x^{*}\right)+\sum_{k=1} \lambda_{k}^{*} \nabla f_{k}\left(x^{*}\right)+\mu^{* T} A=0
$$

\square Primal algorithm (if projection to feasible set is easy)
\square Dual algorithm (if unconstrained primal is easy)
\square Primal-dual algorithm
\square Second-order algorithm

Primal algorithm

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$

$$
x(t+1)=\operatorname{Proj}\left(x(t)-\gamma_{t} \nabla f_{0}(x(t))\right)
$$

\square Steepest descent followed by projection to feasible set
\square First-order algorithm

Dual algorithm

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$
$y(t):=(\lambda(t), \mu(t))$
$y(t+1)=\operatorname{Proj}(y(t)+\gamma_{t} \nabla_{y} L(\underbrace{x(y(t)}) ; y(t)))$
$\underset{x \in \mathbf{R}^{n}}{\operatorname{argmin}} L(x ; \lambda(t), \mu(t))$
\square Lagrangian is concave in y
\square First-order algorithm

Primal-dual algorithm

Primal: $\min _{x \in \mathbf{R}^{n}} f_{0}(x)$ s.t. $f_{k}(x) \leq 0, \quad A x=b$
Dual: $\quad \max _{\lambda \geq 0, \mu} D(\lambda, \mu):=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda, \mu)$

$$
\begin{aligned}
& x(t+1)=x(t)-\gamma_{t} \nabla_{x} L(x(t) ; y(t)) \\
& y(t+1)=\operatorname{Proj}\left(y(t)+\gamma_{t} \nabla_{y} L(x(t) ; y(t))\right)
\end{aligned}
$$

\square Do not have to project to primal feasible set nor compute min x
\square Lagrangian is convex in x and concave in y
\square First-order algorithm to approach a saddle point

(.) Newton-Raphson method

$$
\nabla f\left(x^{k}\right)\left(x^{k}-x^{k+1}\right)=f\left(x^{k}\right)
$$

N-R iteration: $\quad x^{k+1}=x^{k}-\left[\nabla f\left(x^{k}\right)\right]^{-1} f\left(x^{k}\right)$

More preliminaries

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

Convex optimization

$$
\begin{array}{ll}
\min _{x} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Definition

Convex optimization if
■ $f_{k}(x)$ are convex functions for $k=0,1, \ldots, K$

The feasible set \mathbf{X} is a convex set
Convex optimization is polynomial-time

Convex optimization

$$
\begin{array}{ll}
\min _{x} & f_{0}(x) \\
\text { s.t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Questions
\square How to recognize a convex program
\square How to characterize minimizers?
\square How to compute a minimizer?

Convex optimization

$$
\begin{array}{ll}
\min _{x} & f_{0}(x) \\
\text { s. t. } & f_{k}(x) \leq 0, \quad k=1, \ldots, K \\
& A x=b
\end{array}
$$

Questions
\square How to recognize a convex program

- Convex set, convex function
\square How to characterize minimizers?
- KKT condition, duality theorem
\square How to compute a minimizer?
■ First-order algorithms, Newton algorithms
- Distributed algorithms

$2^{\text {nd }}$ order cone program (SOCP)

$\min c_{0}^{H} x$
s.t.

$$
\left\|C_{k} x+b_{k}\right\| \leq c_{k}^{H} x+d_{k} \quad k \geq 1
$$

If c_k are complex, how to ensure C_ $\mathrm{k}^{\wedge} \mathrm{H} x$ is real?

- $C_{k} \in \mathbf{C}^{\left(n_{k}-1\right) \times n}, b_{k} \in \mathbf{C}^{n_{k}-1}, c_{k} \in \mathbf{C}^{n}, d_{k} \in \mathbf{R}$
- || || : Euclidean norm
- Feasible set is $2^{\text {nd }}$ order cone and convex
- Includes LP, convex QP as special cases
- Special case of SDP, but much simpler computationally

$2^{\text {nd }}$ order cone program (SOCP)

$\min c_{0}^{H} x$
s.t.

$$
\left\|C_{k} x+b_{k}\right\| \leq c_{k}^{H} x+d_{k} \quad k \geq 1
$$

- $C_{k} \in \mathbf{R}^{\left(n_{k}-1\right) \times n}, \quad b_{k} \in \mathbf{R}^{n_{k}-1}, c_{k} \in \mathbf{C}^{n}, d_{k} \in \mathbf{R}$
- || || : Euclidean norm
- Feasible set is $2^{\text {nd }}$ order cone and convex
- Includes LP, convex QP as special cases
- Special case of SDP, but much simpler computationally

SOCP in rotated form

$\min \quad c_{0}^{H} x$
s.t. $\quad\left\|C_{k} x+b_{k}\right\|^{2} \leq\left(c_{k}^{H} x+d_{k}\right)\left(\hat{c}_{k}^{H} x+\hat{d}_{k}\right)$

- Useful for OPF:

$$
\begin{array}{ll}
\min & c_{0}^{H} x \\
\text { s.t. } & C_{k} x=b_{k} \quad k \geq 1 \\
& \left\|w_{m}\right\|^{2} \leq y_{m} z_{m} \quad m \geq 1
\end{array}
$$

- Transformation:

$$
\|w\|^{2} \leq y z, y \geq 0, z \geq 0 \Leftrightarrow\left\|\left[\begin{array}{l}
2 w \\
y-z
\end{array}\right]\right\| \leq y+z
$$

Semidefinite program (SDP)

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s. t. $\quad A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0$

Linear SDP
\square What is the Lagrangian?
\square What is the dual problem?
\square What is KKT condition?
... let's first review the case of linear program

Linear program

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad a_{0}+\sum_{i=1}^{n} x_{i} a_{i} \leq 0$

Linear program

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad a_{0}+\sum_{i=1}^{n} x_{i} a_{i} \leq 0$

Lagrangian:

$$
\begin{aligned}
L(x ; \lambda) & :=\sum_{i=1}^{n} c_{i} x_{i}+\lambda\left(a_{0}+\sum_{i=1}^{n} x_{i} a_{i}\right), \quad \lambda \geq 0 \\
& =a_{0} \lambda+\sum_{i=1}^{n} x_{i}\left(a_{i} \lambda+c_{i}\right)
\end{aligned}
$$

Linear program

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad a_{0}+\sum_{i=1}^{n} x_{i} a_{i} \leq 0$
Lagrangian:

$$
L(x ; \lambda):=a_{0} \lambda+\sum_{i=1}^{n} x_{i}\left(a_{i} \lambda+c_{i}\right), \quad \lambda \geq 0
$$

Dual:

$$
\begin{aligned}
D(\lambda) & :=\min _{x \in \mathbf{R}^{n}} L(x ; \lambda)=a_{0} \lambda+\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} x_{i}\left(a_{i} \lambda+c_{i}\right) \\
& = \begin{cases}a_{0} \lambda & \text { if } a_{i} \lambda+c_{i}=0 \text { for all } i \\
-\infty & \text { else }\end{cases}
\end{aligned}
$$

Linear program

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad a_{0}+\sum_{i=1}^{n} x_{i} a_{i} \leq 0$
Lagrangian:

$$
L(x ; \lambda):=a_{0} \lambda+\sum_{i=1}^{n} x_{i}\left(a_{i} \lambda+c_{i}\right), \quad \lambda \geq 0
$$

Dual:

$$
D(\lambda)== \begin{cases}a_{0} \lambda & \text { if } a_{i} \lambda+c_{i}=0 \text { for all } i \\ -\infty & \text { else }\end{cases}
$$

$\max _{\lambda \geq 0} a_{0} \lambda \quad$ s.t. $\quad a_{i} \lambda+c_{i}=0$ for all i

Linear program

Lagrangian: $L(x ; \lambda):=a_{0} \lambda+\sum_{i=1}^{n} \frac{x_{i}\left(a_{i} \lambda+c_{i}\right)}{/}$
Primal:

$$
\min _{x \in \mathbf{R}^{n}} \max _{\lambda \geq 0} L(x ; \lambda)
$$

Dual:

$\max \min _{\boldsymbol{\operatorname { R a n }}} L(x ; \lambda)$ $\lambda \geq 0 \quad x \in \mathbf{R}^{n}$

Complementary Slackness:

$$
x_{i}\left(a_{i} \lambda+c_{i}\right)=0 \quad \forall i
$$

Semidefinite program (SDP)

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s. t. $\quad A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0$
Lagrangian: for $\Lambda \geq 0$

$$
\begin{aligned}
L(x ; \Lambda): & =\sum_{i=1}^{n} c_{i} x_{i}+\operatorname{tr} \Lambda\left(A_{0}+\sum_{i=1}^{n} x_{i} A_{i}\right) \\
& =\operatorname{tr}\left(A_{0} \Lambda\right)+\sum_{i=1}^{n}\left(\operatorname{tr}\left(A_{i} \Lambda\right)+c_{i}\right) x_{i}
\end{aligned} \begin{aligned}
D(\Lambda) & = \begin{cases}\operatorname{tr}\left(A_{0} \Lambda\right) & \text { if } \operatorname{tr}\left(A_{i} \Lambda\right)+c_{i}=0 \quad \forall i \\
-\infty & \text { else }\end{cases}
\end{aligned}
$$

Semidefinite program (SDP)

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0$
Dual: $\quad \max _{\Lambda \geq 0} \operatorname{tr}\left(A_{0} \Lambda\right) \quad$ s.t. $\quad \operatorname{tr}\left(A_{i} \Lambda\right)+c_{i}=0 \quad \forall i$

We will later use an inequality form:

$$
\begin{array}{ll}
\max _{\Lambda \geq 0} & \operatorname{tr}\left(A_{0} \Lambda\right) \\
\text { s.t. } & \operatorname{tr}\left(A_{i} \Lambda\right) \leq c_{i} \quad \forall i
\end{array}
$$

equivalent to equality form through slack variables

PSD cones are convex

Examples: positive semedifinite cones
\square Hermitian matrices

$$
\mathbf{S}^{n}:=\left\{A \in \mathbf{C}^{n \times n} \mid A=A^{H}\right\}
$$

\square Positive semidefinite (psd) matrices

$$
\mathbf{S}_{+}^{n}:=\left\{A \in \mathbf{S}^{n} \mid x^{H} A x \geq 0 \text { for all } x \in \mathbf{C}^{n}\right\}
$$

\square Positive definite (pd) matrices

$$
\mathbf{S}_{++}^{n}:=\left\{A \in \mathbf{S}^{n} \mid x^{H} A x>0 \text { for all } x \in \mathbf{C}^{n}\right\}
$$

Semidefinite program (SDP)

Primal: $\min _{x \in \mathbf{R}^{n}} \sum_{i=1}^{n} c_{i} x_{i} \quad$ s.t. $\quad A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0$
Dual: $\quad \max _{\Lambda \geq 0} \operatorname{tr}\left(A_{0} \Lambda\right) \quad$ s.t. $\operatorname{tr}\left(A_{i} \Lambda\right)+c_{i}=0 \quad \forall i$

Theorem: strong duality primal optimal value $=$ dual optimal value

Semidefinite program (SDP)

Theorem: The following are equivalent $\square\left(x^{*}, \Lambda^{*}\right)$ is primal-dual optimal
$\square\left(x^{*}, \Lambda^{*}\right)$ is a saddle pt of Lagrangian $L\left(x^{*}, \Lambda\right) \leq L\left(x^{*}, \Lambda^{*}\right) \leq L\left(x, \Lambda^{*}\right) \quad \forall$ feasible x, Λ
$\square \mathrm{KKT}: \quad A_{0}+\sum_{i=1}^{n} x_{i}^{*} A_{i} \leq 0$,

$$
\begin{aligned}
& \Lambda^{*} \geq 0, \quad \operatorname{tr}\left(A_{i} \Lambda^{*}\right)+c_{i}=0 \quad \forall i \\
& \operatorname{tr} \Lambda^{*}\left(A_{0}+\sum_{i=1}^{n} x_{i}^{*} A_{i}\right)=0
\end{aligned}
$$

Mathematical preliminaries

- Semidefinite programs
- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

QCQP

min
$x^{H} C_{0} x$
over $\quad x \in \mathbf{C}^{n}$
s.t. $\quad x^{H} C_{k} x \leq b_{k} \quad k \geq 1$

- $C_{k}, k \geq 0$, Hermitian $\Rightarrow x^{H} C_{k} x$ is real $b_{k} \in \mathbf{R}^{n}$
- Convex problem if all C_{k} are psd Nonconvex otherwise

QCQP

min
$x^{H} C_{0} x$
over $\quad x \in \mathbf{C}^{n}$
s.t. $\quad x^{H} C_{k} x \leq b_{k} \quad k \geq 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

$\min \quad \operatorname{tr} C_{0}\left(x x^{H}\right)$
over $\quad x \in \mathbf{C}^{n}$
s.t. $\quad \operatorname{tr} C_{k}\left(x x^{H}\right) \leq b_{k} \quad k \geq 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

$\min \quad \operatorname{tr} C_{0}\left(x x^{H}\right)$
over $\quad x \in \mathbf{C}^{n}$
s.t. $\quad \operatorname{tr} C_{k}(\underbrace{\left(x x^{H}\right)}_{x \in \mathrm{~S}_{+}^{n}} \leq b_{k} \quad k \geq 1$

- $x^{H} C_{k} x=\operatorname{tr} x^{H} C_{k} x=\operatorname{tr} C_{k}\left(x x^{H}\right)$

QCQP

min
$\operatorname{tr} C_{0} X$
over $\quad X \in \mathbf{S}_{+}^{n}$
s.t.
$\operatorname{tr} C_{k} X \leq b_{k} \quad k \geq 1$
$\underset{ }{\text { rank } V} \rightleftarrows$ only nonconvexity

- Any solution X yields a unique x through

$$
X=x x^{\mathrm{H}}
$$

- Feasible sets are equivalent

Semidefinite program (SDP)

$$
\begin{array}{ll}
\min & \operatorname{tr} C_{0} X \\
\text { s.t. } & \operatorname{tr} C_{k} X \leq b_{k} \quad k \geq 1 \\
& X \geq 0
\end{array}
$$

- Feasible set of QCQP is an effective subset of feasible set of SDP
- SDP is a relaxation of QCQP

Preview: solution strategy

Radial network: sufficient conditions for exact relaxation

Mesh network: convexification through phase shifters

SOCP in rotated form

$\min \quad c_{0}^{H} x$
s.t. $\quad\left\|C_{k} x+b_{k}\right\|^{2} \leq\left(c_{k}^{H} x+d_{k}\right)\left(\hat{c}_{k}^{H} x+\hat{d}_{k}\right)$

- Useful for OPF:

$$
\begin{array}{ll}
\min & c_{0}^{H} x \\
\text { s.t. } & C_{k} x=b_{k} \quad k \geq 1 \\
& \left\|w_{m}\right\|^{2} \leq y_{m} z_{m} \quad m \geq 1
\end{array}
$$

- Transformation:

$$
\|w\|^{2} \leq y z, y \geq 0, z \geq 0 \Leftrightarrow\left\|\left[\begin{array}{l}
2 w \\
y-z
\end{array}\right]\right\| \leq y+z
$$

Recap: QCQP, SDP, SOCP

QCQP
$\min \quad x^{H} C_{0} x$
s.t. $\quad x^{H} C_{k} x \leq b_{k} \quad k \geq 1$

SDP
$\min \quad \operatorname{tr} C_{0} X$
s.t.

$$
\begin{aligned}
& \operatorname{tr} C_{k} X \leq b_{k} \quad k \geq 1 \\
& X \geq 0
\end{aligned}
$$

SOCP

$$
\begin{array}{ll}
\min & c_{0}^{H} x \\
\text { s.t. } & C_{k} x=b_{k} \quad k \geq 1 \\
& \left\|w_{m}\right\|^{2} \leq y_{m} z_{m} \quad m \geq 1
\end{array}
$$

Mathematical preliminaries

■ Semidefinite programs

- QCQP and semidefinite relaxations
- Partial matrices and completions
- Chordal relaxation

Graphs

Graph $G=(V, E)$
Complete graph: all node pairs adjacent Clique: complete subgraph of G

- An edge is a clique
- Maximal clique: a clique that is not a subgraph of another clique
Chordal graph: all minimal cycles have length 3
- Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G

- Every graph has a chordal extension
- Chordal extensions are not unique

Partial matrices

Fix an undirected graph $G=(V, E)$ Partial matrix X_{G} :

$$
X_{G}:=\left(\left[X_{G}\right]_{j j}, j \in V,\left[X_{G}\right]_{j k},(j, k) \in E\right)
$$

Completion X of a partial matrix X_{G} :

$$
X=X_{G} \text { on } G
$$

(9) Example

partial matrix $X_{G}:=\{$ complex numbers on $G\}$

n-vertex complete graph

$$
X_{G}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & & & x_{25} \\
x_{31} & & x_{33} & x_{34} & \\
& & x_{43} & x_{44} & x_{45} \\
& x_{52} & & x_{54} & x_{55}
\end{array}\right]
$$

completion: full matrix X that agrees with X_{G} on G

(1) Example

chordal ext $X_{c(G)}:=\{$ complex numbers on $c(G)\}$

$$
X_{G}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & & & x_{25} \\
x_{31} & & x_{33} & x_{34} & \\
& & x_{43} & x_{44} & x_{45} \\
& x_{52} & & x_{54} & x_{55}
\end{array}\right] X_{c(G)}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\
\hline & x_{42} & x_{43} & x_{44} & x_{45} \\
& x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right]
$$

Example

chordal ext $X_{c(G)}:=\{$ complex numbers on $c(G)\}$

$$
X_{G}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & & & x_{25} \\
x_{31} & & x_{33} & x_{34} & \\
& & x_{43} & x_{44} & x_{45} \\
& x_{52} & & x_{54} & x_{55}
\end{array}\right] \quad X_{c(G)}=\left[\begin{array}{llllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\
\hline & x_{42} & x_{43} & x_{44} & x_{45} \\
& x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right] \quad X_{c(G)}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & x_{23} & & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\
\hline & & x_{43} & x_{44} & x_{45} \\
& x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right]
$$

Partial matrices

Fix an undirected graph $G=(V, E)$
A partial matrix X_{G} is $p s d$ if

$$
X_{G}(q) \geq 0 \text { for all maximal cliques } q
$$

A partial matrix X_{G} is rank-1 if
$\operatorname{rank} X_{G}(q)=1$ for all maximal cliques q

Matrix completion

Theorem [Grone et al 1984]
Every psd partial matrix X_{G} has a psd completion if and only if G is chordal
\square Motivates chordal relaxation

Chordal relaxation

QCQP
$\min \quad x^{H} C_{0} x$
s.t. $\quad x^{H} C_{k} x \leq b_{k} \quad k \geq 1$

SDP
$\min \quad \operatorname{tr} C_{0} X$
s.t.

$$
\begin{aligned}
& \operatorname{tr} C_{k} X \leq b_{k} \quad k \geq 1 \\
& X \geq 0
\end{aligned}
$$

Chordal

$$
\begin{array}{ll}
\min _{X_{c(G)}} & \operatorname{tr} C_{0} X_{G} \\
\text { s.t. } & \operatorname{tr} C_{k} X_{G} \leq \\
& X_{c(G)} \geq 0
\end{array}
$$

(1) Example

chordal ext $X_{c(G)}:=\{$ complex numbers on $c(G)\}$

$$
X_{G}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & & & x_{25} \\
x_{31} & & x_{33} & x_{34} & \\
& & x_{43} & x_{44} & x_{45} \\
& x_{52} & & x_{54} & x_{55}
\end{array}\right] X_{c(G)}=\left[\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & & \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\
\hline & x_{42} & x_{43} & x_{44} & x_{45} \\
& x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right]
$$

Chordal relaxation

$$
\begin{array}{ll}
\min _{X_{c(G)}} & \operatorname{tr} C_{0} X_{G} \\
\text { s.t. } & \operatorname{tr} C_{k} X_{G} \leq b_{k} \quad k \geq 1 \\
& X\left(q_{1}\right) \geq 0, \quad X\left(q_{2}\right) \geq 0
\end{array}
$$

$$
X\left(q_{1}\right)=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]
$$

$$
X\left(q_{2}\right)=\left[\begin{array}{llll}
x_{22} & x_{23} & x_{24} & x_{25} \\
x_{32} & x_{33} & x_{34} & x_{35} \\
x_{42} & x_{43} & x_{44} & x_{45} \\
x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right]
$$

Chordal relaxation

$$
\begin{array}{ll}
\min _{X_{c(G)}} & \operatorname{tr} C_{0} X_{G} \\
\text { s.t. } & \operatorname{tr} C_{k} X_{G} \leq b_{k} \quad k \geq 1 \\
& X^{\prime}\left(q_{1}\right) \geq 0, \quad X\left(q_{2}\right) \geq 0 \\
& u_{j k}=x_{j k}, \quad j, k=2,3
\end{array}
$$

$$
X^{\prime}\left(q_{1}\right)=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & u_{22} & u_{23} \\
x_{31} & u_{32} & u_{33}
\end{array}\right]
$$

$$
X\left(q_{2}\right)=\left[\begin{array}{llll}
x_{22} & x_{23} & x_{24} & x_{25} \\
x_{32} & x_{33} & x_{34} & x_{35} \\
x_{42} & x_{43} & x_{44} & x_{45} \\
x_{52} & x_{53} & x_{54} & x_{55}
\end{array}\right]
$$

Chordal relaxation

$\min _{X_{c(G)}}$
s.t.

$$
\begin{array}{ll}
\operatorname{tr} C_{k}^{\prime} X^{\prime} \leq b_{k} & k \geq 1 \\
X^{\prime} \geq 0 & \\
\operatorname{tr} C_{r}^{\prime} X^{\prime}=0 & r=1,2,3,4
\end{array}
$$

$$
X^{\prime}=\left[\begin{array}{cc}
X^{\prime}\left(q_{1}\right) & 0 \\
0 & X\left(q_{2}\right)
\end{array}\right]
$$

- This is SDP in standard form
- Size of X 'and \#equality constraints depend on $c(G)$

Chordal relaxation

$\min _{X_{c(G)}}$
s.t.

$$
\begin{array}{ll}
\operatorname{tr} C_{k}^{\prime} X^{\prime} \leq b_{k} & k \geq 1 \\
X^{\prime} \geq 0 & \\
\operatorname{tr} C_{r}^{\prime} X^{\prime}=0 & r=1,2,3,4
\end{array}
$$

$$
X^{\prime}=\left[\begin{array}{cc}
X^{\prime}\left(q_{1}\right) & 0 \\
0 & X\left(q_{2}\right)
\end{array}\right]
$$

- Simpler than SDP for sparse graph G
- Equivalent to SDP in worst case

