Adaptive Charging Network Simulator

Zachary Lee
Caltech
1200 E California Blvd.
Pasadena, California 91106
zlee@caltech.edu

ABSTRACT

Our goal in this project is to design and implement a system which
allows for rapid testing and deployment of theoretical work into
production environments. Translation of theories into real-world
applications is often difficult and can result in failure when re-
quirements not accounted for during research become evident and
critical in an production environment. Furthermore, modeling as-
sumptions may be inappropriate, which does not become evident
until it is deployed within production systems. For these reasons,
we set out to build a plug-and-play software simulator which al-
lows for expedited testing of new theoretical algorithms within an
Adaptive Electric Vehicle Charging Network. This system is built
to rapidly test new changes in an environment modeled after real
world data and scenarios. This greatly reduces the amount of time
required for feedback. To achieve this end, we implement several
software models. The first is a model of a battery, which behaves ac-
cording to data recorded from real electric vehicle charging profiles.
We wrap this software-implemented battery into a model electric
vehicle (EV), which communicates with the existing software suite
as if it were connected to a real charging station (EVSE). It is im-
portant to note that in this case, the software knows no more about
the vehicle and its battery than it would in the real-world case. We
then load an algorithm into the software suite and run a battery of
tests, each exposing metrics about performance and stability. These
metrics are then checked that they are within acceptable bounds.
Usually, such a test would take hours, as that is the time scale for
charging EV batteries. To counteract this, we accelerate time within
the software. In our tests, we usually run the simulation at 3600x
normal time. This means each second counts as one hour. With
this optimization, an algorithm can run through an entire week’s
worth of charging curves in under a minute. The various algorithm
performance metrics exposed by the simulator include but are not
limited to total energy delivered, service level, and maximum power
draw. These metrics can then be fed back into the development of
the theory.

KEYWORDS

Electric Vehicles, EV Charging, Adaptive Charging Network, Cyber
Physical Systems, CPS Simulators

ACM Reference format:

Zachary Lee and Rand Lee. 2017. Adaptive Charging Network Simulator. In
Proceedings of ACM Conference, Pasadena, CA, USA, June 2017 (CS/EE 148),
8 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CS/EE 148, June 2017, Pasadena, CA, USA
2017. ACM ISBN 978-x-xxxx-xxxX-x/YY/MM... $0.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Rand Lee
Caltech
1200 E California Blvd.
Pasadena, California 91106
randl@caltech.edu

1 INTRODUCTION

As electric vehicles (EVs) grow in popularity, there is a growing
need to install charging stations known as electric vehicle supply
equipment (EVSE) in the parking lots of offices, apartment buildings,
airports, and city centers. However, the electrical infrastructure at
these facilities was never intended to supply the massive power
needs of charging a large number of electric vehicles. As a result,
facility owners are forced to choose between installing only a few
charging stations or investing in expensive infrastructure upgrades.

In order to mitigate the limits that constrained infrastructure
imposes on EV charging, Caltech has developed an Adaptive Charg-
ing Network (ACN). The ACN consists of a central controller and
a collection of networked and controllable EVSEs. An algorithm
running on the central controller takes in data collected from the
EVSEs and users as well as information about the constraints of the
system and determines a schedule of charging rates for each active
EVSE in the network. These rates are then sent over the network
to the EVSEs where they enforce an upper bound on the amount
of current the connected EV can draw. Our simulator seeks to test
the algorithms and associated software on the central controller by
simulating the network of EVSEs and EVs and system constraints.
For more information about the ACN system see [1].

Our simulation system runs a collection of tests which expose
the cost efficiency, completeness, and other metrics regarding the
algorithm. Cost efficiency bounds the maximum instantaneous
power usage of an algorithm and relates to the demand charge on
an ACN user’s electricity bill. Completeness represents whether
or not sufficient energy was delivered to EVs in the system and is
critical for users to trust the system. These are but two metrics the
simulator can expose about an algorithm without the actual need
for deployment on the physical system. The relative differences in
these metrics between algorithms is an indispensable tool in the
iterative improvement of theory and its application.

The remainder of this paper is organized as follows. Section 2 in-
troduces our approach to modeling the system architecture, EVSEs,
and EVs. In Section 3 we give an overview of our simulator fol-
lowed by instructions for using the simulator in Section 4. Section 5
presents exemplary results from tests run using our simulator. Fi-
nally, Section 6 discusses the conclusions drawn from this work as
well as future work on the project.

2 SYSTEM MODEL

In order to simulate the system we first need to model all relevant
parts. In all cases we seek to create models which match the behav-
ior of the physical system as closely as possible. We also enforce
that our models only communicate with the rest of the code being
tested through the same interfaces used when communicating with


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CS/EE 148, June 2017, Pasadena, CA, USA

utility

gl e
Caltech

T substation

480V main switch garage loads
800A panel (lighting, fans)

150 kVAEV

3-phase \
transformer

208V 1" EV switch 208V | EV switch
500A panel 80A panel

480V
225A

Caltech

> ACN

& crorser B @
@ .. @ @

(&
.. @)

Figure 1: This figure depicts the electricity distribution net-
work at the California Parking Garage on the Caltech cam-
pus. Power enters the facility from the grid through a sub-
station. It then passes through the main switch panel. At
this point some power goes to lighting, fans, elevators, etc.
while the rest is fed through two step-down transformers
which feed EVSEs through sub-panels. At all times the cur-
rent draw through a component must not exceed its rated
limit or else a breaker could trip or permanent damage could
be done to the component.

the physical system. This ensures the results from our simulator
accurately predict the performance of the algorithm and associated
code when run on the physical system.

2.1 System Architecture

Fig. 1 depicts the electrical distribution system in a parking facility
at Caltech. These systems have a tree structure where power enters
the facility at the root node and travels through many intermediate
nodes such as transformers and switch panels before reaching the
leaf nodes which are the EVSEs. Each intermediate node has an
associated current limit. The sum of all currents drawn by EVSEs
who are descendants of an intermediate node should be less than
this constraint.

In order to model the system architecture, we recreate the tree
of constraints in software. We model each constraint as a Load
Manager (LM). These load managers form the inner nodes of the
tree. The leaf nodes are software interfaces to the physical EVSEs.
Fig. 2 shows how the distribution network in Fig. 1 is modeled.
Using this model we can simulate an arbitrarily large and complex
tree of constraints.

To model these constraints we define S; to be the set of all EVSEs
(leaf nodes) which are descendants of inner node i, R; to be the
current constraint of inner node i, and r;(t) to be the charging rate
of EVSE j at time t. We can then express the constraints on the
system as:

erSRi

JjeSi

Z. Lee and R. Lee

Root
Imax = °°
LMO
Imax= 1,800 A
LM1 LmM2
lmax=500 A lmax= 80 A

- IO I

OQuO)
@ @ @

Figure 2: We convert the distribution architecture in Fig. 1
into a tree structure in software. Each of the inner nodes
represents a current constraint in the physical system.

2.2 EVSE Model

Within the ACN control code, we have defined a standard interface
for communicating with EVSEs from multiple manufactures. These
standard commands such as updating the pilot signal (upper current
limit) of the station and measuring the actual current draw of the
EV are then converted into EVSE specific messages and sent out
over a wireless mesh network.

In order to create a simulated EVSE, we implemented this in-
terface. However, instead of communicating to a physical EVSE
connected to a real EV, we emulate the functionality of the EVSE
software. In addition to implementing the standard interface meth-
ods, this simulated EVSE also contains a simulated EV object. The
EVSE can then interact with the test EV by setting its pilot signal
or querying its current draw. In addition, the EVSE can simulate
EVs arriving and departing throughout a test. This is done through
our event based testing framework.

2.3 EV Model

Each simulated EVSE contains a test EV object. This test EV can
accept new pilot signals from the EVSE, calculate its charge rate
and return it to the EVSE, and update it’s state of charge based
on this charge rate. We use a simplified model of the EV charging
circuitry and battery to determine charge rate at any given time.
The current that an EV draws from the charging station can be
described as:

r(t) = min(rchgr(t), rpilot(t)y Tbart(t)) (1)

Where r¢p4,(t) is the current limit of the car’s on-board charger,
Tpilos(t) is the pilot signal received from the EVSE, and rpgszery(t)
is the battery’s acceptance current. Inareal EV r;p - (f) is a function
of the battery voltage, temperature and other factors, however for
simplicity, we assume repg,(t) := Fepgr Which is the upper limit of
the on-board charger.



Adaptive Charging Network Simulator

60

50

40

30

20

Charging Chorrent {A)

101 ——RealEV
— Battery Model

0 0.2 0.4 0.6 0.8 1
State of Charge

Figure 3: Using real data collected by a Tesla Model S owner,
we can fit (2) to the real data. This results in 7 = 51A and
n = 3.5. By inspection we see that the fit is quite good. We
can quantify this by taking the relative mean squared error
between the actual charging curve and our model which in
this case is 8.65e-6. Relative mean square error is given by
2
%2 (55)
, where e(t) is the error between the model the the true current
and r(t) is the true current.

Furthermore, we add a degree of random error to the charging
rate advertised by the EV. We add the error during the current
measurement function call to simulate the measurement error in
the charger’s circuitry.

2.4 Battery Acceptance Model

The acceptance rate of the battery is a function of its state of charge.
which we denote as y(t). After examining the charging curves of
real EVs we have identified (2) as a good model of the battery
charging curve.

Thar (Y1) = F(1 — e 1V iy efo, 11,6210 (2)

where 7 is the max acceptance rate of the battery and 7 is a tuning
parameter.

We can then fit this model to data collected from real electric
vehicles. Fig. 3 shows an overlay of the battery model and real data
from a Tesla Model S. With correct choices of 7 and 7, the model
fits the data well.

2.5 Unconstrained Battery Charging Model

We can describe the rate of change in the state of charge of the
battery when unconstrained by the pilot signal or on-board charger
as:

§(t) = a(1 - e 1V y) e [0, 1)

CS/EE 148, June 2017, Pasadena, CA, USA

7

where a :=  and C is the capacity of the battery. Hence, for
y(t) € [0,1) we have

W, el
(1 _ e—v(l—y(t)))
e1(1-y(1))

en(1=y(®) — 1
N—————

h(y(t))

y(t) = a, y(1) €[0,1)

Let
en(1-y(t)

d
d—yH(y) = h(y) := -

Using chain rule we have

d
5 HW®) = h(y(®)y = «

giving us
H(y(t)) = at + constant
and
H(y) = / h(y)dy
e(1-y)
= ——d
/ en(1-y) — 1 y
1
=—-In (e”(l_y) - l) , ye[o,1)
n
which yields

1
—=In (e”(l_y) - 1) = at + constant
n

Finally, solving for y(t)
y()=1- %ln(l ke net=)y p > g 3)

where k is found from the initial condition?

k = "(1-y(t0)) _ 4)

2.6 Constrained Battery Charging Model

In the real system, the EV charging rate is upper bounded by the
on-board charger limit and pilot signal. The actual charging rate of
the EV is given by (1). In order to accurately model charging of the
EV’s battery, we must account for these constraints.

Since we are interested only in the change in SoC over a small
time period from to to t1, we assume that 7510, (t) = rpizor OVer
the interval [y, t1].

Let

B = min(fchrg7 rpilot)
such that

r(t) = min(B,rpar. (1))

This derivation was adapted from a memo produced by Dr. Steven Low and is a
cleaner version of our original derivation.



CS/EE 148, June 2017, Pasadena, CA, USA

We define y(tx) to be the SoC such that
Tbars (Y(tx)) = B

plugging in 1 we can solve for y(ty)
1
Yltx) =1+ —In (l - l—_i) (5)
n 7

The time when the EV reaches yy is denoted t,. We use the fact
that (2) is monotonically decreasing with time to conclude

r(t):{ﬂ ift <ty

for t € [to, t1]
Thars(t) ift >ty
Because f is a constant, we can find the time taken to reach yy
using
=220y
B
Note that if ty < to then r(t) = rp4;4(t) for the entire time interval
and if t, > tq, r(t) = p for the entire interval.
The expression for y(#1) can then be given as

(11— to) + y(to) ifty > 1

y(t) ={1- %ln (1 + kxe"l““—fx)), if ty € (to, 1)

A
=

1- %ln (1 + koe—”“(f‘%)), ifty <

where
ky = eM1=y(tx)) _ 4

ko = eN(1=y(t)) _ 4

and y(tx) was found already using (5).

3 SIMULATOR DESIGN
3.1 GoogleTest Framework

The GoogleTest Framework is used for all functional testing in the
simulator. It is an industry standard testing suite, and allows for
very well-defined setup and cleanup of our testing fixtures. With
this framework we are able to construct very specific scenarios in
which to run the ACN system.

3.2 Time Acceleration

The time scale for electric vehicle charging is on the order of hours.
As a result there is inherent difficulty in testing the behavior of
cars over their entire charging cycle within a reasonable amount of
time. To accommodate this type of testing in a short time period we
developed a Time class which implements an artificial epoch with
which it builds an accelerated time scale. The new epoch is set once
at the construction of the Time singleton and is reset each time
the acceleration of the system changes. We calculate the current
artificially accelerated time using

thow = tepoch + @ X (tsystem — tepoch)

Z. Lee and R. Lee

where tepoch 18 the start time of our artificial epoch and tsystem is
the current system time, both of which are measured relative to the
standard Unix epoch. The acceleration constant a determines the
linear scaling of time. For example a = 3600 means that 1 hour of
simulated time takes 1 second of real time. By using t,o in all of
the system’s time-based actions, we effectively can increase the rate
at which time passes. Within the Time class, we also implement
custom versions of the system sleep commands. These commands
divide the desired sleep time by a so that they too are accelerated
by the same amount as the rest of the code.

The only caveat here is that processing time is constant per
loop regardless of time acceleration. Furthermore, processing time
becomes a larger and larger portion of overall time taken by the
program the more we increase the acceleration. This means that
processing time will begin to skew our results. Consider this ex-
ample. Our processing time is 5 seconds accelerated 3600x. This
is 1.39 milliseconds. If processing time is 0.50 ms, then we have
charged cars for 1.89 ms, an increase of 36%, when we really ex-
pected to charge for 1.39 ms. In the real-world case, we would have
waited 5.0005 seconds with such a processing delay, translating to
an increase of 0.01%. To account for this, we measure the actual pro-
cessing time and subtract it from the desired delay, both of which
are measured in accelerated time. This mitigates the problem so
long as the processing time is less than the desired delay time. If
processing time becomes longer than the desired delay, a must be
reduced to maintain testing accuracy. In our experience a = 3600
works well and produces sufficiently quick tests without sacrificing
test accuracy.

To test that time acceleration works as designed, we have a test
fixture to check various timing scenarios. Those can be found in the
TestTimeAccleration suite of tests. There, the system runs through
various fast and slow acceleration speeds and verifies that those
speeds don’t break general assertions.

3.3 Event Driven Testing Framework

We have developed an event driven testing framework to make
simulations easier to set up and more realistic. In this framework
test designers can schedule events to occur throughout the course of
the test. Example events include plugging in a new EV, unplugging
an existing EV, or testing if the SoC of an EV is near an given value.
A complete list of the event types currently offered and their effects
are shown in Table 1.

All event types inherit from a common base class, and must
contain the address of the EVSE they act on as well as the time
when they will occur, measured in seconds since the beginning of
the test. In addition, all events must implement an invoke() method
which carries out the effect of the event.

All events for a particular test are stored in a priority queue
which is sorted by time of occurrence. The use of a priority queue
means that the test designer can add events to the queue in any
order and the queue will automatically sort events to be in the
correct order of occurrence. This is a useful feature when designing
tests, as the designer can group events in the test function logically
instead of sequentially.



Adaptive Charging Network Simulator

CS/EE 148, June 2017, Pasadena, CA, USA

Table 1: Event Types and Effects

Event Effect

Plug In Update the EVSE’s EV object to have the desired type, SoC, and capacity. Set the EV plugged in flag.
Unplug Reset the simulated EV to a default state and clear the EV plugged in flag.

Expect Battery Level Use GoogleTest to assert that the EV’s battery level (mAh) is >, <, or ~ the given value.

Expect SoC Use GoogleTest to assert that the EV’s SoC (%) is >, <, or ~ the given value.

Expect EV PluggedIn  Use GoogleTest to assert that the EV plugged in flag is set.

When a test begins, the current time is stored. In each time step,
the time duration since the beginning of the test is calculated. The
time of the event at the head of the queue is then checked against
this duration. If the event time is less than the current time, this
event is removed from the queue and its invoke method is called.
The time of the new head of the queue is then checked. This process
repeats until the time of the event at the head of the queue is greater
than the duration of the test thus far.

Fig. 4 shows a simple example of the type of test a designer could
implement using the events framework. The framework is flexi-
ble enough, however, to support any number of events occurring
throughout a test. Currently events are invoked synchronously
within the process loop which runs every 5 seconds. This does not
pose a problem, since the rest of the ACN software is not aware of
any changes in the EVSE or EV until the next process loop anyway.
However, the events framework has been designed to be thread
safe and can run in a separate thread updating much more quickly
if desired in a particular application.

4 USING THE SIMULATOR

4.1 Constructing a Test

(1) Create a new TEST_F function within the SimulationTest
file. This file contains test fixtures and utilities which handle
boilerplate code so that you can construct tests quickly and
easily.

(2) Create the tree of constraints which define your network.
Constraints are modeled as load managers and can be added
using the network.addLoadManager(...) function. Each load
manager should be given a name, a capacity limit, and an
algorithm. In addition, a parent load manager can be speci-
fied, which allows you to build deeper tree structures like
the one in Fig. 2. If no parent is defined, the load manager is
automatically made a child of the root node.

(3) Use thebuildNetwork(...) utility function to add EVSEs to
the network you created in step 2. The arguments of this
function are the number of EVSEs to add, a vector of load
manager parents and a vector of rate increments. Element i
in each vector corresponds to the parent or rate increment
of EVSE i. This function automatically assigns an address to
each EVSE. The address for EVSE i can be obtained using
the utility function getAddress(i).

(4) If desired, use the initEV(...) utility function to initialize EVs
at all EVSEs. The arguments for this function are the number
of EVSEs, a vector of EV types, a vector of initial charges,

and a vector of battery capacities. As before, element i of
each vector corresponds to the EV attached to EVSE i.

(5) Add events to the queue. This is done by using the q.events.add(...)

function. The argument to this function is a pointer to an
event object. The available events are given in Table 1. Each
event constructor takes in the time when you want the event
to occur as well as the address of the EVSE it effects. Addi-
tional arguments depend on the event type. Events do not
need to be added in any particular order.

(6) Call process(N) to run the test. N is the number of iterations
through the process loop. Note that the default period of the
process loop is 5 seconds.

4.2 Running Tests

Our testing framework outputs tests in a executable which can be
run from the command line. Running the executable runs all tests
by default, and requires no command line options. Furthermore,
the logging output of each test is written in real-time to a log file
at: "/var/log/jarvis/tests/<testname>.log". This makes following a
test while it is running simple in the case where we need to re-run
a failed test.

The binary accepts an option "-gtest_filter=" which allows for
singling out a set of tests. For example, to run all simulator tests, one
could write: "./tests —gtest_filter=TestSimulator". As the command
implies, this runs all tests under the TestSimulator fixture, ignoring
TestTimeAcceleration and other tests.

4.3 Automated Integration Testing

Test runs need not be done manually. Nightly and on-demand
testing runs can be scheduled using the cloud. Since these software-
based tests require no specific hardware to run, we have set up a
server which builds versions of the binary, snapshotted at specific
versions of the code base. For each change which is committed
to the repository, we run the entire battery of tests, and report
the results. As stated earlier, this is done nightly by default, and
on-demand when needed.

The result for this is a per-commit summary of test results, allow-
ing for quick debugging of common bugs because the test results
will clearly show which change the failure originated from. This
integral simulation testing allows for fewer complex bugfixes in
the future.



CS/EE 148, June 2017, Pasadena, CA, USA Z. Lee and R. Lee

Time—0: NP
Address: 0000 ;'ér;\fe:jgggso
TeslaModleS, SoC(0) =30% :
- = S

N
N )
o~ o~ ZaN

PLUG-IN EXPECT SoC

Time = 1800s Time = 3600s Tir:gfl}uzgm
Address: 0001 Address: 0001 Address: 0001
Leaf, S0C(0) =65% SoC(t) > 80% '

Figure 4: Test designers are able to simulate the arrival and departure of EVs throughout the test as well as test expectations
of variables at specific times during the test. In this example, a Tesla Model S arrives at the beginning of the test followed by
a Nissan Leaf 30 minutes later. At 1 hour into the test, the SoC of the Leaf is required by the test designer to be above 80%. The
Tesla leaves 1.5 hours into the test followed by the Leaf 2 hours after the test began.

o
=

£
El
5
& 40
B
20
0 I |
0 05 1 15 2 25
80
z
2 60
2}
«
@ 40
=
=]
& 20
G
0 | |
0 05 1 15 2 25
— 100
£
o o
& 50 e
5
g
[, - : | | | |
0 05 1 15 2 25

Time fhours)

Figure 5: This test corresponds to the events depicted in Fig. 4. In these plots green represents EVSEO and yellow represents
EVSE1. The top plot shows how the pilot signal given by the Round Robin algorithm changes over time. We can see from the
top plot that an algorithm called ramp down adjusts the pilot signal of each EVSE so that it follows the actual charging rate of
the car as it decreases. This feature helps to free up charging capacity for other cars instead of allocating it to EVs which are
not using it. However, because of the design of the ramp down algorithm and the fact that the rate increment of the EVSEs in
this test were set to be 1 A, this ramp down still allocates a significant amount of current to the green EVSE even though it had
finished charging long before. This is an example of an insight our simulator can give us about the software and algorithms.
We can also see that the pilot signal drops to zero when an unplug event occurs. The middle plot shows the charging rate of
each EV. We can see that the pilot signal of each EVSE upper bounds its actual charging rate. We can also see that as the battery
nears a full charge the charging curve decays which is consistent with what we see in data collected from real EVs. The bottom
plot shows how the state of charge of each EV changes over time. We can see that both EVs are fully charged by the time they

leave.

5 ILLUSTRATIVE RESULTS LoadManager with an 80A bottleneck with two EVSEs each with
a rate increment of 1 A. After this is set-up, the test simulates the
the plug-in event of a Tesla Model S to EVSE 0 at the fifth second,
which unplugs 90 minutes later. In addition, the test simulates the

In order to demonstrate the effectiveness of our simulator we have
included metrics taken from two tests runs on the simulator.

The first test follows the simple event structure described in
Fig. 4.The results of this test are shown in Fig. 5. This test creates a



Adaptive Charging Network Simulator

CS/EE 148, June 2017, Pasadena, CA, USA

=
=
[ =
=@
oWl
5
o
4 45
=
]
o
o
o
£
oh
A
=
] i i
4 A5
£
=]
=
[
B
2
aa‘ 1
4 A5

Time {hours)

Figure 6: This test depicts the complexity which is possible using our event based framework. Here green, yellow, red, and
blue each denote a different EVSE. Throughout the course of a 4+ hour test, a total of 7 EVs charge for varying amounts of
time. This plot is purposefully complex and dense as it serves to illustrate how much information can be gained from our
simulations. For example, we can see from the top plot that the ramp down algorithm is taking far less time to reduce the
pilot signal to 0 after an EV has finished charging. This is because the rate increment in this test has been set to 8 A instead of
1 A. In addition, for the last hour of the test, the blue and red EVSEs have an EV plugged in, but they are done charging. Here
we can see how our algorithm attempts to periodically allocate charge to these EVSEs to allow them to wake and continue
charging if needed. From the middle plot we can also observe how the actual current draw on the system changes as EVs arrive,
charge, and depart. The bottom plot shows how the SoC of the EVs plugged into each EVSE changes over the course of the test.
Note that this test includes multiple EVs per EVSE. As such, when an SoC line drops to 0, this means that the EV previously

plugged in has unplugged. When the line begins climbing again it indicates that a new EV has arrived and is charging.

plug in of another Tesla Model S 30 minutes into the test which
stays for for 2 hours.

The results of a second, more complex test are shown in Fig. 6.
This test is designed to show the power of the simulator which
can handle simulating an arbitrary number of EVSE and events. In
order to make the results of the test more user friendly, we have
limited this test to 4 EVSEs and a total of 12 events. However, the
simulator can handle far more of each. In addition, for this test we
have set the rate increment for each EVSE to 8 A versus 1 A in the
previous test. This causes the pilot signals to be much more choppy.
Selected metrics from this test are shown in Fig. 6.

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This paper describes the design of a simulator for the Adaptive
Charging Network in order to facilitate the transfer of theoretical
advances to practical code which can be run on the physical ACN.
Realistic models for the system architecture, EVSEs, EVs, and bat-
teries allow our simulator to accurately evaluate how software will

perform in the physical system. The simulator framework has been
designed to allow tests to be designed easily using a simple inter-
face while still giving the test designer the flexibility to test many
scenarios and edge cases. In addition the use of time acceleration
allows tests to be run in a matter of seconds instead of hours, which
increases the number of test that can realistically be performed.
Results show that the simulator accurately mimics the behavior of
the real system.

Allin all, the ACN simulator will allow for faster and more robust
translation of theoretical results into practical software. This system
will be used to evaluate new algorithms and ACN features before
testing these changes on the physical system. This will significantly
reduce the time required to test new software. In addition, since
we are able to test edge cases which do not occur frequently in the
physical system, software tested with the simulator will be more
robust.

6.2 Future Work

Future work on this project will include setting up an instance
of Influx, the time series database used to store measurements



CS/EE 148, June 2017, Pasadena, CA, USA

in the ACN, for storing measurements taken in simulations. This
will allow us to utilize the same reporting infrastructure used for
monitoring the real system to monitor and evaluate tests. We also
plan to model communication delays and dropped packets so that
we can test how algorithms and other parts of the software handle
network congestion. Finally, we plan to add additional tests as new
algorithms are designed for the ACN. These simulations will test
stability as well as evaluate key metrics specific to the algorithm
being tested.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Steven Low for his mentorship
on this project as well as his help in formulating the charging
model for EV batteries. We would also like to thank the ANC team
whose input and infrastructure contributions have helped make
this project a success.

REFERENCES

[1] G.Lee, T.Lee, Z. Low, S. H. Low, and C. Ortega. 2016. Adaptive Charging Network
for Electric Vehicles. In 2016 IEEE Global Conference on Signal and Information
Processing.

Z. Lee and R. Lee



	Abstract
	1 Introduction
	2 System Model
	2.1 System Architecture
	2.2 EVSE Model
	2.3 EV Model
	2.4 Battery Acceptance Model
	2.5 Unconstrained Battery Charging Model
	2.6 Constrained Battery Charging Model

	3 Simulator Design
	3.1 GoogleTest Framework
	3.2 Time Acceleration
	3.3 Event Driven Testing Framework

	4 Using the Simulator
	4.1 Constructing a Test
	4.2 Running Tests
	4.3 Automated Integration Testing

	5 Illustrative Results
	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Acknowledgments
	References

