
Project Report
Team 233

Hongnian Yu, Dong Liang, Tianlei Sun, Jian Zhu
California Institute of Technology

Department of Electrical Engineering



Projects in Networking Caltech CS/EE 145
Project Report Team 233

1 Team Member & Work Split
• Group members: Hongnian Yu, Dong Liang, Tianlei Sun, Jian Zhu

• Team name: 233

2 Market Structure

2.1 Introduction
There are already tons of food delivery apps/websites in the current market. However, most of the com-

panys either charge too much or have a minimum order amount for their delivery services. To overcome
this problem, we propose the concept of community based delivery service with the hope of providing an
alternative for the current food delivery market. Literally, community based delivery means the food will
be delivered to certain cluster/group of customers residing in the same community. The community has a
broad meaning in the scenario – it could refer to a certian campus, campus, etc. For example, a Caltech stu-
dent who is out for dinner can bring food to other student in Caltech. The basic asuumption is that student
from a community will eventually go back to the same community. In this way, we can dramastically cut
down the delivery labor cost.

2.2 Current Competitors
The market of food delivery service has existed for decades. There are lots of successful companys such

as UberEat, Grubhub, Postmates, etc. The major difference between us and our competitors is that they
are not community based. The community based method is likely to greatly reduce the delivery fee, but it
may not be able to provide as many choices as the regular method and the restaurant with no community
members inside will be unavailable to the customer. Thus, as mentioned in the previous section, we are not
aiming to redefine the current market; instead, we simply want to provide an alternative solution.

3 App Development

3.1 Architecture
The general architecture of our app is shown in Figure[1]. There are two types of users in this app

– driver and customer. Driver can make the post to indicate which restaurant he can deliver. Then this
information is posted to our database and the corresponding restaurant will be shown in the main page.
Customer can then make an order follow a common procedure. The order/delivery status can be found in
the history section, which contains information for both the current order/delivery and previous order/de-
livery.

1



Projects in Networking Caltech CS/EE 145
Project Report Team 233

Figure 1: Me2 Architecture

3.2 Android Techniques

• RecyclerView
RecyclerView widget in android studio is a more advanced and flexible verision of regular ListView.
Similar to ListView, RecyclerView is used to store and display a list of objects in the screen, but it is
more in term of memory usage and speed. For instance, ListView will encounter severe performance
degradation when the list contains thousands of object. On the one hand,the app would end up
using a lot of memory and storage, potentially making the app slow and crash-prone. On the other
hand, the app created UI widgets each time a new object scrolled onto the screen and destroyed the
widgets when it scrolled off, that would also cause the app to run slowly[1]. RecyclerView avoid
this problem by using a dynamic view structure that can reuses cells while scrolling up/down and
decouple the object list from its container. In our app design, we use RecylcerView to display the
available restaurants and order history, which could potentially be a long list.

2



Projects in Networking Caltech CS/EE 145
Project Report Team 233

Figure 2: A screen shot of RecyclerView usage in our app

• AutoCompleteTextView
One critical technique we used is AutoComplete Text. One common issue in searching happens when
customer type the name of the restaurant to the search bar. Because customer may be clearly re-
member the name of the restaurant, typos often occur. Therefore, our solution to this kind of issue is
AutoComplete Text. As shown in the Figure[3], when user type the name of a restaurant, AutoCom-
plete Text package will automatically correct the name of the restaurant. The corrected name input
can be used as a key to find the corresponding restaurant ID in the backend.

Figure 3: AutoComplete Text in Restaurant Searching

First, based on the location of user, me2 will load all the local restaurant names and corresponding
IDs. After the Android App loaded these information, a HashMap is created to store the information.
AutoComplete Text package can ensure that the name entered is correct. With the correct name,
me2 can simply match the corresponding ID with the name as the key. Then, the ID received from
HashMap, along with other information user inputted, are passed to the next activity and uploaded
to the backend.

3



Projects in Networking Caltech CS/EE 145
Project Report Team 233

Figure 4: Hashing Restaurant ID with Restaurant Name

However, one potential problem happens when the restaurant name is not unique. For example, there
are many In-N-Out restaurants in Pasadena. In this case, the restaurant name might not be unique.
Our solution is to use ”Resturant Name” + ”Restaurant Street” as the key of the HashMap. By doing
so, AutoComplete Text will provide details about the location of restaurants for users to choose. And
the ”new” restaurant name is still unique to the HashMap.

• PayPal Android SDK
We adopted PayPal as our payment method after a customer confirmed his order. PayPal has pro-
vided Android SDK that makes it easier to accept app payments. Before that we have created a client -
id required for the test environment. Also we set up a personal Sandbox account email and password
to test the Android integration against the PayPal Sandbox. When customer clicks the ”pay with Pay-
Pal” button in the checkout page, he will be directed to the SDK’s UI, with total cost of the order also
listed on the first page, as shown in Figure[5]. Meanwhile, the PayPalService class embedded in the
SDK will be called so that it gets ready for PayPal server communication and service authentication.
Then we can use our Sandbox account email to log in to our testing PayPal account and details of
the account like balance will be shown. After clicking the ”Pay” button, PaymentActivity embedded
in the SDK will be activated for initiating the transaction and returning the payment result. If the
payment is successful, customer will be directed back to the restaurant menu page.

4



Projects in Networking Caltech CS/EE 145
Project Report Team 233

Figure 5: PayPal Android SDK Integration

Currently we do not support payment with credit card yet, and only single payment is used here
within PayPal, which means each time customer makes an order, he has to input his account email
and password. This could be troublesome and no good for user experience. However, PayPal SDK
has a second use case, allowing user to log in to PayPal just one time and consent to future payments.
Therefore we may consider adding this feature to make the order process more convenient.

• Google Distance Matrix API
Another feature we have developed is distance measurement, because customers may choose a restau-
rant based on how far it is, and how long it takes the driver to bring food back. Thus we used the
Google Distance Matrix API which provides travel distance and time based on the recommended
route between start and end points. To use this API, we first have to get an API key for identifi-
cation and authentication. Then we can call the Google distance service by entering the origin and
destination location.

However, in the final version of our application, we did not put this feature into use because we do not
know when the driver will finish eating at the restaurant, simply using this distance estimate becomes
somehow insufficient. Moreover, we have already asked driver to input his return time when making
a post, so we could just use this for customer’s choice instead.

3.3 Back-end

The back-end is the machine that runs a site. The user doesnt see it or directly interact with it as
with client-side technology, but its always running in the background, delivering smooth functionality,
a desktop-like experience, and information from the database right into the application. The back-end of
our application handles requests from the users and returns information from the database, such as what
restaurants are available, what food you can order, who will be assigned to deliver the food, etc. It plays an
important role in making the application functional.

5



Projects in Networking Caltech CS/EE 145
Project Report Team 233

3.3.1 Back-end Structure
In order to make it work, we built our back-end based on Apache2 web server and MySQL database.

Apache is the most commonly used Web server on Linux systems, while MySQL is one of the most popular
relational database management system. We instantiate the Web server on Ubuntu 14.04 system within
Amazon EC2, and instantiate the database on Amazon RDS. The structure of our application’s back-end is
the same as depicted below.

Figure 6: Back-end Structure

3.3.2 Database implementation
Since we used relational database to store all the information, we applied the knowledge learned in CS

121 to design the structure of all the tables. We have created six tables to store all the data, which are user,
restaurant, food, post, orders, orderDetail.

• user table stores all the credentials of registered users, with password hashed.

• restaurant table stores all the info of the restaurants, which is crawled from Yelp.

• food table stores all the food provided by the restaurants with food name, price and category.

• post table stores the information of all posts by the driver, including the place driver will return to,
post time, restaurant id, driver id and some other info.

• orders table stores all the orders with order time, delivery address, driver and customer id, etc.

• orderDetail table includes the food name, quantity and price for all the orders.

6



Projects in Networking Caltech CS/EE 145
Project Report Team 233

3.3.3 Server-side Software
The server-side software is all written in PHP. We have written 10 PHP files handling the POST request

for registering new accounts, logging in to our application, getting available restaurants, getting order
history and delivery history, etc. These PHP files will return the requested information to our front-end
and make sure it works as desired.

3.3.4 Push Notification

Figure 7: Push Notification Algorithm

Another feature that we implemented is push notification to drivers when there is a new order. The
implementation involves the usage of Firebase messaging service. As indicated in the figure above, when
there is an order being placed, the database will be modified and this will trigger Firebase Cloud function
in our PHP file. Our server will send a request to Firebase Cloud Server with the details of the message
and our notification receiver (the driver who receives the order). Firebase Server will then send a push
notification according to the info provided.

3.4 UI & Logo
We named our app as ”me2”, which is the abbreviation for ”me too” and comes from ”Can you bring

that for me too?”. This often happens when some of our friends go out for food and we want them to take
something back. Besides, we chose green as theme color for our app because it is not so widely used in app
design now, and also has some symbolic meaning for growth and energy. As shown in Figure[8], we added
a spoon and fork here to illustrate that we are doing something related to food.

Figure 8: App Logo

For the UI, we also used green as primary color, so the tool bar, status bar, progress bar and most of the
buttons have a uniform color. In the early stage, we just created a very simple and coarse version of UI,

7



Projects in Networking Caltech CS/EE 145
Project Report Team 233

because we were focusing on developing some of the functions first. After referring to some other apps,
we improved some of our UI to make it look better and more refined, like using image buttons in the main
page, and adding images in the search bar and text box. Figure[9], Figure[10], and Figure[11] are screen
shots taken from our app. We found that sometimes images can be more straightforward and intuitive for
understanding.

Figure 9: Login Page Figure 10: Main Page
Figure 11: Driver Post
Page

4 Lessons Learned

4.1 Ideas
• Simplicity

One big lesson we learned through this development procedure is simplicity design. Different from
web or PC, mobile apps emphasize simplicity. Because the screen size is limited, mobile designs
usually have larger relative font size. In the beginning, we tried hard to squeeze space for more
functions. However, the end results seems to be really hard to use. We finally realized that the key of
mobile design is ”minus” rather than ”plus”. Trying to simplify our ideas and reducing the redundant
functions improves our product.

• User Perspective
As developers, we often neglect the feelings of customers. In the early stage of development, we
spent plenty of time learning technical knowledge and apply them to our design. The procedure was
challenging and exciting. However, for several times, we added features which do not fit users’ need.
For example, we implemented Google Map API that can show locations as a pin in a map. However,
in our app, the destinations are the same for the whole community and therefore showing locations

8



Projects in Networking Caltech CS/EE 145
Project Report Team 233

on a map is redundant in our app. Instead of thinking in developer’s perspective, we should think as
users, reduce redundant features and elaborate on the core features of the app.

4.2 Implementation
• Development Procedure

When we just started our project, we spent much time discussing the procedure of app development.
Later we realized that it is important to first have a flow chart and a detailed description of classed
needed, database schema, and necessary methods needed for reading and modifying database. Oth-
erwise we cannot implement the logic flow between pages, and interaction between frontend, and
backend. With this framework in hand, we are then able to write the different classes and activities,
and divide the work among us.

• Version Control
Another lesson we learned is the version control for development. We have found it hard to unify
the version among multiple developers. Although Github has provided us ways to version control,
it is still somehow not convenient as sometimes the same piece of code could be modified by several
people. Thus to incorporate several changes, we need to read line by line and commit changes one by
one. So finally we just decided to merge work onto one person’s laptop and then upload to Github.
It works but in terms of efficiency and future work, we still need to find some better way to combine
multiple person’s work.

5 Future Improvement and Perspective
As we discussed in previous sections, there are still many improvements that can be made in the future,

both technical and non-technical ones. In this section, we will state some of them. Besides, we will talk
about our long-term perspective of this application.

• Separate apps for drivers and customers
One potential improvement is to build separate applications for drivers and customers, just as Uber
and Lyft do. Our current application is a little too difficult for first-time users to use. It requires them
to understand the logic behind our application, especially that of drivers’ post. We have discussed
the application with several classmates and some of them have suggested that they want a simpler
user experience.

By providing two separate applications to our drivers and customers, each of them will be able to
have an easier-to-use application. For instance, the drivers will be able to make a post directly after
they log in to the app about where they would like to have a meal and when they will return. They
don’t have to find a post button to press. This also reduces customers’ frustration when they see a
button with meanings they don’t know.

The limitation of this is that if a customer would like to delivery in his or her spare time, which is the
case we were hoping for at the beginning, he or she has to download two applications instead of one.

• Redo the application and Focus on community
Another option to improve our product is to redo the application entirely and simplify our ordering

9



Projects in Networking Caltech CS/EE 145
Project Report Team 233

and posting process. The main innovation of our application is to take community as our basis of food
delivery service. We can just provide an application for users to communicate freely with each other
about where to eat, what to eat, who is going, and things like that. If we can help connect users with
simpler user interfaces and shorter time, we will be able to have more users using our application.

10


	Team Member & Work Split
	Market Structure
	Introduction
	Current Competitors

	App Development
	Architecture
	Android Techniques
	Back-end
	Back-end Structure
	Database implementation
	Server-side Software
	Push Notification

	UI & Logo

	Lessons Learned
	Ideas
	Implementation

	Future Improvement and Perspective

