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ABSTRACT
With recent advancements in technology, the need for very precise
location determination has arisen. Currently, GPS positioning only
performs well outside, and even then, it�s only accurate to about
5 meters. We proposed and tested an application that connects
individual phones together, created a device mesh from which
an accurate location can be determined. Each phone sends out a
bluetooth signals, as well as other sensor data, and receiving phone
use that data to gauge its location in reference to other phones in
the near vicinity. �is has proven successful for distances within
6 meters, with accuracy of up to 10 centimeters. We hope that
this can be applied in conjunction with GPS technology to provide
navigation in dense, indoor places such as airports or malls.
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1 INTRODUCTION
Smartphone GPS technology has come a long way since its birth,
yet struggles to meet current demands of accurate location detec-
tion. While its accuracy of up to 4.9 meters is enough to navigate
cars on roads, it�s not enough to pinpoint user location in build-
ings. Additionally, the signal is easily obstructed indoors, meaning
locations can only be obtained in outdoor, open spaces in many
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situations. Our app alleviates this problem by using bluetooth tech-
nology to create a network of devices that communicate with each
other to establish a more accurate location estimate.

2 THE PROBLEM
�e inability to get such precise positioning isn�t due to the lack
of trying. �e advancement of technology introduces many novel
ways in which an accurate position can be obtained, but �nding
the best one can be a challenge. One can place bluetooth beacons
indoors to improve location tracking, but that requires a large
investment in setup at any location that wants increased location
accuracy, as well as introduces a high cost of maintenance. Another
alternative is the use of visual markers, which uses a camera to
detect objects and determine spatial coordinates from the angle to
the object. �is reduces the need for additional hardware, but still
requires prior mapping of the area, which can be expensive and
requires frequent updating as the area changes. Instead of using
new hardware, we can use pre-existing smartphone sensors and
communication methods gauge distance from one phone to the
other, increasing accuracy in smaller areas. �is can also be used
indoors since it does not rely on satellite signals, merely signals
from nearby devices.

3 SOLUTION
3.1 Bluetooth Trilateration
�e initial solution was to use Bluetooth low energy (BLE) to gauge
distance from other phones in the network and subsequently per-
form trilateration to calculate the most probable location. Further,
utilizing Bluetooth enabled its dual usage as the primary mode of
communication between nearby devices. �rough BLE advertising
and scanning, the devices transmit relevant information about their
current location while reading the locations of nearby devices. �e
data is advertised as a 13-byte message, and includes the device’s
ID (as a byte) and its xyz coordinates (4 bytes each). A unique
app ID is a�ached to the messages to help distinguish relevant
advertisement packets. �is data is then parsed and used by the
optimization algorithm on other devices to calculate their current
locations when mobile. To measure the distance from other devices
in the mesh, Bluetooth Received Signal Strength Indicator (RSSI)
values of broadcasted messages were measured. �e values, in dBm,
were found to be well correlated with distance within a range of 5
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m. Past this threshold, the RSSI value stayed constant with distance,
making it di�cult to determine an accurate distance from the value.
�is uncertainty was accounted for later in the trilateration algo-
rithm. �e collected data points and the derived curve of best �t
are shown in Figure 1.

Unfortunately, the Bluetooth RSSI values were not always consis-
tent and were susceptible to noise. Interference from other broad-
casting phones caused the values to �uctuate. Further, the �open-
ness� of the surroundings in�uenced readings, presumably due
to the variable number of surfaces obstructing and/or redirecting
the signal. Additionally, we could not precisely control the trans-
mi�ance power of the Bluetooth signals, which also led to some
variance in the RSSI values. However, this correlation was strong
enough to yield accurate base calculations of relative distances even
with these limitations. �e following equation was used to estimate
the distance in meters, d , from the rssi value in decibels, r , of a
nearby device:

d = 0.000163643e0.167732r + 30.1904

�is equation had a R2 value of 0.533 for the entire dataset and a
R2 value of 0.674 when the device was within a 5 meter range.

3.2 Barometer, Compass, and Accelerometer
While Bluetooth is perhaps the most accurate alternative to con-
ventional GPS, it alone cannot make up for the absolute positioning
a�orded by the la�er. In particular, while one can use trilateration
with just Bluetooth RSSIs to determine one�s relative position, one
cannot easily do so in a highly dynamic scenario that involves, for
example: long distances beyond the strength of Bluetooth, highly
signal-turbulent locations (i.e. where Bluetooth signals are bounc-
ing around a lot), keeping track of one�s absolute cardinal direction,
and in some cases keeping track of one�s change in position rel-
ative to certain objects (e.g. to a particular point in a completely
unmapped area when all phones involved in trilateration are also
moving). Consequently, we rely on several other sensors available
on modern Android devices to try to account for these di�culties,
and essentially build up a set of varied metrics corresponding to a
phone�s movement that ultimately, if in agreement, approximate
high accuracy tracking (and alternatively let us know if something
is wrong if there is disagreement) that matches and even exceeds
modern GPS. In the context of the larger literature about infor-
mation/position tracking and GPS-alternatives, this combinatorial
approach is o�en referred to as �Sensor Fusion,� and we took inspi-
ration from some such fusion initiatives that have been pursued in
the past on Android devices. In particular, we focused on four other
sensor modalities available on the LG G2 (amongst many Android
devices): barometer, accelerometer, compass, and microphone.

Since API Level 3 (Android 1.5), the Android platform has pro-
vided four types of environment sensors (as opposed to various
phone-e�ect sensors) of which we use the barometer to track
changes in altitude. For every phone, we register a listener to
detect changes in ambient air pressure at the default delay rate
(approximately 200 milliseconds), and capture local air pressure
measurements provided by the Android API in hectopascals in a
queue. In particular, when the phone is not moving, we reset a
locally stored reference pressure and reference height – the former
being the average of the pressure measurements collected up to

that point (consequently also clearing that queue) and the la�er
being the last height set by the overall trilateration algorithm. Note
that in our typical starting scenario for trilateration, we have set
the locations of the phone in advance – all at reference locations
that are designed to be zero height/altitude relative to the phone�s
future movement. Otherwise, when the phone is moving, we re-
ceive a new pressure measurement, update our running average
reference pressure (adding to its corresponding queue) as well as a
current pressure variable. With this information, we have a rough
estimate of a device�s relative height by computing:

Hc =
(Pr − Pc )
2 ∗ HPM

+ Hr

where:
Hc

is the current height estimate,

Hr

is the reference height set during device initialization,

Pr

is the reference pressure,
Pc

is the current pressure, and

HPM

is the ratio of hectopascals per meter (equivalent to 0.11179333
hPA/m). Here, we are �nding the last change in pressure, converting
it to meters, dividing by 2 to help account for barometer noise, and
then adding to the original reference height to �nd the current
height (always relative to initialization position). When trilateration
is performed, this estimated height acts as an extra gradient term
(see

Cpressure ∗
√
(y − ypressure )2

) that is also modulated by a set constant re�ecting the extent to
which we wish the barometer to in�uence trilateration (with a
larger magnitude re�ecting higher importance).

�e primary adjustment to Bluetooth RSSI values comes from
local accelerometer tracking. Accelerometer tracking in phones,
amongst other small devices containing similar pieces of hardware,
is notoriously noisy on it own – though we pose that combining
accelerometer data with Bluetooth data gives us a pre�y good
estimate of a phone�s position to a degree of certainty beyond
GPS. In particular, we register listeners for Android�s gravity sen-
sor (which isolates local measurements of the gravitational force)
and Android�s raw accelerometer (which measures raw phone
acceleration values), again at the default delay rate. We keep a
constantly-updated queue of the past two accelerometer measure-
ments along with their respective timestamps and, for every update
to the queue, calculate the new accelerometer-based position by
double integration. Speci�cally, we isolate linear acceleration val-
ues by subtracting the current gravitational values (updated by
the gravity sensor as changes are detected) and then convert these
values from the phone�s default frame of reference to the absolute
frame of reference used in trilateration. �is is possible due to
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Figure 1: Correlation between distance and BLE signal strength (RSSI).

Figure 2: Axes for reference in accelerometer systems of Android devices.

Android�s Sensor API also providing a method to extract a rota-
tion matrix that can convert vectors from the phone�s frame of
reference to the world�s frame of reference. Brie�y, if

R

is this rotation matrix, then in the case where the phone is aligned
with the world coordinate system (i.e.

X
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points East,
Y

points North,
Z

points to space)
R

is the identity matrix. Otherwise, if
v

is some vector in the phone�s reference frame, one can convert it
to the global reference frame by computing

v� = R−1v

. A�er conversion, we use the time di�erence of the past two ac-
celerometer measurements to double integrate to �nd �rst current
accelerometer-based velocity and then accelerometer-based posi-
tion – with both of these measurements having been initialized to
zero on the assumption that trilateration begins with all phones
not moving. Consequently, we are able to end up with a pre�y
decent measure of where a phone is generally moving that is com-
putationally distinct from that of Bluetooth RSSI values. However,
we also note that two of the larger problems that we experienced
(having to do with the noisiness of current phone accelerometers)
were dri� and lag. Because a phone is constantly under the force
of gravity even when it is not moving, a phone�s position is natu-
rally subject to dri� over time if we use pure accelerometer values.
Even subtracting the forces of gravity using Android�s gravity
sensor values, or a high-pass �lter in earlier instances of our app,
does not completely account for this dri�. Additionally, while new
measurements are received fairly regularly, there is still a notice-
able lag in terms of tracking changes in the phone�s rotation and
acceleration – over time, this lag also adds up to a penalty that ex-
acerbates dri� and generally makes it di�cult to update a phone�s
current accelerometer-based position if the phone is in a turbulent
environment (e.g. being jostled around while walking).

�e �nal correction to Bluetooth RSSI comes from the Android�s
magnetometer – one of the more accurate sensors in the Sensor
API suite. While this correction is not used in the �nal build of
the app, it was initially experimented with as a ��nal check� to
make sure that the direction of movement implied by other phone
sensors is correct. In particular, we register a listener at the normal
delay rate and then, on every update, get the rotation matrix of the
phone as above and calculate the cardinal direction of the phone.
Android�s Sensor API provides methods to extract the phone�s
orientation (containing pitch, roll, and azimuth in terms of their
Sensor API de�nitions) from a rotation matrix, where azimuth gives
us a measurement of where the phone is pointing in radians. We
convert the azimuth to degrees and then set standards to delineate
general cardinal directions (i.e. on the unit circle, 45 degrees to
135 degrees counts as North, 135 to 225 counts as West, 225 to 315
as South, and so on). We found in general that Android does a
pre�y consistent job of ge�ing cardinal directions correct, though
this measurement is also prone to some error when the phone is
quickly moved around due to lag as well as phone rotation (which is
ameliorated through other methods Android�s Sensor API provides
for remapping the coordinate system of a rotation matrix in such
scenarios).

3.3 Auditory Localization
For any trilateration approach, the distances and locations of sev-
eral nearby devices is required. While it was possible to share the
coordinates of proximal devices using bluetooth advertising, deter-
mining the distances to these devices based on the signal intensity
was susceptible to several pitfalls. For one, the amount of interfer-
ence present in an environment caused large �uctuations in the
signal strength and thus, the distance estimates. Also, the broad-
casting power varied between devices and based on factors such
as ba�ery charge level, skewing the estimated distance between
devices. As an alternative, an auditory localization technique was
explored in which a device emits an ultrasonic ping that will be
echoed back by another device. �is approach would calculate the
distance separation between the devices using the time it takes to
hear the echo and would rely on the speed of sound which will not
be a�ected by interference or ba�ery level. �us, the distance, d ,
between two devices by

d =
(t − l1 − l2)

2 v(T ,ϕ)

where t is the time taken for a device to hear back a ping, l1 is
the duration of the latency from sound processing for the emi�ing
device, l2 is the duration of the latency from the echoing device,
and v(T ,ϕ) is the velocity of sound in the air at a temperature T
and humidity ϕ, which can be obtained by the built in temperature
or humidity sensor if available or from a weather forecast for the
current location using general GPS coordinates. �is technique was
implemented using the Java AudioTrack and AudioRecord APIs
provided by Android as well as in C++ using the Native OpenSL
ES API. �e native C++ API performed much be�er than the Java
Android API and produced a precision small enough to be useful in
a trilateration application.

To allow multiple devices to communicate, each device produced
a unique ultrasonic tone for its audible pings and a sliding dis-
crete fourier transform (SDFT) was used to identify each device.
However, in practice, these technique was not used in the �nal
app because the number of points in the SDFT had to be reduced
signi�cantly in order to process microphone input in realtime. At
a sample rate of 44.1 kHz, an additional bu�er needed to be pro-
cessed every 5 ms whereas it took approximately 20 ms to perform
a SDFT on the bu�er. �is problem was further exacerbated by
the microphone and speaker hardware on the LG G2 development
devices which have poorer performance in the ultrasonic range as
opposed to the audible range. �us, while auditory localization has
been proven to be successful and have a high level of precision,
it is currently unsuitable for a real-time trilateration application
but has future potential as computation power and speaker and
microphone hardware continues to improve.

3.4 Pedestrian Dead Reckoning
To allow devices to determine their location without other nearby
devices and with low latency, a pedestrian dead reckoning approach
was used to estimate location. Pedestrian dead reckoning assumes
that the phone is carried by a person traveling by foot to estimate
its location. Since human gait has a very distinct accelerometer
signature, it is possible to detect each step that a person has taken.
For this application, the step detector so�ware sensor in Android
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Figure 3: �e angle de�nitions used by Android accelerometers.

Figure 4: Localization performance for various audio APIs.

was used to determine when each step was taken. In addition, there
is a magnetometer sensor that is used to calculate the azimuth of the
device relative to the north pole. �e coordinate system is de�ned
so that the x-axis is increasing in the northward direction and the
z-axis is increasing in the eastward direction. Whenever a step is
taken, the x coordinate is increased by

scos(m + a)

and the z coordinate by

ssin(m + a)

where s is a scaling constant that represents the stride length in
meters, m is the magnetometer reading, and a is the angle that
the azimuth is rotated by to factor in the orientation that the user
is holding the device. For example, if the device is orientated in
the user�s pocket so that it is facing 90 degrees away from the
direction the user is facing, a would be 90 degrees so that the
location increases in the eastward direction if the subject is walking

southward. In practice, s and a were determined by a calibration
routine in which the subject must walk north for 10 meters and s
and a are calculated such that the initial position is x = 0, z = 0,
and the �nal position is x = 10, z = 0.

3.5 Optimization Algorithm
To combine the somewhat noisy inputs from various sources and
form a precise location estimate, an optimization procedure was
used. �e optimization procedure predicted the best location at
a certain time based on the locations and distances from nearby
bluetooth devices, height estimates using the barometer, and lat-
eral displacements calculated from dead reckoning. �e objective
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function used was

S =
n∑
i=1

ci (
√
(x − xi )2 + (y − yi )2 + (z − zi )2 − di )2+

cN

√
(x − xold )2 + (y − yold )2 + (z − zold )2 + 1+

cB (y − ypres )2+

cD

√
(x + xpdr − xold )2 + (z + zpdr − zold )2

(1)

where ci = (di + 1)−1 is the weight of the reading from the ith
device used in trilateration, (xi ,yi , zi ) is the position of the ith

device, di is the distance from the ith device, cN = 1 is the weight
of normalization term, cB = 5 is the weight of the barometer term,
ypres is the height estimate based on the barometer reading, cD = 2
is the weight of the dead reckoning term, and (xpdr , zpdr ) is the
relative change in location produced by dead reckoning. �e current
location of the device, (x ,y, z) is found by minimizing the objective
function using stochastic gradient descent over 1000 iterations with
a step size of 0.01.

4 RESULTS
In summary, our app is able to track phone movement on a scale be-
yond the scope of current GPS technologies. We use a sensor fusion
approach that centers around Bluetooth RSSI values while utiliz-
ing Android accelerometer, barometer, audio, and magnetometer
data as well as dead reckoning techniques to determine a phone�s
relative position on-the-�y. �antitatively speaking, our app is
able to detect �ne changes in position within �ve meters to great
accuracy – something out of the scope of GPS – with GPS only
beginning to match our progress around 8 meters (which is well
beyond the radius for the applications that our app is primarily
targeted at). �is makes sense, given that even in open areas, it
takes a signi�cant change in position (on the order of around ten
meters) for the position in most GPS applications to meaningfully
update.

�e above results withstanding, microlocation still faces limi-
tations in various scenarios. While our microlocation system is
uniquely well suited for indoor environments out of the reach of
GPS, our app generally begins to perform poorly on the order of
position change at which GPS systems update. �is is primarily
due to the signi�cant dropo� in Bluetooth signal quality as well as
accelerometer data quality on such longer distances. Additionally,
the �nal build of our application still relies on a known starting
position for a phone relative to at least three other devices. Finally,
Bluetooth, like GPS, also faces certain limitations from interference
and signal re�ections, though the exact extent to which this is a
problem is still unclear.

5 CONCLUSIONS AND FUTUREWORK
5.1 Conclusions
It has been established in this paper that it is possible to achieve
accurate indoor positioning with present technology and existing
hardware in smart phones using a combination of sensors and
algorithms. �is technology can enable advanced indoor mapping
solutions that could be used in airports, subway stations, malls,

and sports stadiums. For example, an airport maps app that could
provide directions as speci�c as ’take the escalator in 500� to reach
your terminal’. It can also be used in homes, where electronics can
turn themselves on or o� as users enter and exit a room.

5.2 Future Work
Currently, running the app drains ba�ery at a signi�cant rate, de-
creasing the practicality of using accurate location technologies for
longer periods of time. In order for this to be seamlessly integrated
into daily lives, there needs to be an optimization that prevents
unnecessary ba�ery usage.

Further, the possibility of using a Kalman �lter or particle �lter
in place or in addition to the optimization algorithm from Section
3.5. Unfortunately, this task unable to be completed successfully by
the end of the term. However, it deserves further investigation and
experimentation.

Next, this technology can be built in directly into the iOS and
Android operating systems so that the network will encompass all
mobile phone uses, and thus provide more reliable precise location
tracking. Applications built on this technology will be able to
use reliable indoor mapping to be�er target consumers or provide
smart-home and smart-city solutions to any person with a phone.

ACKNOWLEDGMENTS
�e authors would like to thank Dr. Adam Wierman and Xiaoqi
Ren for providing useful suggestions and guidance during the de-
velopment of indoor locationing solution.

REFERENCES
h�p://www.gps.gov/systems/gps/performance/accuracy/
Roberto Michel, (2016) Information Management: Wearables come
in for a re�t, Modern Materials Handling, Retrieved Dec 28, 2016
h�ps://www.lifewire.com/sensors-that-make-iphone-so-cool-2000370
h�ps://developer.android.com/guide/topics/sensors/sensors overview.html

h�p://www.mdpi.com/1424-8220/15/9/23168/pdf



Precise Indoor Positioning without GPS using a Device Mesh Conference’17, July 2017, Washington, DC, USA

Figure 5: �e distance error between GPS and our microlocation app for walking away from a �xed origin.
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