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Unconstrained optimization

min
x∈Rn

          f (x)  

f (x)

Rn
global
optimal
(unique)

local
optimal

local
optima

(nonunique)



Constrained optimization

[                               ][          ] Rn

X := x ∈ Rn fk (x) ≤ bk,  k =1,...,K{ }

f0 (x)

feasible
set

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          gk (x) = 0,     k =1,...,M



Constrained optimization

[                               ] Rn

global
optimal
(unique)

local
optima

(nonunique)

[          ]

f0 (x)

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          gk (x) = 0,     k =1,...,M



Definition
o (Global) minimizers/optima:

o A minimizer             is unique if 

Constrained optimization

X* := x* ∈ X f0 (x*) ≤ f0 (x)   ∀x ∈ X{ }  

f0 (x*) < f0 (x)   ∀x ∈ X
x* ∈ X

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          gk (x) = 0,     k =1,...,M



Convex optimization

Definition
Convex optimization if

n are convex functions forfk (x) k = 0,1,  ..., K

The feasible set      is a convex set
Convex optimization is polynomial-time 

X

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization

Questions
o How to recognize a convex program

o How to characterize minimizers?

o How to compute a minimizer?

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization

Questions
o How to recognize a convex program

n Convex set, convex function

o How to characterize minimizers?
n KKT condition, duality theorem

o How to compute a minimizer?
n First-order algorithms, Newton algorithms
n Distributed algorithms

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
Boyd and Vandenberghe, Convex optimization, 2004
Ben-Tal and Nemirovski, Lectures on modern convex optimization, 2013



Convex set
Definition
A set     is convex if for all
for all            ,  

S x, y ∈ S
z :=αx + (1−α)y ∈  Sα ∈ [0,1]

x
yz

S is convex

x y
z

S is nonconvex

S can be in an arbitrary space, not necessarily in Rn



Convex set
Examples
o Half-plane or half-space

S := x ∈ Rn aT x = b{ }      (a ≠ 0)

S := x ∈ Rn aT x ≤ b{ }      (a ≠ 0)



Convex set
Examples
o Norm ball (any norm)

o Ellipsoid

o Norm cone (any norm)

S := x ∈ Rn   ||x − c ||≤ r{ }= c+ ru  || u ||≤1{ }

S := x ∈ Rn   (x − c)T P−1(x − c) ≤1{ }     (P  pd)

S := c+ Au  ||u ||2≤1{ }     (A  nonsingular)

S := (x, t)∈ Rn+1   ||x ||≤ t{ }
||.||2 : second-order cone

Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
x2

t
−1

0
1

−1

0

1
0

0.5

1

norm balls and cones are convex

Convex sets 2–8



Convex set
Examples: polyhedra
o Linear equality and inequality:

for some 

S := x ∈ Rn A1x = b1,  A2x ≥ b2{ }
Aj ∈ R

m×n,  bj ∈ R
m

1

1

x ∈ R2 x1 + x2 ≤1,
x1 ≥ 0, x1 ≥ 0

$
%
&

'
(
)

1

1

x ∈ R2 x1 + x2 =1,
x1 ≥ 0, x1 ≥ 0

#
$
%

&
'
(

Polyhedron: finite intersection of halfplanes and halfspaces



Convex set
Examples
o Nonlinear convex inequality:

for some convex function g(x)  [see below]

S := x ∈ Rn g(x) ≤ 0{ }

1

1

x ∈ R2 x1
2 + x2

2 ≤1{ }
1

1

x ∈ R2 x1
2 + x2

2 =1{ }

nonconvex !



Convex set
Examples: positive semedifinite cones
o Hermitian matrices

o Positive semidefinite (psd) matrices

o Positive definite (pd) matrices

Sn := A ∈Cn×n A = AH{ }

S+
n := A ∈ Sn xHAx ≥ 0  for all x ∈Cn{ }

S++
n := A ∈ Sn xHAx > 0  for all x ∈Cn{ }



Convex set
To recognize a convex set S

o Verify definition

o Show S is obtained from simple convex 
sets (polyhedra, balls, ellipsoids, cones, 
…) by operations that preserve convexity
n intersection
n affine functions
n perspective function
n linear fractional functions



Convex set
Convexity-preserving operations
Suppose                          are convex.
Then the following sets are convex:

o

o

o

B := 
k
Ak

Ak ⊆ R
n,k =1,...,K,

B := Ak
k
∑  :=  xk xk ∈ Ak

k
∑
#
$
%

&
'
(

B := A1 ×× AK

set of sd matrices  S+
n := ∩

z≠0
z∈Rn

X ∈ Sn : zT Xz ≥ 0{ }

i.e., arbitrary intersection of convex sets is convex



Convex set
Affine function: f (x) := Ax + b

S C

C = f (S) := Ax + b x ∈ S{ }

f

f −1

S = f −1(C) := x Ax + b ∈C{ }

S is convex  iff C is convex

Application
o Scaling, translation, projection



Convex set
Affine function: 
o Solution set of LMI

because:

S := x x1A1 ++ xnAn ≤ B{ }   (A,B ∈ Sm )

f :Rn → S+
m

f :Rn → S+
m : f (x) = B− A(x)

C :  psd cone S+
m  := f (x) ≥ 0{ }

S := f −1(C)

symmetric 
matrices



Convex set
Affine function:
o Hyperbolic cone

because:

S := x xTPx ≤ (cT x)2{ }    (P ∈ Sm,c ∈ Rn )

f :Rn →Rn+1 : f (x) = P1/2x,cT x( )
C := (y, t)∈ Rn+1 yT y ≤ t2{ }    second-order cone

S := f −1(C)

f :Rn →Rn+1



Convex set
Definition
The convex hull of an arbitrary 
set     is the smallest convex set that 
contains S

conv S

conv S

S

conv S



Convex set
Examples
o

conv S =       (the set of psd matrices) 

S := A ∈Cn×n psd, rank A ≤1{ }

S+
n



Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms
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Convex function

f (x)

x yz

f (y)

Definition
is convex if dom f is a 

convex set and for all                ,

f is strictly convex if  “<“

x, y ∈ dom f
f (αx + (1−α)y) ≤  α f (x)+ (1−α) f (y)

α ∈ [0,1]

RHS

LHS

f (x) :Rn →R



Convex function 
Characterization:

is convex iff for all     
and         s.t.

x, y ∈ Rn

g(t) := f (x + ty)   is convex
t ∈ R x + ty ∈ dom f

Note: g(t) is a function of a scalar t. It says
that start from any point x, go in any direction
y, the function g is convex.

f (x) :Rn →R



Convex function
Characterization:           exists, convex dom f

is convex iff for all

strictly convex iff “<“

x, y ∈ dom f
∇f (x)( )T (y− x) ≤  f (y)− f (x)

∇f (x)

f (x)

x y

f (y)
RHS

LHS

f (x) :Rn →R



Convex function
Characterization:           exists, convex dom f

is convex iff for all x, y ∈ Rn

∇f (x)( )T (x − y) ≥  f (x)− f (y)

∇f (x)

f (y)

xy

f (x)

RHS

LHS

strictly convex iff “<“

f (x) :Rn →R



Convex function
Characterization:            exists, convex dom f

is convex on D iff for allf (x) :D→R x ∈ D

∂2 f
∂x2

x( )

∂2 f
∂x2

x( ) ≥ 0

strictly convex iff “>“ (positive definite)

(positive semidefinite)

converse not true, e.g. f (x) = x4



Note that                                   means

and is different from

Common mistake

∀x ∈ D   ∂
2 f
∂x2 x( ) ≥ 0

∀y ∈ Rn     yT ∂
2 f
∂x2 x( ) y ≥ 0

∀x ∈ D    xT ∂
2 f
∂x2 x( ) x ≥ 0

fix any x ∈ D



Example

Then

1. 

2. 

Common mistake

f (x) = x1x2      ∀x ∈ D := (x1, x2 ) x1 ≥ 0, x2 ≥ 0{ }

xT ∂
2 f
∂x2 x( ) x  = [x1  x2 ]

0  1
1   0
"

#
$

%

&
'
x1

x2

"

#
$

%

&
' = 2x1x2  ≥  0  over D

∂2 f
∂x2 x( ) =

0  1
1   0
!

"
#

$

%
&

ev-ev's : 1,  y1 = [1 1]T( ),  −1,  y2 = [1 −1]T( )

f  is not convex on D ∵∂
2 f
∂x2 x( )  not psd bc y2

T ∂
2 f
∂x2 y2 ≤ 0

#

$
%

&

'
(



Convex function
Examples
o

Definition:

f (x) = x2

    α f (x)+ (1−α) f (y) −  f (αx + (1−α)y) 

= αx2 + (1−α)y2( )− α 2x2 + (1−α)2 y2 + 2α(1−α)xy( )
=α(1−α) x − y( )2   ≥   0



Convex function
Examples
o

Characterization 1:

which is clearly convex in t

f (x) = x2

g(t) := f (x + ty) =  y ⋅ t + x( )2



Convex function
Examples
o

Characterization 2:

f (x) = x2

    f (y)− f (x)( )  −  ∇f (x)( )T (y− x) 

= y2 − x2( )− 2x(y− x)

= (x − y)2  ≥   0



Convex function
Examples
o

Characterization 3:

f (x) = x2

∂2 f
∂f 2 (x) = 2 ≥  0



Convex function
Examples
o

o

o

o

o any norm  

f (x) = x2

f (x) = ex

f (x) = − log x

f (x) = 1
x

x



Convex function
To recognize a convex function f

o Verify definition
o Apply one of 3 characterizations
o Show f is obtained from simple convex 

functions (linear, quadratic, exp, -log, …) 
by operations that preserve convexity
n nonnegative weighted sum
n composition with affine function
n pointwise supremum
n composition



Convex function
Convexity-preserving operations
Suppose                                are convex.
Then the following functions are convex:

o

o

o provided is 
convex and      is nondecreasing

g(x) := ak fk
k
∑ (x),  ak ≥ 0

fk :Rn →R,  k =1,...,K

g(x) :=max
k

 fk (x)

g(x) := h f1(x)( )

g(x) := sup
y∈Y

 f (x, y)

h(x) := h(x),   x ∈ dom h,   h(x) :=∞,   x ∉ dom h

h :R→R
h



Convex function
Composition
o Composition with affine function

Example:
o Any norm of affine function

f (Ax + b)  is convex  if f  is convex

Ax + b



Convex function
Composition
o Composition with affine function

Example:
Log barrier for linear inequalities

f (Ax + b)  is convex  if f  is convex

f (x) := − log bi − ai
T x( )

i
∑

dom f := x ai
T x < bi   ∀i{ }



λmax (X) =max
y 2=1

 yT Xy  =  max
y 2=1

 tr yyT( )X

Convex function
Composition
o Composition with max function

Example:
o max eigenvalue of matrix 

sup
y∈Y

f (x; y)  is convex  if f (⋅; y) is convex ∀y

X ∈ Sn

linear (convex) in X



Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms
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Convex optimization

: convex functions forfk (x) k = 0,1,  ..., K

min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization
Advantages
Local optimality implies global optimality

n Sufficient to focus on local optimal

First-order optimality condition is sufficient
n Not only necessary

Polynomial-time computable
n Nonconvex programs are NP-hard in general

Duality theory and Lagrange multipliers
n Important for both structure and 

computation



Duality theory
min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b,         A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• inequality constraints à
• equality constraints    à

λ ≥ 0
µ



Dual problem
min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b,         A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• inequality constraints à
• equality constraints    à

λ ≥ 0
µ



Dual problem
min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b,         A ∈ Rm×n,b ∈ Rm

Lagrangian

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

Convert constraints into penalties !
• one Lagrange multiplier per constraint
• inequality constraints à
• equality constraints    à

λ ≥ 0
µ



Dual problem
min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b,         A ∈ Rm×n,b ∈ Rm

Lagrangian

Dual objective function

Dual problem: 

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

max
λ≥0,µ

D(λ,µ)

D(λ,µ) :=min
x∈Rn

L(x;λ,µ) unconstrained 
min



Dual problem
min
x∈Rn

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b,         A ∈ Rm×n,b ∈ Rm

Lagrangian

Dual objective function

Dual problem: 

λ ∈ R+
K

µ ∈ Rm

L(x;λ,µ) := f0 (x)+ λk
k≥1
∑ fk (x)+µ

T (Ax − b)

Lagrange
multipliers

D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

max
λ≥0,µ

D(λ,µ)

unconstrained 
min



Weak duality

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = bPrimal:

Dual:

Theorem
For any primal feasible x and dual feasible 

In particular

(λ,µ)
D(λ,µ) ≤ f0 (x)

D(λ*,µ*) ≤ f0 (x
*)

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)



Weak duality

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = bPrimal:

Dual:

Theorem: weak duality
For any primal feasible x and dual feasible 

In particular

(λ,µ)
D(λ,µ) ≤ f0 (x)

D(λ*,µ*) ≤ f0 (x
*)

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

weak duality holds for nonconvex programs



Strong duality

Theorem
Suppose Primal is convex and Slater’s cond holds
o

o If dual is feasible then dual is attained

Slater’s condition:                                                     s.t.∃x ∈ relint D := ∩
k≥0

dom fk

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = bPrimal:

Dual:

fk (x) < 0    if  fk  is not affine

D(λ*,µ*) = f0 (x
*)

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)



Strong duality

Theorem: strong duality
Suppose Primal is convex and Slater’s cond holds
o

o If dual is feasible then dual is attained

Slater’s condition:                                                     s.t.∃x ∈ relint D := ∩
k≥0

dom fk

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = bPrimal:

Dual:

fk (x) < 0    if  fk  is not affine

D(λ*,µ*) = f0 (x
*)

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)



Optimality condition
Theorem (KKT condition)
Suppose Primal is convex and Slater’s cond holds
x* is optimal if and only if there exist          s.t.

o primal feasible:

o dual feasible:

o first-order cond:

o complementary slackness: 

λ*,µ*( )

∇f0 (x
*)+ λk

*∇fk (x
*)

k≥1
∑ +µ*T A = 0

λk
* fk (x

*) = 0

fk (x
*) ≤ 0,    Ax* = b

λ* ≥ 0



Convex optimization
n Convex set
n Convex function
n Duality and KKT condition
n Algorithms

References:
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Algorithms

o Many algorithms compute solutions to KKT condition

o Primal algorithm (if projection to feasible set is 
easy)

o Dual algorithm (if unconstrained primal is easy)
o Primal-dual algorithm
o Second-order algorithm

∇ f0 (x*)+ λk
*∇fk (x

*)
k≥1
∑ +µ*T A = 0

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = b

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:



Primal algorithm

o Steepest descent followed by projection to 
feasible set

o First-order algorithm

x(t +1) = Proj x(t)−γ t∇f0 (x(t))( )

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = b

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

stepsize



Dual algorithm

o Lagrangian is concave in y
o First-order algorithm

y(t):= (λ(t),µ(t))
y(t +1) = Proj y(t)+γ t∇yL(x(y(t)); y(t))( )

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = b

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:

argmin
x∈Rn

L(x;λ(t),µ(t))



Primal-dual algorithm

o Do not have to project to primal feasible set nor 
compute min x

o Lagrangian is convex in x and concave in y
o First-order algorithm to approach a saddle point

x(t +1) = x(t)−γ t∇xL(x(t); y(t))

y(t +1) = Proj y(t)+γ t∇yL(x(t); y(t))( )

min
x∈Rn

    f0 (x)    s. t.     fk (x) ≤ 0,    Ax = b

max
λ≥0,µ

   D(λ,µ) :=min
x∈Rn

L(x;λ,µ)

Primal:

Dual:



Newton-Raphson method

f x*( ) = 0

x*

xox1x2

∇f xk( )

xk − xk+1

f xk( )

∇f xk( ) xk − xk+1( ) = f xk( )
xk+1 = xk − ∇f xk( )#

$
%
&
−1
f xk( )N-R iteration:



More preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation



Convex optimization

Definition
Convex optimization if

n are convex functions forfk (x) k = 0,1,  ..., K

The feasible set      is a convex set
Convex optimization is polynomial-time 

X

min
x

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization

Questions
o How to recognize a convex program

o How to characterize minimizers?

o How to compute a minimizer?

min
x

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



Convex optimization

Questions
o How to recognize a convex program

n Convex set, convex function

o How to characterize minimizers?
n KKT condition, duality theorem

o How to compute a minimizer?
n First-order algorithms, Newton algorithms
n Distributed algorithms

min
x

    f0 (x)

s. t.     fk (x) ≤ 0,     k =1,...,K
          Ax = b



2nd order cone program (SOCP)

min          c0
H x

s.t.           Ckx + bk  ≤   ck
H x + dk         k ≥1

•

• || || : Euclidean norm
• Feasible set is 2nd order cone and convex
• Includes LP, convex QP as special cases
• Special case of SDP, but much simpler 

computationally

Ck ∈C
nk−1( )×n,   bk ∈C

nk−1,   ck ∈C
n,  dk ∈ R

If c_k are complex, how to ensure
C_k^H x is real ?



2nd order cone program (SOCP)

min          c0
H x

s.t.           Ckx + bk  ≤   ck
H x + dk         k ≥1

•

• || || : Euclidean norm
• Feasible set is 2nd order cone and convex
• Includes LP, convex QP as special cases
• Special case of SDP, but much simpler 

computationally

Ck ∈ R
nk−1( )×n,   bk ∈ R

nk−1,   ck ∈C
n,  dk ∈ R



SOCP in rotated form

min          c0
H x

s.t.           Ckx + bk
2  ≤   ck

H x + dk( ) ĉkH x + d̂k( )

• Useful for OPF:

• Transformation:

min          c0
H x

s.t.           Ckx   =  bk           k ≥1

               wm
2  ≤   ymzm      m ≥1

w 2
≤ yz,  y ≥ 0,  z ≥ 0  ⇔   

2w
y− z
%

&
'

(

)
* ≤ y+ z



Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑     s. t.     A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Linear SDP
o What is the Lagrangian?
o What is the dual problem?
o What is KKT condition?

… let’s first review the case of linear program



Linear program

Primal: min
x∈Rn

 cixi
i=1

n

∑     s. t.     a0 + xi
i=1

n

∑ ai ≤ 0



Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑     s. t.     a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) := cixi
i=1

n

∑  + λ a0 + xi
i=1

n

∑ ai
"

#
$

%

&
',     λ ≥ 0

           = a0λ + xi
i=1

n

∑ aiλ + ci( )



Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑     s. t.     a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) :=  a0λ + xi
i=1

n

∑ aiλ + ci( ),    λ ≥ 0

Dual:

D(λ) :=min
x∈Rn

L(x;λ)  =  a0λ +min
x∈Rn

xi
i=1

n

∑ aiλ + ci( )

         =
a0λ      if   aiλ + ci = 0  for all i 
−∞       else
$
%
&

    



Linear program

Primal:

Lagrangian:

min
x∈Rn

 cixi
i=1

n

∑     s. t.     a0 + xi
i=1

n

∑ ai ≤ 0

L(x;λ) :=  a0λ + xi
i=1

n

∑ aiλ + ci( ),    λ ≥ 0

Dual:

D(λ) = =
a0λ      if   aiλ + ci = 0  for all i 
−∞       else
"
#
$

max
λ≥0

 a0λ     s.t.    aiλ + ci = 0  for all i   



Linear program

Primal:

Lagrangian:

min
x∈Rn

 max
λ≥0

 L(x;λ)

L(x;λ) :=  a0λ + xi
i=1

n

∑ aiλ + ci( )

Dual: max
λ≥0

min
x∈Rn

  L(x;λ)

Complementary Slackness: 

xi aiλ + ci( ) = 0  ∀i



Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑     s. t.     A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Lagrangian:  for 

L(x;Λ) := cixi
i=1

n

∑  + tr Λ A0 + xi
i=1

n

∑ Ai
#

$
%

&

'
(

             = tr A0Λ( )  + tr (AiΛ)+ ci( ) xi
i=1

n

∑

Λ ≥ 0

D(Λ) =
tr A0Λ( )     if   tr (AiΛ)+ ci = 0  ∀i
−∞            else

%
&
'



Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑     s. t.     A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Dual: max
Λ≥0

 tr A0Λ( )      s.t.    tr (AiΛ)+ ci = 0  ∀i

We will later use an inequality form:

equivalent to equality form through slack variables

max
Λ≥0

 tr A0Λ( )      

s.t.    tr (AiΛ) ≤ ci    ∀i



PSD cones are convex
Examples: positive semedifinite cones
o Hermitian matrices

o Positive semidefinite (psd) matrices

o Positive definite (pd) matrices

Sn := A ∈Cn×n A = AH{ }

S+
n := A ∈ Sn xHAx ≥ 0  for all x ∈Cn{ }

S++
n := A ∈ Sn xHAx > 0  for all x ∈Cn{ }



Semidefinite program (SDP)

min
x∈Rn

 cixi
i=1

n

∑     s. t.     A0 + xi
i=1

n

∑ Ai ≤ 0Primal:

Dual: max
Λ≥0

 tr A0Λ( )      s.t.    tr (AiΛ)+ ci = 0  ∀i

Theorem: strong duality
primal optimal value  =  dual optimal value



Theorem: The following are equivalent
o is primal-dual optimal 
o is a saddle pt of Lagrangian

o KKT:

Semidefinite program (SDP)

(x*,Λ*)

L(x*,Λ) ≤ L(x*,Λ*) ≤ L(x,Λ*)   ∀feasible x,Λ
(x*,Λ*)

A0 + xi
*

i=1

n

∑ Ai ≤ 0,   

Λ* ≥ 0,   tr (AiΛ
*)+ ci = 0  ∀i

tr Λ* A0 + xi
*

i=1

n

∑ Ai
&

'
(

)

*
+= 0



Mathematical preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation



QCQP

min          xHC0x

over         x ∈Cn

s.t.            xHCkx  ≤   bk         k ≥1    

•

• Convex problem if all Ck are psd
Nonconvex otherwise 

Ck,k ≥ 0,  Hermitian  ⇒   xHCkx is real
bk ∈ R

n     



QCQP

min          xHC0x

over         x ∈Cn

s.t.            xHCkx  ≤   bk         k ≥1    

• xHCkx  =  tr xHCkx   =  tr Ck xxH( )     



QCQP

min          tr C0 xxH( )
over         x ∈Cn

s.t.            tr Ck xxH( )
X∈S+

n


 ≤   bk         k ≥1    

• xHCkx  =  tr xHCkx   =  tr Ck xxH( )     



QCQP

min          tr C0 xxH( )
over         x ∈Cn

s.t.            tr Ck xxH( )
X∈S+

n


 ≤   bk         k ≥1    

• xHCkx  =  tr xHCkx   =  tr Ck xxH( )     



QCQP

min          tr C0X
over         X ∈ S+

n

s.t.            tr CkX  ≤   bk         k ≥1
                rank X   =  1  only nonconvexity

• Any solution X yields a unique x through
X = xxH

• Feasible sets are equivalent



Semidefinite program (SDP)

min          tr C0X
s.t.            tr CkX  ≤   bk         k ≥1
                 X  ≥  0  

• Feasible set of QCQP is an effective 
subset of feasible set of SDP

• SDP is a relaxation of QCQP



Preview: solution strategy

OPF
nonconvex QCQP

OPF
rank constrained SDP

SDP
relaxation rank Wopt =1

Radial network: sufficient
conditions for exact relaxation

Mesh network: convexification
through phase shifters

Heuristic algorithms

OPF-sdp
convex

 rank Wopt >1
solution not 
meaningful



SOCP in rotated form

min          c0
H x

s.t.           Ckx + bk
2  ≤   ck

H x + dk( ) ĉkH x + d̂k( )

• Useful for OPF:

• Transformation:

min          c0
H x

s.t.           Ckx   =  bk           k ≥1

               wm
2  ≤   ymzm      m ≥1

w 2
≤ yz,  y ≥ 0,  z ≥ 0  ⇔   

2w
y− z
%

&
'

(

)
* ≤ y+ z



Recap: QCQP, SDP, SOCP

min          xHC0x

s.t.            xHCkx  ≤   bk         k ≥1    

min          tr C0X
s.t.            tr CkX  ≤   bk         k ≥1
                 X  ≥  0  

QCQP 

SDP 

SOCP min          c0
H x

s.t.           Ckx   =  bk           k ≥1

               wm
2  ≤   ymzm      m ≥1



Mathematical preliminaries

n Semidefinite programs
n QCQP and semidefinite relaxations
n Partial matrices and completions
n Chordal relaxation



Graphs

Graph G = (V, E)
Complete graph: all node pairs adjacent
Clique: complete subgraph of G

n An edge is a clique
n Maximal clique: a clique that is not a subgraph of 

another clique

Chordal graph: all minimal cycles have 
length 3 

n Minimal cycle: cycle without chord

Chordal ext: chordal graph containing G
n Every graph has a chordal extension
n Chordal extensions are not unique



Partial matrix XG :

Partial matrices
Fix an undirected graph G = (V, E)

XG := XG[ ] jj , j ∈V,  XG[ ] jk , ( j,k)∈ E( )
Completion X of a partial matrix XG :

X   =  XG  on G
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Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G) Wc(G)

c(G) c(G)G

Example
partial matrix XG := { complex numbers on G  }

completion:  full matrix X that 
agrees with XG on G

n-vertex complete graph



Example
chordal ext Xc(G ) := { complex numbers on c(G) } 6
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Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G)

c(G) c(G)G

Xc(G)
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Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Xc(G) Xc(G)

c(G) c(G)G



A partial matrix XG is psd if 

Partial matrices
Fix an undirected graph G = (V, E)

XG q( ) ≥ 0  for all maximal cliques q

A partial matrix XG is rank-1 if 

rank XG q( ) =1  for all maximal cliques q



Matrix completion

Theorem [Grone et al 1984]

Every psd partial matrix XG has a psd
completion if and only if G is chordal

o Motivates chordal relaxation



Chordal relaxation

min          xHC0x

s.t.            xHCkx  ≤   bk         k ≥1    

min          tr C0X
s.t.            tr CkX  ≤   bk         k ≥1
                 X  ≥  0  

QCQP 

SDP 

Chordal min
Xc (G )

         tr C0XG

s.t.           tr CkXG  ≤   bk         k ≥1
                Xc(G )  ≥  0  
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Fig. 1: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and
its XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2
and 3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in
green. The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal
extension F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal
relaxation based on this F requires 8 decoupling variables u jk.

Define the 7⇥7 block-diagonal matrix

X 0 :=


X 0
F(q1) 0

0 XF(q2)

�

Then the chordal relaxation (7) can be written in
the standard form (3) in terms of these 7⇥7 block-
diagonal Hermitian matrices:

min
X 02S7

tr C0
0X 0 (10a)

subj. to tr C0
mX 0  bm, m = 1, . . . ,M(10b)

tr C0
rX

0 = 0, r = 1,2,3,4 (10c)
X 0 ⌫ 0 (10d)

for appropriate choices of C0
m, m = 0, . . . ,M. In the

above problem the constraint X 0 ⌫ 0 is equivalent
to the requirement (9) on its submatrices and C0

r in

(10c) can be chosen to enforce the requirement (8).
Hence the chordal relaxation (7) is indeed an SDP.

Remark 1: There are two conflicting factors in
choosing a good chordal extension. First a chordal
extension F that contains fewer number of max-
imal cliques q generally involves larger cliques,
leading to larger submatrices XF(q); for example
the complete graph F has a single maximal clique
but the corresponding XF(q) = X has n2 entries
and the chordal relaxation (7) offers no computa-
tional advantage over solving (in fact it is exactly)
the original SDP (3). This argues for a chordal
extension F with smaller, though possibly more,
maximal cliques q. Second, however, more maximal
cliques q tends to require more decoupling variables
u jk in order to express the decoupled submatrices

Wc(G)

c(G) c(G)G

Xc(G)



Chordal relaxation

min
Xc (G )

         tr C0XG

s.t.           tr CkXG  ≤   bk         k ≥1
                X q1( )  ≥  0,    X q2( )  ≥  0

X q1( ) =
x11   x12   x13

x21   x22   x23

x31   x32   x33
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           X q2( ) =
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Chordal relaxation

min
Xc (G )

         tr C0XG

s.t.           tr CkXG  ≤   bk         k ≥1
                X ' q1( )  ≥  0,    X q2( )  ≥  0

X ' q1( ) =
x11   x12   x13

x21   u22   u23

x31   u32   u33
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ujk = x jk,     j,k = 2,3



Chordal relaxation

min
Xc (G )

         tr C0
' X '

s.t.           tr Ck
' X '  ≤   bk         k ≥1

               X '  ≥  0

X ' =
X '(q1)      0  
    0       X(q2 )
!

"
#

$

%
&

tr Cr
'X '  =  0         r =1, 2,3, 4

• This is SDP in standard form
• Size of X’ and #equality constraints depend on c(G)



Chordal relaxation

min
Xc (G )

         tr C0
' X '

s.t.           tr Ck
' X '  ≤   bk         k ≥1

               X '  ≥  0

X ' =
X '(q1)      0  
    0       X(q2 )
!

"
#

$

%
&

tr Cr
'X '  =  0         r =1, 2,3, 4

• Simpler than SDP for sparse graph G
• Equivalent to SDP in worst case


