A Machine Learning Approach to Real Time Earthquake
Classification for the Southern California Early Response
Warning System

Anshul Ramachandran (aramacha@caltech.edu)
Suraj Nair (snair@caltech.edu)
Ashwin Balakrishna (abalakri@caltech.edu)
Peter Kundzicz (pkundzic@caltech.edu)
Irene Wang (siwang@caltech.edu)

CS/EE 145

June 16, 2017

Abstract

The Southern California Early Response Warning System is currently responsible for alerting airports,
trains, fire stations, etc. in the case of an incoming earthquake, differentiating seismological signals
between those caused by local earthquakes and those caused by noise. The two main disadvantages of
the current system are that multiple stations are required to make an earthquake classification, reducing
the time preventive measures can be taken in, and more importantly, the current system raises hundreds
to thousands of false triggers a day. We attempted to tackle both issues by using a machine learning
approach to classify a trigger as either earthquake or noise induced from the signal of a single station,
trying to minimize the false positive rate (noise signals classified as earthquakes) while still guaranteeing
a low false negative rate (earthquake signals classified as noise). Our final system includes a prefiltering
stage which filters out approximately 70% of all noise signals with extremely minimal misclassifications on
earthquakes. Signals that pass the prefilter are then passed through three models of different architectures
- an ensemble of tree-based models, a fully connected neural network, and a recurrent neural network.
The results of these are ensembled and a classification is made on the resulting confidence in earthquake
value. We were able to achieve a false positive rate of roughly 0.5% after just one second of waveform
post-P-wave onset, a 2x improvement over the current standard (0.96%), while still guaranteeing a low
(approx 2%) false negative rate.

1 Background and Motivation

Timely warnings of major earthquakes could provide the time needed to warn citizens or begin evacuation in
vulnerable areas before too much damage is done. Although it is currently impossible to reliably predict
earthquakes, technology is already in place to measure real-time seismic activity. Several countries like Japan
have earthquake early-warning systems in place to enhance public safety, but in the United States no such
system has been successful yet on a large scale. In California, this effort began in the south with the TriNet
Project. There, Caltech, the California Geological Survey (CGS), and the USGS created a unified seismic
system for Southern California. The integration effort expanded to the entire state with the formation of the
California Integrated Seismic Network (CISN). Seismic stations exist all along the West Coast that monitor
ground shaking intensity in real time, and transmit said information to an overarching system. A map of the
stations in Southern California and all across the West Coast is shown in The central associator at
Caltech thus receives signals from all stations and is responsible for recognizing and characterizing newly
starting earthquakes.

The earlier a seismological signal is identified as an earthquake, the faster protective action such as stopping ele-
vators and trains, shutting down critical processes, and opening doors can be taken. Currently, a real-time early
warning system is in place in Southern California. The system can accurately distinguish earthquakes from
background noise signals, but this is only possible after the seismic wave has been detected by multiple stations.

This is not ideal since waiting for multiple stations to receive a signal means that time is lost before
preventive action is taken. Ideally, we would be able to achieve accurate earthquake classification using data
from a single seismological station. The single station classifier works by first waiting for a ’trigger’, which
is defined as an uptick in the seismological signal, calculating a set of features from the time dependent
signal (described in section 2, Data), and then making a classification between earthquake triggers and noise
based on a set of simple thresholds on these features. Unfortunately, the current system raises hundreds to
thousands of false positives a day depending on the station, i.e. claims of earthquakes from a noise-caused
trigger. In the four month period between January 1, 2017 and April 30, 2017, a total of 4,066,504 triggers
were detected, 39,137 of which passed the existing noise filtering criteria. Of these 39,137 signals classified
as earthquakes, only 137 were associated with earthquake-caused events. Therefore, 39,000 of nominally
4,066,367 noise-caused signals were misclassified, for approximately a 0.96% false positive rate. It is hard to
tell the current false negative rate because there are larger numbers of seismic signals that are from small
earthquakes, magnitude < 3, that the real-time system does not detect.

The aim of the project is to improve the current earthquake early warning system by creating a sys-
tem that can predict whether a seismological signal is an earthquake both quickly and accurately from a
single station.

A PNSN: UWand UO stations
I A 3CSN and NCSS stations \

12 e A

T8 -2 e an o -1 NE

Figure 1: Map of Seismology Stations Across the West Coast: These stations collect the real time
waveform data and each try and each raise an alarm if it detects an earthquake. The alarms from all stations
are used to make the final decision regarding the existence of an earthquake

2 Data

2.1 Raw Data

As discussed in the background section, we consider only segments of the continuous time seismological data
that correspond to regions that are classified as triggers. Specifically, a trigger is defined as a point in the
signal for which the ratio of high frequency bank amplitude over a short-time range to that of a long-time
range is above a certain threshold value. We use this definition for a trigger since we are confident that all
P-wave onset signals will have this characteristic. We also this definition as it is part of the signal onset
detection algorithm that is used by the real-time ShakeAlert algorithm (Given et al., 2014), and we want to
accurately mimic the behavior of the real-time algorithm for which our signal noise classification scheme is
designed. Of course, a lot of false noise signals from sources such as cars driving by, cows walking on top, and

weather fluctuations could lead to fluctuations in the seismological signal that also pass this simple threshold.
In addition to these noise causes, other signals that we desire to classify as noise include those from regional
and teleseismic earthquakes. We are interested in only raising alarms for local earthquakes, so both of these
classes of earthquakes are, for this problem, considered as noise. Both would likely, however, have P-wave
onsets that satisfy the trigger classification threshold, and may prove to be more problematic to distinguish
from local earthquakes than some of the pure noise sources of seismological fluctuations.

The signals are labeled by hand retrospectively. When an earthquake is currently detected, the time the
P-wave should have reached each station is calculated and the corresponding seismological signal closest to
that time point (with some cap on the allowed difference between predicted and actual onset) is extracted.
The same is done for regional and teleseismic earthquakes. Any trigger that is not labeled in this method
is considered a noise-caused signal. Since this hand labeling strategy does not catch every earthquake that
occurs in the Southern California region, it is possible that some signals labeled as noise-caused are truly
earthquake-caused. However, these are likely low magnitude (< 3) earthquakes that we are not as concerned
about from an Early Warning perspective, and are therefore alright with those being labeled as noise.

2.2 Calculated Feature Description

For our approach, instead of using the raw waveforms, we make use of meta-information of the waveforms,
which are all features that are both believed to have seismological importance by geologists (domain-specific
knowledge) and currently calculated in the real-time system (allowing for easier future integration of our
approach). A detailed description of each feature is located in the Appendix. The features extracted from
the raw seismological signals are time interval dependent, i.e. calculated over a given time range of signal,
with the exception of rvar and presig. In total, 27 features were calculated for each possible trigger over the
time interval starting at the P-wave onset (designated as the first point in the signal that passed the trigger
threshold in place in the current early warning system) and ending at 0.5,1,1.5...,5 seconds after the P-wave
onset. Therefore, 27 features were calculated for each of 10 increasingly longer waveform time intervals. In
addition to these, the time independent features rvar and presig are used. We cumulatively append feature
calculations as the time interval increases, resulting in 10 increasing-size sets of feature lists, depending on
how much time after the P-wave onset we make the prediction on. For example, models trained on the first 2
seconds after P-wave onset use a total of 4 x 27 + 2 = 110 feature values, 27 time-dependent features calcu-
lated over each of the 0.5, 1, 1.5, and 2 second intervals, and the two time independent features rvar and presig.

It is generally accepted that false triggers have different dominant frequency components than earthquakes,
and so different feature distributions should be found. A quick exploration of the distribution of values for
various features, as seen in shows that earthquake-caused signals and noise-caused signals have
points of difference. This is promising for machine learning models, that we can extract information and
classification from the feature set that we are using.

Features measured with 0.5s long signal

4 pa 4 pv s skew
N [l N i I
— p \ i i
\ \ | i
05 ; 05 d 05 i
\ i /1 i
i i i
AL S i
o N ° S 0 =
4 3 2 A 6 5 4 3 2 0 2
1 kurt ‘ 1 qtr : 1 cav :
\ 1 A\ \ \
\ | \ \ ‘
05 05 \ 05f \ 05 \
\ ; v \ |
[I L (1
- \ 1
0 e 0 - — o e
02040608 1 1214 8 2 4 0 1 05 1 15 2 25 7 6 5 4 3
. tauc s zhr s zcrR s skewR
3/ : M /7 : N/
\ i \ /1 ~ i i
05 i 05 Vi 05 | 05 i
! | i | |
\ 1 i g - i |
0 - 0 - - = 0l= e 0
Bl 0 1 0 2 4 4 2 0 05 1 15 2 4 2 0 2 4
kurtR qtrR cavR fbamps1 fbamps2
1 N I 1 X i 1 i 1 D 1 T
\ 1 N | |
\ | N\ | |
osf \ ; 05 \ 05] 05 i 05 f
~ ‘ § 1 L :
NN L D\ ! |
0 R 0 e 0 - 0 0
5 1 15 2 4 0 1 6 “ 2 7 6 5 4
| fbamps3 s fbamps4 s fbamps5 s fbamps6 s
) | N N o
\ 1 AN |
05 | 05 A 05 d 05 \ N/ 05
i yé (1 1
< N ~J N
0 e 0 = 0 st 0 = 0
7 6 5 4 3 7 6 5 4 B3 7 6 5 4 3 8 B - 8
1 fbamps8 1 fbamps9 1 presig (fix tw) 1 rvar (fix tw)
< < SN T Local eq.: ECDF
\ |] \|] ! ! Teleseismic eq.: 1-ECDF
\ | \ | | | Regional eq.: 1-ECDF
05 \ i 05 Voo 05 i 05 1 Noise: 1-ECDF
SN L i \
' i 1 \
! . O\ |
0 — 0 e 0 = 0 AN,
9 8 7 6 5 -10 8 -6 9 8 7 6 5 o 1 2 3
Features measured with 5.0s long signal
pa pv pd
— 7 = ; = 1
i \ i
N
05 05 A 05
N\ ! \ A
\ i /i
! i
0 - 0 el 0
4 3 2 A 6 5 4 3
1 - kurt 1 ar 1
\ ‘
i
05 \ \ 05 i 05
Y i
u ~ .
0 0 — o
02040608 1 1214 3 2 4 0 1 05
1 1
05 05
0 0
[1 2 2 0 2 4
1 1 fbamps1 1 fbamps2
N T BN T
|
d \ |
05 05 ; 05 d
| 1
1 I
0 0 o
7 6 5 4 7 6 5 4 3
s | fbamps6 s fbamps7
S v
; |
05 ; 05 d 05
(i
/i | i
0 - = - 0 b 0 -
7 6 5 4 3 6 5 4 3 7 6 5 4 3 8) “ 8 6 “
1 fbamps8 fbamps9 1 presig (fix tw) 1 rvar (fix tw)
S T Local eq.: ECDF.
! ! Teleseismic eq.: 1-ECDF
| | Regional eq.: 1-ECDF
05 05 i 05 1 Noise: 1-ECDF
1 N
. 1 1
NN I
— 0 —_ 0 AN
9 8 7 6 5 9 8 7 6 5 o 1 2 3

Figure 2: Example Distributions: The top figure shows the distributions of features extracted, grouped
the four classes of signals if only the first timestep of the waveform (first 0.5 seconds post-uptick) is considered.
The bottom figure shows the same feature distributions, except with calculating the features over the first 10
timesteps of the waveform (5 seconds post-uptick). We see in both cases, the earthquake-caused triggers
do not necessarily have similar feature distributions as the others, although the differences seem visually to
become more pronounced if a larger portion of the waveform is taken into account.

2.3 Final Dataset Specifications

Our final dataset has 435732 signals, 54617 of which are local earthquakes, 7487 are from teleseismic
earthquakes, 11519 are from regional earthquakes, and 362109 are from pure noise sources. The collection of
each class of data points varies slightly, and is described as following

e Local earthquake data: We are using all records with hypocentral distances shorter than 60km and
catalog magnitudes >3 from the data set of Meier et al., 2015. This data set combines strong motion
data from Japan (time period 1997-2015), broadband and strong motion data from Southern California
(time period 2001-2014), as well as records from a global strong motion data compilation (1981-2009).

e Teleseismic earthquake data: Teleseisms are earthquakes that occur at large distances from the
network, > 1,000km. We have used the Seismic Transfer Program (STP) to download records from all
teleseisms with moment magnitudes Mw>=6.0 in the time period 2004-2016, recorded by the Southern
California Seismic Network (SCSN).

¢ Regional earthquake data: Regional earthquakes are events that occur outside the seismic network
of interest (here SCSN), but at shorter distances than teleseisms, e.g. events in northern Mexico or
Nevada. We have downloaded records using STP for all regional earthquakes with Mw>=4 from the
time period 2001-2017 recorded by SCSN.

e Noise data: We have used the log file data from the real-time ShakeAlert system to download
waveforms around all impulsive onsets detected by the real-time system between January 2015 and
April 2017 across the SCSN. We have removed all onset detections that occurred when real earthquakes
have happened, in order to avoid having real earthquake records in the noise data set.

3 Feature Selection

3.1 Lasso Regression

Although certain features considered of geological importance were already extracted from the seismological
signals, we conducted further analysis to determine which features were most critical in distinguishing
background noise from earthquakes. Thus Lasso Regression was used to determine which features were of
the most importance. Lasso Regression is a generalized linear model that estimates sparse coefficients. The
weights corresponding to each feature are encouraged to go to 0, with the speed of approach to 0 governed
by the amount of regularization used. Thus, Lasso Regression with a 0.01 regularization penalty was used
and the features with nonzero weights are listed in below. Thus, we see that all other features are
probably of lower importance in determining whether a signal is coming from an earthquake. Furthermore,
the weights in are correlated with the predictive power of each of the features. We see that only
fbampsb and fbamps6 seem to be important of the filter bank amplitudes. Furthermore, for the features
computed on both the raw signals and the high-pass filtered signals (skew, kurt, cav, qtr), we see that neither
value of kurt and skew are very predictive while for cav and qtr, once one of the values is known, the other is
not that predictive.

3.2 Possible Redundant Features

We eventually decided to remove a few features that we believed to be redundant, using logic from a
seismological point of view. These features were skewR, kurtR, cavR, qtrR, tauc, and fbamps9. The first four
we removed because we believed that there would be heavy redundancy between skew, kurt, cav, and qtr
over the raw and high pass filtered signals, so only one would be necessary. Also, fbamps9 contains peak
amplitudes in the frequency band 0.1-0.2Hz. Because causal filters introduce a phase delay that increases
with decreasing filter frequency, signal energy at such low frequencies is strongly delayed by such filters. It
will not show up in the initial couple of seconds, so there is almost no signal information contained in this

Table 1: Features with Nonzero Weights with Lasso Regression R denotes features computed on raw
waveforms, while other features are computed on high-pass filtered waveforms. We use regularization penalty
= 0.01.

Feature Weight
maxstepR 0.492

cavR 0.446
presig 0.187
£38 0.180
qtr 0.162

fbampsb 0.161
fbamps6 0.072

k2 0.059
cav 0.044
zcrR 0.002
ZCr 0.001

feature. Therefore, all prefiltering and training done in this paper do not involve these six time-dependent
features.

4 Prefiltering Noise

The dataset we use consists of features from several signals that exhibited a sufficiently large uptick in their
signal value to be considered as possible earthquakes. However, many of these signals can still be easily
classified as noise signals without the use of sophisticated models. Thus, the idea behind prefiltering noise
is developing a method to quickly identify and remove noise samples with simple models. Therefore these
methods could be run on-site before data is sent to the central associated as described in the Individual
Architectures Section. Then, signals that are more difficult to classify can be classified using more sophisticated
models. Thus, both prefiltering models described below were trained on just the first 0.5 seconds of data
so that prefiltering can be performed quickly in real-time. Furthermore, for both methods, a high penalty
was placed on false negatives (misclassifying signals labeled as earthquakes) to ensure that the prefiltering
methods could remove as many noise signals as possible from the dataset without discarding any earthquake
signals.

4.1 Shallow Decision Tree

A shallow decision tree (depth 10) was trained on data from just the first time step (first 0.5s) with a high
penalty placed on false negatives as described earlier. This was done by training the decision tree with a
heavy weight on correct local earthquake classification. Here, teleseismic and regional signals were treated
as noise. This method was used to filter the initial dataset, effectively removing as much noise as possible.
The remaining difficult signals were used to train the more sophisticated models described in the Individual
Architectures section. In our overall pipeline, the trained prefilter is applied to each signal first before
performing classification using more sophisticated models. A visualization of the model accuracy and false
negative/positive rates vs. the ratio of the penalty on false negatives to the penalty on false positives is

shown in

False Positive/Negative Rates

1.0000

0.9995

0.9990

Rates

0.9985 o
B False Positive Rate
Hll False Negative Rate
0.9980
1.00 . Model Accuracy
0.95 e Overall Accuracy
- Noise Accuracy
0.90
5. 0.85 .
= .
© .
50.80 .
o .
1%}
<0.75 . .
0.70 T]
0.65 . ° . . . o o
0-60 m © 9 N ¥ N o m © o .v;\.o
~ ~
S R ¥ 6 R & 8§ I LY LR ES
~ ~ ~ ~ ~ ~ ~ A%

Figure 3: Pre-Filtering Performance: Several different shallow decision trees were trained with the same
maximum depth of 10. Different class weights were tested in order to see how much noise could be removed
without misclassifying a true local earthquake.

4.2 Perceptron Covering Algorithm

In this method, we took the 23 features in the first time step (21 time dependent features, 2 time independent
features) and train a linear perceptron on every combination of n features (total of (2713) perceptrons) that
weights classifying an earthquake signal incorrectly orders of magnitude more than classifying a noise signal
incorrectly by a factor of W. We then find the set of k such perceptrons that maximize the number of noise
signals that are labeled as such by at least one of the k perceptrons, along the lines of a union among the
perceptrons (also why we call this a perceptron covering). We were attracted to using perceptrons as such
since they are very computationally inexpensive yet still give more freedom than decision trees which use
hard thresholds on individual features (no sense of covariance among features is taken into account). We
show the dependence of percent noise detected as well as the number of misclassified earthquake samples
thrown out on k and n by using W = 10000 and k € [1,7],n € [2,3] in[Figure 4 We also see the dependence
of these quantities on k and W for n =3 and k € [1,7],W € [10%,10°,10°] in |[Figure 5| Discussions of the
results are in the captions. At the end, however, given the promising results of the shallow decision tree and
the ease to streamline the decision tree method into our automated training pipeline, we decided to use that
method for prefiltering out noise.

Dependence of Perceptron Covering on Features Per Perceptron Dependence of False Negatives on Features Per Perceptron

] 200 A
08 —— 3 features
175 4 2 features
0.5 1
z 150 4
£
o 0.4 w
) @ 125 4
3 3
S g
§ 0.3 2 100 1
= @
@ i
3 & 75
O 024 #*
W
2 50 4
=
0.1+
254
— 3 features
004 ! 2 features 0
T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of Perceptrons Number of Perceptrons

Figure 4: Varying Number of Features per Perceptron: We see on the left that when we went from
2D to 3D perceptrons, we see a vast increase in the percent of noise samples that we can correctly identify
(almost to 60%). However, as shown on the right, the number of real earthquake signals that are thrown out
also increases, although not as drastically. This makes some sense because perceptrons using more features
can fit more complex partitioning surfaces, but as the potential to get many more noise samples correct
increases, the penalty on a false negative may not be high enough to prevent additional earthquakes from
being misclassified.

Dependence of Perceptron Covering on Weight on False Negatives Dependence of False Negatives on Features Per Perceptron
0.6] 200
— led — led
1le5 175 4 1le5
05 — 1e6 — 1e6
z 150 4
£
3 0.4 in
g g 1254
g g
§ 0.3 1001
= y
W Hn
w0 & 75
G 0.2+ #*
b
2 50 4
=
0.1
254
0.0 4 0
. T " " T T T T . T " " T T T T
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of Perceptrons Number of Perceptrons

Figure 5: Varying Weight of False Negatives: As expected, the smaller the weight we place on getting
earthquake-caused signals correct, the more noise-caused signals we are able to properly classify, as shown
on the left. However, as shown on right, this equivalently means that as we decrease the weight on getting
earthquake-caused signals correct, we increase the number of earthquake-caused signals that we misclassify,
also as expected.

5 Individual Architectures

A combination of each of the individual architectures was run on the data and the results determined the
classification of the signals.

5.1 Tree Ensemble
5.1.1 Description

When used for classification problems, tree based models generally work by finding splits in features that
minimize some measure of impurity (gini impurity was used in this paper) in the resulting data partitions.
Thus, the goal is to find splits in feature space that can separate differently labeled data as much as possible.
Since tree based models have relatively low training time, they can also be used in ensemble based models to
powerful effect. Particularly, with tree based models such as random forests and decision trees, a multilayer
model can be constructed as follows. The training data can be split into two portions, one of which is used
for training the tree based models on the bottom layer. Then, the trained models can be used to obtain
classification outputs on the other portion. Then, the classifications of each of the bottom layer models can
be used as training data for a top layer model, which uses the classification results of each of the bottom layer
models and the tree label to learn the correct way to ensemble their outputs to obtain the best classification.

5.1.2 Architecture

Two main architectures were experimented with for the Tree Ensemble Models, both of which were multilayer
models as described above. All models were implemented using the Python package Scikit-learn. The first
architecture consisted of 2 random forest models, a decision tree, a bagging classifier, and an Adaboost
classifier on the bottom layer with a decision tree on the top layer. The random forests, bagging classifier,
and Adaboost classifier are so called 'meta’ estimators, and thus aggregate the results of a variety of smaller
models (base estimators), in this case decision trees. Thus, for the random forest and bagging classifier,
hyperparameters corresponding to the number of base estimators, the maximum depth of these estimators,
and the maximum number of samples used to train each of these base estimators were tuned to prevent
overfitting. For the decision tree classifiers, hyperparameters corresponding to the maximum depth of the tree
and the maximum amount of features split on were also tuned to prevent overfitting. Hyperparameter tuning
for each model was performed by varying the hyperparameters systematically until the in sample error and
out of sample error for that model on a variety of different training sets and testing sets were relatively close,
making overfitting unlikely. The issue with the first architecture however was that the top layer decision tree
model could only output a binary classification whether a signal corresponded to an earthquake rather than
a confidence that the signal was an earthquake. A confidence score is much more useful for distinguishing
signals that are clearly earthquakes and signals that are on the fence, so the decision tree model on the top
layer was replaced with a Logistic Regression model, which can output the probability that a given signal
corresponds to an earthquake. Thus, the final architecture for the Tree Ensemble model is described in

Confidence of Earthquake [0, 1]

‘ Logistic Regression

-~

Random Random Decision Bagging AdaBoost
Forest Forest Tree Classifier Classifier
Classifier Classifier Classifier

Figure 6: Tree Ensemble Architecture: Ensemble of several tree based models with a Logistic Regression
Layer on top.

10

5.1.3 Results

In we see the precision-recall curves for the fully connected model on an out of sample dataset. we
observe that the are under the curve ranges between .90 and .98. However, we see effectively no increase as
the number of time steps increases, which is counter intuitive. The cause for this is likely over-fitting, which
can be remedied by placing more constraints on the complexity of the trees.

1.00 | R
0.95 R
c
2
E 0.90 U Timestep 1-1, AUC: 0.9385 |
2 — Timestep 1-2, AUC: 0.9789
o — Timestep 1-3, AUC: 0.9320

— Timestep 1-4, AUC: 09675
— Timestep 1-5, AUC: 08982
0.85 H Timestep 1-6, AUC: 0.94258
— Timestep 1-7, AUC: 0.9382
— Timestep 1-8, AUC: 0.8998
— Timestep 1-9, AUC: 09460
— Timestep 1-10, AUC: 0.9362
I I

0.80 L L
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Recall

Figure 7: Tree Ensemble Precision Recall: The Precision Recall curves of the tree ensemble model at
each time-step. We also see the AUC (area under the curve) for each PR curve.

5.2 Fully Connected Neural Networks
5.2.1 Description

Neural networks are used to learn an approximation for the unknown, underlying function that maps a set of
input vectors to a set of corresponding output vectors. For classification problems such as the Early Warning
Response System, the output vector is a one-hot encoding of the class (an all-zero vector with length equal
to the number of classes with a 1 only at the index that corresponds to the input vector’s class). A neural
network approximates the arbitrary underlying function through a series of linear combinations and nonlinear
transforms. Values propagate through a series of layers, lg,...,l,, with [y the input layer and [,, the output
layer (we therefore have n — 1 intermediate, or ’hidden’ layers between input and output). The layers have
size ko, ..., k, respectively. There is an associated wj; ; ; weight value between the j'th node in I;_;, and
the jth node in [;. These weights are what are 'learned’ for neural networks. The propagated value for the

jth node in [; is given as a nonlinear transform (such as rectified linear unit, ReLU, or hyperbolic tangent,

tanh) applied to the linear combination Zf};é w; j jVi—1,5- We call these fully connected layers because each

node in [; is a linear transform of all k;_1 nodes in [;_;. To prevent issues of overfitting, we use dropout
at each fully connected layer, where we randomly drop a small subset of nodes. The weights are learned
usually by some form of gradient descent and backpropagation on a loss function. The loss function used for
classification problems is usually some form of categorical cross entropy. Essentially, we consider how well the
output vector calculated by the neural network for a certain input vector compares to the true output vector,
measured via the loss generated between this true and predicted vector. We then shift the weights to get
the predicted output vector closer to the true output vector, by moving along gradient values, like a normal
optimization problem.

11

5.2.2 Architecture

Given the scale of data, all neural network architectures tested had O(10%) weights as any more would lead
to worries of overfitting on the dataset that we used. This meant that we could explore architectures with
maximum two hidden layers of sizes O(100) (the input layer also has O(100) nodes, actual size dependent
on number of time steps used). The actual architectures tested had hidden layers of sizes 128-64, 128-128,
256-128, and 256-256 (with the first number being the size of the hidden layer following the input layer and
the second number being the size of the hidden layer preceding the output layer). Each hidden layer used a
ReLU activation and 20% dropout was applied to the outputs of both hidden layers before passing the value
to the next layer. The output layer (size 2) used a softmax activation to bound the values in the interval
[0, 1], paralleling confidence values in the class assignment. The architecture is shown visually in
Tflearn, a lightweight wrapper to Tensorflow was used to set up and train all neural network architectures.

We used a weighted categorical cross-entropy loss function, weighting false negative errors (predicting an
earthquake-caused trigger as noise-caused) much more highly than false positive errors (predicting a noise-
caused trigger as earthquake-caused). This is because, while we are trying to minimize false positives, the
first strict requirement is to maximize the detection of earthquake-caused triggers. Generally, if the predicted
output vector is (p1,...p,) and the true output vector is (g¢1, ... ¢n), with weights given on categories given
by (Wy,...W,), the weighted categorical cross entropy is defined as

L=- i Wigi Inp;

=1

We are guaranteed that this is positive since all p; € (0,1] due to the softmax activation on the output layer
(we guarantee > 0 by adding an € to any p; that equals zero). For our particular problem, we chose a weight
vector of (W7, Ws) = (1,100), essentially weighting classifying an earthquake signal incorrectly 100 times
worse than classifying a non-earthquake signal incorrectly. A learning rate of 0.001 was used with an Adam
optimizer. An 80-20 train-test split was used for training.

5.2.3 Results

The architecture with both hidden layers having size 256 performed the best, so we used this architecture in
the pipeline.

input layer:
21*k + 2 nodes

fully connected, RelLU

256 nodes dropout (0.8)

] fully connected, RelU
256 nodes dropout (0.8)
output layer: fully connected, softmax
2 nodes

Figure 8: Neural Network Architecture: Architecture of fully connected neural network .

12

In (Figure 9) we see the precision-recall curves for the fully connected model on an out of sample dataset. we
observe that the are under the curve ranges between .97 and .99 with generally better performance on later
time steps.

1.00 - s

0.95

Timestep 1-1, AUC: 09728
— Timestep 1-2, AUC: 0.9764
— Timestep 1-3, AUC: 0.9807
— Timestep 1-4, AUC: 0.9792
— Timestep 1-5, AUC: 0.9795
0.85 H Timestep 1-6, AUC: 095314
— Timestep 1-7, AUC: 0. 9837
— Timestep 1-8, AUC: 0. 9816
— Timestep 1-9, AUC: 09781
— Timestep 1-10, AUC: 0.9819

0.90

Precision

D_Bﬂ I I | | |
0.70 0.75 0.80 0.85 0.90 0.95

Recall

Figure 9: Fully Connected Neural Network Precision-Recall: The Precision Recall curves of the fully
connected model at each time-step. The Area Under Curve (AUC) is a good metric to asses these curves,
with 1.0 being the best possible value.

5.3 Recurrent Neural Networks
5.3.1 Description

The Recurrent Neural Networks are similar to the Fully Connected Neural Networks in that they learn
hidden representations of the input data, ultimately outputting a probability of an earthquake. The primary
difference with the RNN is that instead of looking at all 23 features at each time step at once it looks at
them one time step at the time, with the previous values having some weighting on the representation of the
current values.

Recurrent Neural Networks (RNNs) work by having a node’s value depend on it’s previous value. Thus, they
are ideal for working with sequential or time dependent information. In this case, the RNN is implemented in
TFlearn, which is a modular deep learning library built on top of TensorFlow. The model predicts probability
of earthquake, and minimizes categorical cross entropy loss using an Adam optimizer (adaptive moment
optimizer).

Specifically, in this case the recurrent component of the network is a GRU cell. For input vector z;, output
vector h; and o representing the Hadamard product, the GRU cell is defined as

13

st =2t081—1+ (1 — z¢) o op Wy + Us(rs 0 $¢—1) + bs)
where
Zt = O'g(Wzﬂft + Uzst—l + bz)

is called the update gate vector,
re = 0g(Wyay + Upsi—1 + by)

is called the reset gate vector, o, is the sigmoid function and oy, is the tanh function. W,U, and b are

parameters that are learned. See (Figure 10)).

FRA oyt
GRU Cell
Si-1) >+) > s
Zt |
T e
K 5

Xi

Figure 10: Gated Recurrent Unit Architecture: The structure of a single GRU cell in the recurrent
layer. Using the gate vectors, the GRU cell is able to maintain "memory" of previous time-steps while still
being able to optimized using gradient descent.

After the GRU cell is applied to the features over each time step, the resulting output is fed through two
fully connected layers before generating a final prediction.

14

5.3.2 Architecture

The first component of the RNN is the GRU cell. Specifically, it takes all 23 features at each time step
sequentially, and generates a single vector of length 256. This is followed by a fully connected layer with 512
nodes and ReLU activation, which is followed by the output layer containing probability of an earthquake

using a softmax activation. See (Figure 11J).

K Time-steps

|
@
@

|
L X
23 OO

Features

Recurrent Layer (256)

Fully Connected Layer (512)
RelLU Activation

Output Layer (2)
Softmax Activation

Figure 11: Recurrent Neural Network Architecture: Architecture of recurrent neural network. The set
of features at each time step is fed into the recurrent layer, and keeping a memory of the previous layers, the
recurrent layer outputs a size 256 vector. After a size 512 fully connected layer is applied, the probabilities of
an earthquake vs noise are outputted.

In development, GRU cells with output nodes of 128 and 256 were both teseted, as well as fully connected
layers of 512 nodes or two fully connected layers of 256 nodes. Ultimately, the GRU cell with 256 nodes and
a single fully connected layer of 512 nodes was found to work best.

The loss function for the RNN is the standard categorical cross entropy loss, defined as

n
L=-) gnp;
=1

where the predicted output vector is (p1,...p,) and the true output vector is (g1, ... ¢n)-

5.3.3 Results

We assess the performance of just the Recurrent Neural Network. We look at the precision-recall curves
at each time- step. As we expect, using more timestep, the performance increases, but even with very few
timesteps the precision and recall are high.

15

1.00

0.95

oo — Timestep 1-1, AUC: 0. 9869 i
' — Timestep 1-2, AUC: 0.9937

— Timestep 1-3, AUC: 0.9941

Precision

— Timestep 1-4, AUC: 0.9961
— Timestep 1-5, AUC: 0 9966
0.85 H Timestep 1-6, ALUC: 09953
— Timestep 1-7, AUC: 09966
— Timestep 1-8, AUC: 09971
— Timestep 1-9, AUC: 09970
— Timestep 1-10, AUC: 0.9971

D_Bﬂ I I | | |
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Recall

Figure 12: Recurrent Neural Network Precision-Recall: The Precision Recall curves of the RNN model
at each time-step.

6 Overall Pipeline

To incorporate models into the early response system, we developed a pipeline that handles live streams of
data from a station and predicts whether or not each received signal is an earthquake using a combination
of the results from the Tree Ensemble, Fully Connected, and RNN Models described in the Individual
Architectures Section. This is done by taking the mean of the confidence that each of the three models
outputs that a signal is an earthquake. If the mean confidence is more than a certain threshold, then an
earthquake is predicted and the pipeline pushes alarms to the central associator.

6.1 Integrated Training and Testing

One important component of the pipeline is the ability to train all of the models on the same data and test
the full pipeline. The pipeline includes a benchmarking section which allows exactly this, training each model
at each time step on a dataset. It also allows for a realistic test of the full pipeline behavior on a completely
out of sample dataset, and generates plots and statistics to assess the performance of the real-time system.

6.2 Integration with Realtime System
Once all models have been trained, the pipeline is ready to run real-time. The pipeline contains a REST API

built using the python Flask package. This creates a REST endpoint which when passed a single data point,
returns the predicted probability of an earthquake. What this endpoint is actually doing is first passing the

16

data point through the pre-filter, and if the pre-filter does not throw it out as a simple case of noise, it is
passed through all three models, and the mean and median confidence of the three models is returned. See

(Figure 13)).

Station M At Time t,

I~
i Stations 1-(M-1)
()
£
'—
peq
Mean/
Peq Median + YES/NO A iat
Confidence i ssociator
Thresholding
Pegq
N/
Alarm

Figure 13: Pipeline Integration: How our pipeline will integrate into the real time system. This process
would be run at each station, using the constantly recomputed features as more time passes.

The current system detects upticks in the real-time waveform data, and if an uptick is detected, features
are generated on 0.5 second increments, and based on those features an alarm may be raised. Our pipeline
seamlessly integrates into this work flow, where now once the features have been calculated, they simply need
to be passed into our API, and with one API call the model confidences are available to raise alarms. With
our pipeline running on say a powerful AWS instance, predictions can be generated quickly and easily.

6.3 Ensemble Results

For each time step, the three individual model precision-recall curves as well as the two ensemble model
precision-recall curves (taking the mean of the three individual model confidences and taking the median of
the three individual model confidences) are shown in To determine the actual confidence value
to use as the threshold when making a final classification, we found the confidence for each PR curve that
maximized the precision x recall. This is a decent metric in finding the inflection point in the precision-recall
curve, the closest point to the ideal (1,1) point. The true positive, false positive, and false negative rates
were calculated at each time step’s chosen confidence value for the two ensemble methods. The values are
shown in for the median ensemble and for the mean ensemble. In terms of the PR curves,
we generally see the RNN performing the best and the two ensemble methods slightly worse, with the fully
connected neural networks and decision tree frameworks worse. This could be due to a number of reasons,
from the RNN having larger weight.

We also looked into the true positive, false positive, and false negative rates, and accuracy of the models.
We see in [Table 2] and [Table 3| that for the full system, the false positive rates for both types of ensembling
quickly goes to 0.5 % after the first few seconds. Furthermore, the false negative rate and recall (true positive

17

rate) generally decrease and increase respectively as more data is available as expected. The false negative
rate is a little high (around 3 % after 2 s). However we hope that the earthquakes being missed are just low
magnitude earthquakes that are not that important to detect. However, this is definitely something we need
to look into in more detail in the future.

Furthermore, we plot the accuracy, false positive rate, and false negative rate for each of the models (individual
and ensembles) in For the ensemble models, the information in the plots includes the results from
the prefiltering as well (which eliminates easy noise examples). Thus, the performance of the ensemble models
is more representative of the overall performance. We see that the models all reach classification accuracies of
above 94 % pretty consistently, with the mean and median ensemble models achieving classification accuracies
of 99 % after about a second. The false negative rate of the models steadily increase as time passes, with
the ensemble models achieving false negative rates of close to 2 %. Finally, the false positive rates of the
ensemble methods look promising, with a false positive rate of around 0.5 % after a little more than a second.

18

(a) Time 0-0.5, 0-1.5, 0-2.5, 0-3.5, 0-4.5 s (b) Time 0-1, 0-2, 0-3, 0-4, 0-5 s

Figure 14: Precision Recall Over Time: The precision recall curves were generated with increasing time
step size. Individual model and full ensemble performances are plotted on each of the above curves per given
time range. Each time step is measured in 0.5 seconds. In the above curves, Blue is the Recurrent Neural
Network, Purple is the Mean Ensemble, Light Blue is the Median Ensemble, Green is the Tree Ensemble, and
Red is the Fully Connected Network.

19

Table 2: Median Ensemble Results: When using the median ensembling method, we find the confidence
threshold that maximizes the precision * recall for each time-step. Using this threshold, we compute the
False Positive Rate (Proportion of noise misclassified as earthquakes), False Negative Rate (Proportion of
earthquakes misclassified as noise), and True Positive Rate (Proportion of earthquakes correctly classified as
earthquakes)

Timestep (s) | True Positive Rate | False Positive Rate | False Negative Rate
0.5 0.945 0.008 0.055
1 0.961 0.006 0.039
1.5 0.962 0.005 0.038
2 0.971 0.005 0.029
2.5 0.977 0.005 0.024
3 0.972 0.006 0.027
3.5 0.972 0.005 0.028
4 0.972 0.005 0.028
4.5 0.978 0.005 0.022
5 0.972 0.005 0.028

Table 3: Mean Ensemble Results: When using the mean ensembling method, we find the confidence
threshold that maximizes the precision * recall for each time-step. Using this threshold, we compute the
False Positive Rate, False Negative Rate, and True Positive Rate

Timestep (s) | True Positive Rate | False Positive Rate | False Negative Rate
0.5 0.947 0.008 0.053
1 0.960 0.005 0.039
1.5 0.960 0.005 0.040
2 0.972 0.005 0.028
2.5 0.976 0.004 0.024
3 0.970 0.005 0.030
3.5 0.972 0.005 0.027
4 0.976 0.005 0.024
4.5 0.975 0.005 0.025
5 0.975 0.005 0.025

20

1Loo T T T T T T T T 0.09 T T T T T T

0.08

FC
Ensemble Median [
Ensemble Mean

0.07 |-

Accuracy

False Negative Rate

DT
RM
FC
Median [
Mean

0.95 F

0.94

T 0.01 L | | I L I I I
9 10 1 2 3 4 5 6 7 8] 10

0.93 | L | | | |
1 2 3 4 5 6 7

8
Timestep (0.5 s) Timestep (0.5 s)
(a) Accuracy (b) False Negative Rate

0.05 T T T T T I
DT

FC H
Ensemble Median
Ensemble Mean

False Positive Rate

1 2 3 4 5 6 7 8 El 10
Timestep (0.5 s)

(c) False Positive Rate

Figure 15: Ensemble Performance: Out of sample performance for each of the individual models and
the ensembles are plotted as more time steps of features are available. Median and Mean are two different
ensembling techniques performed on the individual model outputs. Specifically, the False Positive rate (total
proportion of noise incorrectly labeled as earthquake), the False Negative rate (total proportion of earthquakes
incorrectly labeled as noise), and the total accuracy are included.

7 Future Work

The main goal that we have is to integrate our classification system into the current Early Warning Response
System. This will require us to first insert our endpoint into the realtime feed for us to test our classification
system (in terms of both accuracy and latency), but not actually being used in any actual decision making.
After we have verified the realtime capabilities of this system, we would then work with the USGS to actually
have our system being used to make realtime calls on whether incoming seismological signals are due to local
earthquakes.

Besides this practical implementation goal, there are two main groups of future work that we plan on
undertaking from a research point of view. One group regards improvements on detecting solely local
earthquake signals, which we call the Earthquake versus Noise problem, and the other group of possible work
regards possible other questions that can be investigated using this same, data-rich dataset.

21

7.1 Earthquake vs Noise

In this paper, we only train models on precomputed features of the seismic signals considered of geological
importance rather than considering the raw waveforms. Thus, an obvious next step would be to try to
learn an embedding of the raw seismological waveforms to use as a feature set. It is definitely possible
that there is some other embedding of the waveform that is more conducive to learning the desired classification.

We would also like to try different feature selection methods and investigate their impacts on the final
ensemble classification results. We could try removing different sets of possibly redundant features (perhaps
subsets of the list of features found to be less useful through the Lasso regression method), or investigate
the impact removing features that are computationally intensive to compute). Since we are concerned with
speed, it is clearly better if we can minimize the amount of calculation needed to obtain the entire feature set
necessary to make a classification.

Also, we would like to explore different ensembling techniques than taking the mean or median of the
individual confidences. A simple top layer model that takes as input the results of the individual models
could easily outperform the current system.

Finally, we also would like to undertake further exploration and investigation into understanding our models.
While decision trees are easy to interpret, it is harder to recognize how neural networks are utilizing the
input features. It is definitely harder to trust a system that is unexplainable, so we will try to use flow-based
methods to explain what our models are doing.

7.2 Other Problems

Given the high promise that applying machine learning techniques seems to have in the Earthquake versus Noise
problem, we are intrigued as to what other seismological questions could be addressed using these techniques.
One of these problems is extending our Earthquake versus Noise classifier to a multiclass classifier, where we try
to identify the teleseismic and regional earthquakes are their own labels. This is essentially making the noise
signals more fine grained. It is quite possible that the seismological waveforms are information rich enough that
we could make these finer distinctions. Currently, seismologists have a belief that, for example, teleseismic and
regional earthquakes will have similar post-P-wave onset signals as local earthquakes, but it is possible that
we could find some finer differentiations that are unseen by human observation or simpler statistical techniques.

Another problem is that of predicting the magnitude of an earthquake from the very beginning of the
seismological signal post-P-wave onset. It is currently believed that a higher magnitude earthquake has a
similar seismological signal as a lower magnitude earthquake, except for a longer period of time. If we could
predict the magnitude (whether binned in a classification setup or pure value in a regression setup) from just
a very brief section of seismological signal, then we might discover underlying features that identify a high
magnitude earthquakes. This could lead to improvements in our understanding of earthquake mechanics and
dynamics.

8 Conclusions

The goal in this project was to use machine learning techniques to improve the California Early Warning
System. Thus, we aimed to create a set of relatively simple models which could obtain a better classification
accuracy, and particularly lower false positive rate, than the current system. The main problem with the
Early Warning System in its current state is the high false positive rate (1 percent), which results in a lot

22

of irritation as alarms are raised when no earthquake is occurring. Thus, the main goal was to catch as
many earthquakes as possible (have a low false negative rate) while ensuring we reduce the amount of false
triggers. We managed to achieve a false positive rate of 0.5 percent after about 1.5 s, improving on the
current system by a factor of 2. However, we see that the false negative rate is no lower than 2 percent when
using data for the first 5 s, indicating that the system does miss some earthquakes. However, we believe
these earthquakes may just be low magnitude earthquakes that are relatively insignificant. With more model
tuning and other approaches, as described in the Future Work section, we believe that we can achieve a
significant improvement upon our current results. However, even in its current state, the system developed
constitutes a high-performance, complete pipeline for real-time earthquake classification in which model
changes can easily be made.

9 References

Meier, M.A., Heaton, T. and Clinton, J., 2015. The Gutenberg algorithm: Evolutionary Bayesian magnitude
estimates for earthquake early warning with a filter bank. Bulletin of the Seismological Society of America,
105(5), pp.2774-2786.

Given, D.D., Cochran, E.S., Heaton, T., Hauksson, E., Hellweg, P., Vidale, J., and Bodin, P. (2014). Technical
Implementation Plan for the ShakeAlert Production System: An Earthquake Early Warning System for the
West Coast of the U.S., USGS Open File Report 2014-1097.

R2RT, https://r2rt.com/written-memories-understanding-deriving-and-extending-the-lstm.html
10 Acknowledgements

We would like to thank Men-Andrin Meier, Ph.D., for providing access to extensive data on the statistical
characteristics of earthquakes and his invaluable guidance on subsequent classification. We would also like
to thank Professor Steven Low, Professor Egill Hauksson, and Professor Yisong Yue for their guidance and
support throughout the course and project.

11 Appendix

Descriptions of the features used for real-time earthquake classification are provided in below.

23

Table 4: Feature Description: Descriptions of features computed on seismic waveforms after P-wave onset.
All features are computed on all 10 time steps for each signal except for presig and rvar, which are only
computed once per signal. All features are computed on the signals after high pass filtering except for those
denoted by R, which are computed on the raw signals.

Feature

Description

pa, pv, pd

Peak absolute amplitude since P-wave onset for
acceleration, velocity, displacement respectively.

fbamps (1-9)

Peak absolute filter bank amplitudes on velocity
in 9, octave-wide, filter pass bands between
0.09375 Hz - 48 Hz. Computed on high-pass
filtered velocity.

zhr

Peak absolute amplitude on vertical component
of signal divided by peak amplitude of vector
sum of horizontal components.

zcr, zcrR

Number of zero crossings divided by the signal
duration.

skew, skewR

Measures the skewness (lopsidedness, or
lack of symmetry) of the signal.

kurt, kurtR

Measures the kurtosis (measures how heavy
tailed the data is relative to the normal distribution)
of the signal.

cav, cavR

Integrated absolute velocity of the signal.

qtr

Median absolute amplitude in the last quarter of the
waveform snippet divided by the mean absolute
amplitudes in the first quarter.

maxstepR

Maximum jump between any two neighboring time
series samples.

presig

95th percentile of amplitude distribution before
P-onset.

tauc

Square root of ratio of integrated squared displacement
and integrated squared velocity.

rvar

Ratio of sample variances in the time intervals [0:0.2]s
after signal onset and [0.2:0.4]s after signal onset.

£38

Measures the maximum absolute deviation from the
mean, relative to the variance.

k2

Sum of squared skewness and kurtosis.

24

	Background and Motivation
	Data
	Raw Data
	Calculated Feature Description
	Final Dataset Specifications

	Feature Selection
	Lasso Regression
	Possible Redundant Features

	Prefiltering Noise
	Shallow Decision Tree
	Perceptron Covering Algorithm

	Individual Architectures
	Tree Ensemble
	Description
	Architecture
	Results

	Fully Connected Neural Networks
	Description
	Architecture
	Results

	Recurrent Neural Networks
	Description
	Architecture
	Results

	Overall Pipeline
	Integrated Training and Testing
	Integration with Realtime System
	Ensemble Results

	Future Work
	Earthquake vs Noise
	Other Problems

	Conclusions
	References
	Acknowledgements
	Appendix

