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ABSTRACT
Some epidemics spread on various types of real world net-
works which have unknown underlying structures. In our
project, we analyzed the robustness and effectiveness of a
greedy algorithm suggested by Netrapalli et al.[8] in recon-
structing graphs from infection times. We implemented a
framework for generating graphs, simulating epidemics on
those graphs, solving for the original graph structure given
the results of the simulations. We analyzed efficacy of our
algorithms by comparing the inferred graph to the origi-
nal. Our greedy algorithm applied to epidemics from a SIR
model yields trees and tree-like graphs that accurately repre-
sent the original graphs that the simulations were performed
on. Although the algorithm does not always achieve perfect
recall of the original graph, we are able to reconstruct the
majority of the graph structure with a reasonable number of
cascades. We are successfully able to produce the theoretical
results proposed by Netrapalli et al.
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1. INTRODUCTION
1.1 Background information about Epidemics
We live in a connected world. Often, it is importance to
model the connections between entities, such as the roads
between buildings, the layout of a power grid, or the con-
nections within a social network. We can model these con-
nections between peoples as a network, represented by a
graph with nodes and edges. Often, we not only want to
model the connections, but how things spread through the
network. For example, we may wish to model the spread
of disease through a country, the propagation of viral ad-
vertising through a social network, or how viruses spread
through computer networks. These self propagating things
are known as epidemics.

The study of how epidemic and memetic spread through

networks is a new and upcoming field. Much research has
been done on modeling these epidemics and deducing cen-
tral nodes in a graph given the graph structure. Different
types of epidemics spread in different ways. and thus are
modeled differently. A well known model stemming from
epidemiology is SIR model, or Susceptible, Infected, Recov-
ered. In this model, nodes are either non-infected but non
active (susceptible), active and capable of infecting other
nodes (infected), or non-active but has been infected in the
past (recovered). This model is effective in modeling the
spread of diseases. Extensions of this model also exist, such
as the SI (susceptible, infected) model and the SIS (suscep-
tible, infected, susceptible) [1]. In the SI model, the nodes
do not recover and remain virulent. This model is a bet-
ter description for incurable but infectious diseases such as
AIDS, as well as Internet memes. The SIS model, on the
other hand, better describes frequent diseases such as the
common cold or the flu. It is worth noting that the com-
monly known Independent Cascade (IC) model is equivalent
to the SIR model.

The main model that we focused on was the SIR/IC model,
which can be formally described on a graph as follows: given
an initial set of active nodes A0, at each time step an acti-
vated node u is given a chance to activate each of its neigh-
bors v with some probability pu,v. After a node attempts to
activate its neighbors, it becomes inactive (recovered) and
cannot try to activate across its outgoing edges again. In the
SI model, active nodes do not recover and become inactive,
they remain active and attempt to activate their neighbors
in each subsequent time-step. In the SIS model, each active
node u becomes inactive, but can be reactivated through
one of its incoming edges.

1.2 Introducing Graph Inference
Epidemic models give us an idea of when nodes are infected
as well as which nodes are the most virulent or at risk. How-
ever, there are times where the opposite problem is impor-
tant, such as knowing which nodes are infected at what times
but don’t know the structure of the graph. If we monitor all
nodes in a graph in discrete intervals, we can deduce changes
in the states of the nodes known as a cascade. What if we can
observe a series of cascades, but don’t know how these nodes
are connected? Can we somehow use the models of graph
epidemics to suggest how the nodes are interconnected?

This problem of graph inference can be modeled mathemat-
ically as follows. We wish to find out the structure of an



unknown graph G(V,E). We define a cascade to be a vec-
tor of size |V | containing the first infection times for each
node. Given a set of cascades on G, we seek to create graph
G′(V,E′) such that it reconstructs G(V,E) as well as possi-
ble.

1.3 Graph Similarity Methods
Quantifying how accurately a graph reconstruction is a non-
trivial matter. Many different similarity measures have been
proposed to measure this. All similarity measures attempt
to be constrained in several ways [6]. Firstly, the similar-
ity score should be bounded within a range and comparison
of any graph to itself should yield the maximum value of
this bound. Similarly, each node within the graph should
be most similar to itself. Finally, similarity scores should be
meaningful in absolute terms, meaning that similarity scores
from different graphs can be directly comparable. Thus,
a good similarity measure is one that includes all of these
things and also captures additional information about the
similarities of the structure of the graph. A naive simi-
larity measure is to compute the percentage of edges that
are guessed correctly. This measure passes all of the re-
quirements for similarity measures. As a fraction of correct
edges, it is bounded from 0 to 1, and a graph would be
completely correct with itself. However, the naive similarity
measure does not capture any information about type two
errors, or whether a guess was a good guess or not. Fur-
thermore, it does not give information about whether or not
the structure of the graph is similar or not. Therefore, other
similarity methods should be explored.

One method of similarity that compares node to node simi-
larity is first discussed by Kleinberg for the purpose of find-
ing authoritative sources in an hyperlinked environment[3]
and later formalized by Blondel et al. for the purposes of
finding synonyms in text[2]. Melnik et al. also contributed
to further solutions to the same similarity measure as applied
to schema matching.[5] As such, this similarity measure has
been used in many cases. This similarity computes a sim-
ilarity matrix S between nodes in the two graphs, where
s(a, b) is the similarity between node a in the original ma-
trix and b in the generated graph. This uses an iterative
method of spreading the similarity through the Cartesian
graph product of graphs A and B. This allows neighbors to
spread similarity measure to each other. We can generalize
this node similarity to graph similarity in two ways. First,
we can take the trace of the similarity matrix and thus com-
pare the similarity of nodes that should correspond to each
other. Secondly, we potentially can find the set of n simi-
larities that have unique rows and columns that maximizes
the sum. This tells us whether or not we can interpret the
new graph in such a way that nodes may correspond to a
different node instead. A higher value of maximization simi-
larity compared to the trace similarity would imply that the
exact edges may be wrong, but the structure of the graph
is very on point, or potentially isomorphic. Although using
the trace is trivial to implement, the maximization simi-
larity measure is a problem that is NP-hard and reduces
to the maximum bipartite matching problem, and thus not
truly viable to compute. However, a simple greedy approx-
imation algorithm may be suffice to get just an idea of the
graph’s similarity. These two similarity metrics, however,
fail to pass some of the necessary features of similarity, such

as the similarity matrix is not always diagonally dominant
and does not translate well as to a global comparison of the
two graphs [2].

1.4 Current Inference Methods
Current approaches to this problem typically involve defi-
nition of novel node centralities along with their maximum
likelihood (ML) estimators. Performing the ML estimation
is computationally difficult, so the challenge involves show-
ing that the MLE problem is convex or deriving an alter-
native formulation, for example as a combinatorial problem.
Netrapalli [8] takes the former approach, whereas Shah takes
the latter [9]. Netrapalli derives a change of variables that
turns the problem of finding the graph that best explains a
set of cascades into n convex problems, one for each node.
Specifically, the graph is reconstructed from parental neigh-
borhoods (set of all nodes that could have been a particular
node’s activator) for each node. The algorithm is locally
efficient (number of times a node has to be infected scales
with d2i log |V | for each node i) and scales well because of its
distributed nature.

The two approaches mentioned above also tackle different
problems; Netrapalli looks for edges in the underlying graph,
whereas Shah evaluates a ”rumor centrality” and identifies
a seed node for the epidemic. Prakash developed the Net-
Sleuth algorithm [7], which can identify cases where there
are multiple seed nodes. Each approach sheds light on the
underlying network in some way; [8] learns the actual graph,
[9] determines a single source, and [7] can determine multiple
sources of epidemics.

Netrapalli [8] also gives a greedy algorithm with theoretical
bounds proven on trees; this algorithm was the main subject
of our study this term. We implemented it and tested it on
trees and tree-like graphs to assess its graph recovery ability
and robustness.

2. APPROACH
2.1 Overall code structure
Our project is written in Python 2.7 and uses Git for version
control. We decided to use Python because we would be able
to very quickly test and try different algorithms out, as well
as have access to multiple graph libraries such as NetworkX,
graphviz, and igraph. We had previous experience working
with NetworkX in CS144, which made the experience a bit
more pleasant. Our code documentation is aided by Sphinx
and we used pytest for unit tests.

We designed our project as a Python package, such that ac-
cessing a function is as easy as typing graph_interference.

solver.greedysolver. Our design to modularize our code
heavily had several reasons. First of all, this forces us to
standardize our inputs and outputs for our code, meaning
that it would be simpler for us to link up bits of code to-
gether. Secondly this allows us to conceptualize the project
into smaller, more manageable chunks in which one of us
can take main responsibility for. Thirdly, modularizing the
code proved to be especially useful while writing test scripts
and generating figures, as it made the test code easy and
fluid to write. We took care to document our code such
that function inputs and outputs are clear, as well as used



Figure 1: A diagram describing our code modules
and how they communicate with each other

robust argument parsing that allowed us to be flexible with
how to pass arguments to other parts of code. For example,
we allowed the passing of one graph from one module to an-
other via a NetworkX object, or by writing to and reading
from files.

2.2 Individual modules
Graph Generation The graph generation model is re-

sponsible for generating graphs in the correct format
for later programs to use. All graph generation mod-
ules are based off of a basic graph generator that we
wrote, and simply overloads the basic graph genera-
tor’s functions to add functionality. This forced us to
maintain a standard of function names and also helped
standardize variable name convention. We required
each graph to generate a NetworkX graph, typically a
directed graph. Each graph must contain nodes that
are indexed by consecutive integers starting at 0. We
accompanied each graph with information about what
type of graph was generated and with what parame-
ter, including an auto generated descriptor sting for
easy debugging and testing. All graphs have ability to
export itself to file as a GraphML file. One benefit of
this type of organization is that future graphs that we
may add may not need to use NetworkX at all, as long
as it can be exported as a standardized format.

We implemented several types of graph generators,
namely GNP (Erdos-Renyi) graphs, tree graphs,
graphs edge lists as supplied by the SNAP reposi-
tory[4], and graphs with a specified degree distribu-
tion. The GNP graph, importing from edge lists,
and degree distribution graphs are written as wrappers
over NetworkX functions that ensure that the resulting
graphs and graph wrapper followed specifications. We
made sure functions exposed enough details, but not
enough to become unclear to use. We attempted to
create trees based off of a function in NetworkX that
generated power-law distribution trees. Unfortunately,
this NetworkX module did not work very well for larger
trees as the function would have a hard time converg-
ing, so we implemented our own tree generation algo-
rithm. At each time-step, each node has a probability
of growing an offshoot. This allows for very nice look-
ing trees with varying degree distributions that has a
flavor of preferential attachment.

Simulation The simulation module takes a graph, simu-
lates epidemics on it, and outputs a set of infection
time vectors that are the inputs of our graph inference
algorithm. We implemented three common epidemic
models: SI, SIR, SIS. They were extended from a base
simulation module that defined shared functions be-
tween all epidemic models. The shared functions in-
cluded graph loading, single epidemic steps, and full
cascade runs that generate a set of cascades as final
output. Each epidemic model also has a different defi-
nition of stability, that is, criteria for when the cascade
has finished. The SIR model has the simplest defini-
tion of stability; it is finished when no nodes are active.
The SI/SIS models require far more iterations because
each node can go through multiple rounds of infecting
its neighbors. One definition that we worked with for
the stability condition in the SI and SIS models was the
idea of the infected set of nodes staying constant for
some k consecutive time-steps. Another more rigorous
(and slower) way of determining stability, specifically
for the SI model, would be to compute the set of all
nodes that can possibly be infected given a specific
set of seed nodes and run until all of those nodes are
infected.

The simulation code can load edge weights from
GraphML files stored on disk. If any edge does not
have a weight specified in the graph, it is assigned a
weight from a uniform (0, 1) distribution. For each
cascade, we choose a set of seed nodes by iterating
through the nodes and activating each one with some
probability α. The cascades are simulated in software
and returned as numpy arrays of arrays in memory.

Solver The solver module takes a set of cascades generated
from simulations and outputs the edges that most ad-
equately explain the cascades it received. The algo-
rithms we attempted to implement were all able to
be separated into per-node optimization problems, so
we defined a function that gives a particular node’s
parental neighborhood in the base class. A simple
wrapper around the per-node solver was written to re-
construct the original graph from the results of the
node-solver output on each node, and the inferred
graph can be returned in memory as a NetworkX di-
rected graph or written to disk in GraphML.

We implemented the greedy algorithm in [8] that works
well for the SIR infection model and can be easily ex-
tended to the SI and SIS models. We ran the algo-
rithm on trees and non-treelike graphs, verifying the
results in the original paper and experimenting with
the algorithm on different graphs. This algorithm can
only return a tree as its final output by design, so we
were somewhat limited in the graphs that we could
run cascades on. Some bugs at the solver/simulation
level made generating results with the greedy algo-
rithm take longer than expected; subsequently, we did
not manage to implement a working maximum likeli-
hood solver.

Analysis Our analysis module takes two graphs and dis-
plays various statistics about the graphs. We first im-
plemented a few very basic measure for comparing how
well we did. We wrote functions to count the number



of edges we predicted correctly, failed to predict, and
predicted false positives. We also counted the differ-
ence in number of total edges.

We also implemented a few centrality measures. First,
we implemented a degree count comparison where we
measured how different the predicted and actual de-
gree was for that node. We then implemented this,
but for comparing the degree distributions, where we
compared the highest degree nodes to each other and
so on. We also made an attempt at implementing the
simple similarity measure that took the trace of the
similarity scores. This iteratively calculated a simi-
larity matrix s between two graphs of size |V |. The
iterations were calculated as

sk+1 =
(A⊗B +AT ⊗BT )sk
‖(A⊗B +AT ⊗BT )sk‖

where ⊗ is the Kronnecker product. This turned out
less than satisfactory, however, as the results gave very
little indication that one graph was more similar than
another and failed several of the centrality tests. It
would be a future endeavor to try to fix this similar-
ity measure and also to explore the literature for more
that may highlight other features of our graph recon-
struction.

3. RESULTS
Our first analysis was looking graphically at the results of
our graph reconstruction on generated tree graphs figure 2,
and GNP (Erdös Renyi) graphs in figure 3. We can clearly
see that we can almost perfectly reconstruct the original
graph on trees, although the graph reconstruction is a lot
worse when it comes down to a GNP graph. Graphically, we
can see that although the graph has one misplaced edge, all
nodes in the graph that had an original edge are accounted
for. The resulting graph in figure 2 is actually isomorphic to
the original graph. This suggests that for tree graphs, the
greedy algorithm is extremely good at identifying the graph
structure. This was evident in all runs on tree graphs.

The simulation on the GNP graph fared less as well.
Roughly 2/3 of the original edges are predicted correctly,
and the other one third incorrectly predicted (both type 1
and type 2 errors). However, the algorithm on GNP is often
capable of producing the correct number of total edges and
the correct number of connected components.

We then wanted to figure out how robust the algorithm
was depending on the number of cascades. We generated
a graph, and ran the simulation and inference modules with
different numbers of cascades. For each number of cascades,
we performed this sequence 10 times and collected the aver-
age reconstruction rate. We defined the reconstruction rate
to be the fraction of the original graph that was correctly
identified, and thus this does not measure type 2 errors.
We measured the recovery rates for generated tree graphs
in figure 4 and GNP graphs in 5. This shows that in both
cases, the algorithm quickly converges almost exponentially
to the maximum recovery rate. For tree graphs, near 100%
recovery is expected for anything past 10n cascades, and
90% recovery requires only about 4n cascades. GNP graphs
plateau at a recover rate of about 60%, but also converges
quickly.

Figure 2: This tree graph was generated and then
a simulation of 500 SIR cascades were performed.
The original graph and generated graph’s edges are
overlaid, with orange edges being correctly identi-
fied edges, and black and grey edges being type 1
and type 2 errors respectively

Figure 3: This GNP graph was generated and then
a simulation of 500 SIR cascades were performed.
The original graph and generated graph’s edges are
overlaid, with orange edges being correctly identi-
fied edges, and black and grey edges being type 1
and type 2 errors respectively



Figure 4: Recovery rate as a function of number of
cascades using the same tree graph with 50 nodes.
The recovery rate was averaged over ten runs for
each data point

Figure 5: Recovery rate as a function of number of
cascades using the same GNP graph with 50 nodes.
The recovery rate was averaged over ten runs for
each data point

Figure 6: Number of Cascades needed to first iden-
tify the edge as a possible edge on a tree graph with
50 nodes

Our final analysis is to see how quickly does the algorithm
learn nodes. We generated a tree graph of 50 nodes and ran
the simulations to generate a total of 2000 cascades. We
ran the greedy algorithm on the first k cascades, varying k
from 1 to 2000. We recorded the first time that the greedy
algorithm identified an edge correctly for each edge. The
results are not surprising: the majority of the nodes are
learned early, and by 2n cascades, about 3/4 of the edges
have already been found. A colorized graph of the original
edges of one of the trees is shown in figure 6. Here, lighter
edges means that the edge was found earlier. Here, all edges
were found in just 368 cascades.

4. CONCLUSIONS
4.1 Summary
We investigated the problem of reconstructing a graph’s
edges given vectors of (first) infection times on its nodes.
We reviewed the literature and implemented graph genera-
tion, epidemic simulation, graph recovery, and graph anal-
ysis modules to test the greedy algorithm in [8]. We inves-
tigated its performance on tree and non-treelike graphs and
discovered that it recovers trees accurately in an amount
of cascades within the bounds given in the original pa-
per. Moreover, we ran the algorithm on GNP graphs with
p ≈ 1/n (tree-like); the algorithm’s performance on GNP
graphs was poorer than its performance on trees, but not by
too much.

4.2 What’s Next
The greedy algorithm we implemented, as is, assumes that
a node v can only be infected by another node u that was
infected exactly one time-step before v was infected. This
assumption works when we are using the IC/SIR epidemic
models, but it is clear that it does not hold for the SI and
SIS models (active nodes are given multiple chances over dif-
ferent time-steps to infect their neighbors), so the algorithm



needs a little bit of tweaking when we change our epidemic
model. One next step would be to loosen the assumption
that only nodes infected at time t − 1 could have infected
nodes at time t. We can achieve this by assigning parents
based on nodes that were active in the k steps before v was
activated, where the case with t = 1 is the simple greedy
algorithm once again. This modification will have a non-
trivial effect on the algorithms running time, but will likely
yield better results on cascades that came from SI and SIS
simulation models.

Our algorithm can be parallelized for efficiency, as to solve
for a parental neighborhood of any node we only need read-
access to the set of infection times. Our current code solves
for the incoming edges to each node one at a time, so we
could observe a large speedup from exploiting concurrent
programming.

Further steps that can be taken to advance the literature
would be to analyze the two algorithms discussed (greedy,
MLE) on a different cascade model. We have proposed a
way to modify the greedy algorithm for the SI/SIS models,
but the MLE reformulation may be trickier.

As discussed in the background, the methods used to capture
graph similarity in this research are suboptimal to get more
information. Graph recovery percentage does not tell us
information about whether or not the structures of the graph
are similar, and the node similarity matrix doesn’t let us
compare graphs to each other on a global scale. Thus, it
would be worth some time to look further into the literature
for graph similarity metrics that may add new insight as to
how our algorithms perform.

Most of the graphs that we ran simulations on were machine-
generated. We built the capacity to load and analyze graphs
from files into our codebase, but the graphs that we at-
tempted to analyze were too large or too non-treelike so
that our algorithm did not output meaningful results. We
also ran into efficiency issues here; on large graphs with more
than tens of thousands of nodes our algorithm did not finish
running in a reasonable amount of time. One way to address
this may be to implement the graph solving (slowest part)
modules in Cython or C and link them into the Python code.

Ultimately, we would like to apply graph inference to real
world scenarios. There are a lot of ways in which graph
inference can be used. We can attempt to figure out hidden
connections between people by certain signals between them,
such as disease or memetic expressions. With a virus, we
can map out a dark net effectively without knowing exactly
where the virus is going but just getting snapshots of where
the virus has spread to. There are tons of projects available
that can utilize graph inference, and it would be a great
endeavor to pursue these topics.

4.3 What We Learned
Through this project, we dived head first into the field of
graphs and networks. We were surprised by both the amount
of done and being done, as well as the amount of questions
that have yet to be answered. We learned not only much
about epidemic spread, but also about other cutting edge
areas of the study of networks and how these concepts were

being applied to tackle real world problems. Our research
brought us to see problems ranging from synonym finding
in text to identifying super spreaders in viral epidemics.

We also learned that we need to pursue realistic and well
explained research goals. We started out the project with
a different idea relating to spreading network influence to
regions that resisted influence due to the graph structure or
due to the intrinsic nature of the node. We later realized
that this topic is not very covered in the literature, and
that we didn’t have a concrete hold of what we would be
doing to pursue this research idea. Having concrete research
goals where success can be easily quantified is important for
having a successful project as you have something to work
towards. This is also useful for intermittent progress in the
project where we have short term goals to work towards.

This was also a good experience in software development;
neither of us have worked with large codebases very much, so
we built our project from the ground up in an organic rather
than heavily structured way. One benefit of our approach
is that it allowed us to prototype quickly and write tests
into our modules as we implemented them. We learned a
lot about working on a project as a team.
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