
Tripster

An web application to make your road trip planning easy and enjoyable

Minfa Wang
∗

California Institute of
Technology

mwang5@caltech.edu

Shenghan Yao
California Institute of

Technology
syao@caltech.edu

Junlin Zhang
California Institute of

Technology
jzhang5@caltech.edu

ABSTRACT
Tripster is a web application that provides an aesthetical and
intuitive interface to make road trip planning easy. Tripster
is developed in JavaScript, HTML and Python with the help
of Google Maps API JavaScript, Google Maps API Python,
Yelp API and JQuery&AJAX.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User Interfaces;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures; F.1.2 [Modes of Compu-
tation]: Parallelism and concurrency; H.3.3 [Information
Search and Retrieval]: ClusteringInformation filtering-
Query formulation; H.3.5 [Online Information Services]:
Web-based services

General Terms
Clustering, Navigation, Recommendation

Keywords
K-means, GAE, Google Map API, Yelp API

1. INTRODUCTION
Road trips with friends and families are always one of the
best moments of the life. Nowadays people will either spend
a lot of time researching before the trip or donâĂŹt plan
ahead at all. For the people who would like to plan ahead,
choosing the best route and attractions along with your ori-
gin and destination takes a lot of effort. Sure you can ask
for friends’ advice if you happen to have friends who have
been to all the places that you are going to, or if you want,
you can Google tons of times to find other people’s advice,
or if you really have time, you can study every single city
along the route with Yelp and Google. But there must be a
better way to do it. For example, you are planning to road
trip from Los Angeles to New York City, and you want to

∗Graduate Student at Caltech

find hotels to stay for your entire family during the prime
summer time. In this scenario, you might have to find a nice
place to stay in a less populated area. How would you find
it? You can surely Google or yelp 100 times to find nice
places along the routes during that area but that is really a
waste of time. Another problem with current road trip plan-
ning is that people only know the most popular attractions
and there are a lot of local attractions and that is probably
the best way to experience the new city. For example, ev-
eryone knows that they should stop by Golden State Bridge
to take a selfie, but there might be a wine festival going on
during your stay at San Francisco, and if you are a wine
lover, there is no reason to miss such opportunity.

One of my personal examples, a couple of years ago when
I was planning our road trip from Iowa to Rocky Mountain
National Park, first I will first need to look up Google map
to find a few possible routes. Next I need to plan how many
days to spend on road. Then according to my preference,
I manually adjusted the route. The real tricky part is to
plan overnight stay. If I want to stay somewhere overnight I
will need to first figure out where exactly to stay and then I
will look up hotel information on Yelp. But the tricky part
comes in here, due to unfamiliarity with local amenity, the
city I happen to choose to stay doesnâĂŹt have a lot of good
hotels but the town 10 mins away from it has lots of great
restaurants and hotels. But there is no way I can know this
information without doing lots of researches on cities and
peopleâĂŹs travel blog.

To solve the above issues with road trip planning, we came
out with Tripster which is a powerful web interface to make
road trip planning easy and enjoyable. It powers with a cus-
tomized Google Maps interface. Users enter the origin and
destination and users also have the chance to tell Tripsters
about the attractions users are interested (i.e. local festivals,
night clubs, Chinese Food, etc) Based on above information,
Tripster will help figure out the best attraction candidates to
match your preferences along the possible routes. In order to
not overwhelm users with too much information, the infor-
mation will be stored inside clusters along the routes. Users
can see attractions in each cluster by clicking and zooming
in. Users are able to view each single attraction’s informa-
tion including address, phone number, Yelp review score and
review number. If more research is desired, they can open
the link to Yelp directly. Then if the store still holds up
well after all these research, users can add the store to rout-
ing, After selecting all of the attractions, Tripster is going to



route the best route based on attractions that users choose.

2. RELATED WORKS
2.1 TripIt
This application helps travelers to manage schedule. The
major product is a mobile app. It seems the targeting cus-
tomers for this company will be the business people, who are
not going to somewhere to enjoy a break, but rather have
some rigorous plans to execute. It looks like it has many
functionalities to help manage time punctually and accu-
rately. However, the design is kind of too complex to get a
direction of where heading to. Also, purely a time manage-
ment tool is not interesting enough to attract users (or at
least road trippers).

2.2 TripAdvisor
This website is famous among travelers. In this website,
people can search for attractions, restaurants, etc. They can
book hotels, write reviews and a lot of other stuff. While it is
definitely very useful for travelers, the focus of that website
is certainly different from ours. When the user arrives at the
city of destination, and wants to explore deeply into a city,
then this website could be perfect to that person. However,
what should the person do and see in the middle way of
driving? Searching on TripAdvisor for nearby points will be
less useful. That’s where our application comes into play.
We

2.3 RoadTrippers
This website is dedicated to providing trip planning services
to roadtrippers, and is the one whose service is most similar
to ours. In fact, they have done a pretty good job in user
interface design. The way this it works is that user first
chooses the trip origin and destination, then there will be a
route shown, with lots of dots scattered around, representing
interesting points. Then users can further choose the points
in the map and customize the trip. Its basic functionalities
are almost complete. However, we think that although this
website could be very useful for the people who already know
well about a place, and already know where they will stop by
in the middle of the trip, this website could be overwhelming
for people who have little prior knowledge about a place.
And we think for readtrippers, the latter case is not just the
minority. We are trying to move one step further, and give
recommendations of where they could stop by just based on
some general preferences that they choose.

3. BASIC IDEA
The basic idea of our implementation works as follow.

Figure 1: simple map with points scattered around
Initially, in a user’s (road tripper) mind, with not much
knowledge about the middle way, will have an origin and
destination point. Then in fact, there will be potentially
interesting points like museums, parks and restaurants in
the middle way.

Figure 2: three potential routes
With this information, we could first blindly search for path
to go from origin to the destination, and in the backend, list
all the potential routes. There will be certain criterion to
choose the route, like time spent and total distance. We will
not be so rigorous here in setting those restrictions.



Figure 3: customized route
Another information we need to know from the user is his
or her preferences. What attracts this person, and what the
person tries to avoid? Then from the users selections, we will
go to compare the similarity between the scattered points
and the user preferences. Then we will further customize
the route and make it special to this user.

4. DESIGN APPROACHES
4.1 Overview of the design
We used multiple tools and programming techniques to de-
velop this application. Below is the high-level system archi-
tecture diagram for Tripster:

We built a customized Google Maps using Google Maps
JavaScript API as our main front end display. Along with
the map, all interactions and design are done purely in JavaScript
(JQuery) and HTML. The front end is communicated with
a Python program backedn server hosted in Google Apps
API. It takes inputs from users at the front end, then it
uses all this information to query routing information from
Google Map API. After getting the routes, it breaks the
routes into small ”boxes” (we call the algorithm ”boxing al-
gorithm”) With all the boxes, the back end queries attrac-
tions from Yelp with Yelp API. When it finally has all these
information, it does a K-mean clustering to cluster attrac-
tions into small clusters along the route for easier viewing
and selection. Then all of these information will be passed
to front end to display.

4.2 Yelp Querying

In order to differentiate our website with existing route rec-
ommending websites, the incorporation of points of attrac-
tions is one of the keys to it. The yelp provides a relatively
easy-to-use and flexible client API. The only tricky part to
use the API is to set up the oauth authentication. While
it’s not very hard to use oauth to send a single query at one
time, to query hundreds of queries simultaneously need to
understand how the oauth works and decipher it. Since we
need to obtain the businesses information around the whole
trip, we need to send so many queries to the yelp server and
get response from them as soon as possible. We finally use
Google URL Fetch API to achieve the work.

One thing to mention about Yelp Querying is that since we
are paralleling the query process so the number of queries
does not affect the wait period of the query, however the
Yelp has a daily limit per query and we actually hit that
number once, so as will be discussed later, in order to do
queries better, we will need to purchase the professional li-
cense of the Yelp API to avoid getting to the limit. There
is also another interesting fact about information returned
by Yelp API is that for a few days, we thought Yelp API’s
return results do not include the longitude and latitude in-
formation about the stores since it is not described in the
API documentation as one of the data field. So we spend
a lot of time searching for ways to convert from address to
longitude and latitude info. When we finally found a 30GB
database where we can download and access, we found out
that the returned queries do actually include the information
we need.

4.3 Boxing Algorithm
The default yelp querying method is searching by radius,
however, this is not very appropriate in our setting. What
we are trying to achieve is to search along a route with evenly
separated interval. Also, we want to cover all of the busi-
nesses ranging within, say 25 miles, from the route. If we use
the normal search query, it will be extremely hard to cover
the whole area equally dense or we will waste too many
queries (number limitation).

So we came up with the ”boxing” algorithm. We first select
via points equally spaced along the route. Initially the points
are spaced relatively densely. Then we set one level of soft
filtering that merge the squares that overlapping large areas
together. So then we will have sparse and evenly spaced
squares around the route. There will be a maximal width
set to the square. So we can also guarantee that enough
queries will be sent in order to no lose some of the top ranked
businesses.

4.4 K-means algorithm
After the querying results are back, we then need to filter
out the low-ranked results, as they will (by our assumption)
generally be less interested to the road trippers. By now we
have the first round of interesting data. However, if we are
just going to display all of them to the users, it will likely
to overwhelm the users as they will see so many points of
interests scattered everywhere around the map. So we apply
the k-means algorithm on the list of high-ranked businesses
around the route. As a background introduction, k-means
is a very classic clustering algorithm that measures the dis-
tance between points by some pre-defined metrics and then



use an iterative approach to automatically assign all points
to k clusters, where the distance between the cluster cen-
ter and any point in the that cluster will be the smallest
compared to all of other cluster centers.

Also, similar to the boxing algorithm, we need to impose
some restrictions to this algorithm like non-overlapping and
maximal area limit. With proper choice of parameters, the
experimental results are actually quite satisfactory. More
details of the results could be found in the ”Use case demo”
section.

4.5 Front end
As described in the first section, the front end is developed
with JavaScript (along with JQuery, AJAX) for dynamic
interactions, HTML and CSS for styling and Google Maps
API JavaScript API for the main map display.

When you first loaded our page, you will see a nice video-
backgrounded page to attract users. When people decide to
try Tripster. They are mainly seeing a customized Google
Maps with a theme of blueness and yellowness. We changed
the color theme of the map so it aligns with theme of the
application. On top of the maps, users will see a text in-
put field to enter origin and destination. Underneath the
input box, people can see the attraction selection bar devel-
oped with JQuery and ICONs from ”FontAwesome”. Upon
receiving the clustering information from back-end, the in-
terface will draw the clusters and display the transparent
yellow clusters whose size and location is determined by
the attractions inside them. Meantime, the map will be
re-centered and re-zoomed so users are able to view all the
information well. When users click the clusters, the view
will be further zoomed in and see the location of each at-
traction shown as icons matching the icons in the preference
selection bar. Clicking each attraction, a window showing
semi-detailed store information will pop up on top of the
icon. After viewing and searching, people can add their in-
terested attractions and by the end users will receive a route
connecting all of those inter-media points.

The challenges in front end is mainly caused by unfamiliarity
of the interface programming. None of us has any experi-
ence with web front end development basically self taught
us JavaScript (JQuery and so on) and HTML while doing
this project. It was very frustrating at the beginning and it
gets better later on. One particular problem we encountered
was that one of the elements was not working, we could not
figure out why and we did not receive any error messages.
It eventually turned out that it was due to the incorrect
order of including two high-level packages (one depends on
another but we did not know about that). Also the nature
of JavaScript is not the same as other languages (I should
probably say web programming is different.) So a lot of sim-
ple tasks that can be achieved with ease in other languages
are very hard and we sometimes want to achieve some func-
tions that we did not even know how to Google or how to
put them in a question sentence. But we received a lot of
help from W3School and StackOverFlow/

The next challenge we found can mean either good or bad
when it comes to programming. In web programming, each
functionality people want to achieve, there are many differ-

ent ways of doing it. They look the same, but they are still
different in long run. This caused us a lot of problems since
sometimes, two methods do not go along with each other
well, so we had to pay attention to the details before we
make decisions. But this situation gets better in the later
stage when we know better about web programming.

The interface of this application is actually one of the most
important part of the project and we spend way much more
time developing it than I thought we would. We had a few
different iterations from the initial design to the final stage
and we have to admit the fact about developing web interface
that we are never satisfied with the design. We always see
something nice and always change the design. It takes a lot
of time but luckily we are always making it look nicer. We
have 3 major design changes and uncountable small modifi-
cations (colors, positions, and shapes of elements). Looking
back at our first a few designs, we are very glad that we made
those changes. We found it important to talk with multiple
people to hear others’ opinions about the design and learn
about how to improve the design. We believe that interface
will never be perfect, there was always room to improve.

Below is part of the revolution of our front end design. It
was a pity that we did not have all of the intermediate steps
saved, but you will have an idea about what is going on:

Figure 4: initial design: front page

Figure 5: initial design: second page

As you can see from comparing this with our final design,
we made a lot of changes during the course. Initially we
wanted to use the same color as Google Maps, not only
because to be close to Google but also because it was easy
to implement. However, we changed this relatively quick in



Figure 6: initial design: routing

the second iteration since we want to make us different from
anyone and we did not like the color theme of Google.

Figure 7: Second design: first page

This is quite similar to final design but lots of elements get
changed. For example, the preference/attraction selection
area was changed from the radio button selection inside Ac-
cordion to the icon selection bar. This switch is mainly
because that we were taking E120 - Data Visualization from
which we learned the importance to use icons to substitute
massive text to make the visualization clearer.

5. USE CASE DEMO
Below is the demo of the use-case for the application with
screen shots from the real application.

Figure 8: entry page

When the users enter the website, the figure above will be
what they see first. This page acts as an inspiration page,
which shows the purpose of the website and attracts people’s

Figure 9: main page

attention. After the user selects the button of ”Try Tripster”,
the main page will be loaded as above. The map is a em-
bedded Google Map with special choice of color scheme. On
the left hand side, there are an input field to enter the ori-
gin and destination and a dropdown group to select the user
preferences. We get the idea of design of dropdown menu

Figure 10: dropdown menu

from the website of ”roadtrippers.com”. They have done an
excellent job in using the least space to display various of
choices without losing any intuition. We follow the design
principle but also have some minor changes. For example,
the dropdown will display on hovering mode. This modifi-
cation will make the user experience even more smoothly.
After the user selects the preferences and also the targeting

Figure 11: clusters of interesting points overview

point to go, a nicely organized overview of routes will be
shown on the site. In this specific example, the user chooses
to go from Los Angeles to Chicago. There are ten clusters
shown on the web, indicating ten possible interesting stop-
ping points to stop by. They are separated with reasonable



space, so those will behave like different checkpoints. For
every a couple hours of driving, the user (roadtripper) could
enjoy a moment of leisure time.

Figure 12: detailed view of a cluster

After the overview of clusters, the user may want to see what
are the nice points to visit inside the cluster. So the user
will be able to click one of the clusters and then a detailed
cluster view will be presented. Basically all the interesting
stopping by points within this region will be shown.

Figure 13: pop-up information about each store in-
side clusters

When users click on any of the icons/attractions. A window
summarizing the attraction information including Yelp Re-
view score and number, phone number, address and other
options will show up on top of the small icon.

Figure 14: yelp pop-up

If users want to know more detailed information about the
specific attraction, they can click on the ”Open in Yelp”

button to bring the Yelp page for the store. They can close
the window anytime if they want to return back to Tripster.

Figure 15: Finally, route!

After users have selected all the points of attractions that
they want to stop through during the trip. All they do is to
click on the right top corner ”Route”, this route will show
up and users can enjoy their trip now.

6. KEY COMPETITIVE ADVANTAGES
Current there are a few other options for people to plan
road trips. The first one is the conventional trip planning
method and the second one is using other web applications
as an assistant (Roadtripper for example). Comparing with
them, Tripster has three major advantages:

First, Tripster offers the easiness to find and display all in-
formation on a nice web interface. With the help of the
Tripster, users do not need to spend as much time as the
conventional methods searching and Tripster is able to show
a lot of interesting local attractions that are not known by
tourists or even local residents.

Second, Tripster displays the completed but not overwhelm-
ing information to users. Unlike other road trip planning
assisting websites which display all of the results to user at
once, Tripster only returns top results and display them in
clusters so users can easily select and view clusters without
looking at 200 other attractions on the same page at the
same time.

Third, this is our future feature but we have done a lot of
foundation work to make it possible, Tripster will more in-
put information. For example, the users can tell us types of
attractions and accommodation he is looking for as well as
users’ time and financial budgets. Tripster can help the users
to find best routes meeting all these requirements and max-
imizing users’ utility during the road trip. This is extremely
important for busy travelers and people who want to get
hints about planning before spending time doing more re-
searches. Another recommendation system is to recommend
attractions and routes to users based on users’ preferences,
past history and specific behaviors. One particular example
is we can link the account with users’ Facebook accounts and
access the user’s liked photos of his friends. So if we hap-
pen to see the user’s next queried route might go through a
place where the user’s friend has taken photo and he liked
the photo. Things like this will make the system smarter



and help people figure out what they want more. Moreover,
if multiple ”good” routes are found, we can assign a score
to each of the route in different categories and let users to
choose which one he or she would like to choose.

7. FUTURE WORK
To bring stable Tripster to the public with some competitive
advantages, we still have some future work or future features
to do or add:

First, we need to improve the query speed. Currently we
are using free version of all APIs and servers, so we have
lots of speed limitation or throughput limitation, so in order
to launch Tripster, purchasing Pro licenses is very necessary.
Another way to speed up query is to set up our own database
to store all of the queried information to avoid repetitive
query which is a waste of time and query bandwidth.

Second, Tripster is most likely to be used on desktop/laptop.
However right after the trip has been planned, being able to
access or the trip or even navigating on top of the applica-
tion can help us gain an edge in competition. So in order to
do that, we should develop a mobile application so that users
can access the saved routes and navigate with our map dur-
ing the trip so they do not need to switch between different
devices.

Third, Tripser needs to have a login system so users can store
their saved routes or previously planned routes in the data
base. At the same time, we can learn users’ preference and
recommend them best routes matching their preferences. In
order to do so, we need to set up a database to store users’
information.

Fourth, this is something that will probably never reaches
to the end: improve the GUI design. We have a good GUI
already but there are many things that can be implemented
to be better. For example, when loading the map, we can
have better way to hide the latency. Now what we do is to
use a transparent picture over the entire page, we can do it
better. We can have the clusters show up one by one and
have the color goes from light to dark until it is fully loaded
to show the progress.

Fifth, we need to obtain more store information other than
from Yelp. Another important feature we want to have is to
display real-time closest open gas station information while
they are driving with our navigation application on their
smart device. I l learned this is very important from my
personal experience: Once during my Iowa - Denver road
trip while I realized that I need to refill at mid-night, I found
a few gas stations nearby but when I stopped they were all
closed. I was eventually told the nearest open gas station is
100+ miles away. I made it by turning off all electronics and
drove at 40mph. I think it is very important to know these
information on the road, especially when you are traveling
with your family. So I hope Tripster could come up with the
solution.

This is the extension of the last idea, we hope the routing
system can be smarter while planning the route. For exam-
ple, if Tripster finds the only gas station is far away from the
regular route, Tripster can recommend user with alternative

routes that can go through the gas station and refill before
hitting the road.

Last, we have a lot of future features that we hope to include
in the application. One particular example is that Facebook
related described above. We hope our planning system can
not only do what human beings can do faster, but also do
what human beings are not able to or have not thought
about doing.

8. ACKNOWLEDGEMENT
Professor Adam Wierman,
Google Maps JavaScript/Python API
Yelp API
Google Apps Engine
FontAwesome

9. REFERENCES
[1] Google Maps API USer Manual: https://developers.google.com/maps/
[2] W3School: http://www.w3schools.com/
[3] StackOverFlow: http://stackoverflow.com/
[4] Yelp API: https://www.yelp.com/developers
[5] Roadtrippers: https://roadtrippers.com/
[6] TripIt: https://www.tripit.com/
[7] TripAdvisor: http://www.tripadvisor.com/


