Grapevine

Taokun Zheng

Aman Agarwal

Aditya Bhagavathi

Department of Computing and Department of Computing and Department of Computing and

Mathematical Sciences
tzheng@caltech.com

ABSTRACT

Grapevine is a photo-sharing mobile application that em-
braces the virality of photographic media in a fun and intu-
itive interface. In this paper, we describe the features that
make Grapevine unique. We also discuss the front-end and
back-end design and implementation process with a focus on
the technical challenges that we faced. The application was
implemented on the Android platform.

Categories and Subject Descriptors

H.3.5 [Online Information Services|: Web-based ser-
vices; J.7 [Computers in Other Systems]: Consumer
products

General Terms
Android

Keywords

Photo-sharing, virality, swipe interface

1. MOTIVATION AND IDEA

Grapevine is a mobile app embracing the virality of pho-
tographic media through a fun and intuitive interface. It
draws upon the best features of today’s most popular apps
to create a unique, enjoyable mobile experience (figure 1).
Users experience a feed of photos uploaded and shared from
people across the world. They either like or dislike each
photo by swiping it to the right or left, respectively. This
corresponds to a crowd-sourced selection of great content,
as each action corresponds to spreading the photos they ap-
preciate to the feeds of other users or containing the spread
of photos they dislike. Thus, most photos in a feed will be
shared by other users who found it pleasing, ensuring quality
to passive users through a peer review process.

Active users may upload photos to the network. These are
sent to the feeds of particular seed nodes based on the photo
content and the photographer’s track record as well as the

Mathematical Sciences
aaagarwa@caltech.com

Mathematical Sciences
abhagava@caltech.com

Virality Interface Design

Figure 1: Grapevine combines Imgur’s virality, Tin-
der’s interface, and Instagram’s design to create a
unique, fun mobile experience.

preferences of the seed nodes. Users can witness the spread
of their photos across the network as people share or contain
their media.

Although users experience photos by strangers, we will pro-
mote quality in this network. In partciular, users can see the
popularity of their images on their profile, displayed as a ra-
tio of likes to views. This, combined with our transmission
algorithm, creates a force for high quality photos.

2. COMPARISON TO STATUS QUO

The value added by this app is simultaneously democratizing
photo sharing and embracing virality. Regarding the former,
users can experience photos created by people they do not
know, and their photos can in turn be viewed by people
they have not met. This is not anonymous photo sharing,
but every user is empowered to impact the community and
have their photo go viral rather than just the elite few with
the most followers.

Many photos are posted with the hopes of maximum viewer-
ship, so we will make virality the explicit goal of our app. An
uploaded photo receives a score based on its spread. Users
can see the spread of their and other users’ photos on profile

pages.

2.1 Snapchat

Snapchat sends content to a particular set of users and then
deletes it. By emphasizing privacy, it securely facilitates the
transfer of highly personal photos that are not intended for
general viewing. Our app is the exact opposite. Users do
not choose who to send their photos or from whom they
are receiving photos. We aim to create a community that
values quality and attempts to create content for the masses.
Whereas a user in Snapchat is happy having only his friends
see his photo, a user on our app will be happy if his photo
cascades across the network.

2.2 Instagram

Instagram allows a user to send photos to the user’s friends
or family. Hence, it pursues a similar goal as Snapchat, while
the only difference is that the photo feeds are not deleted
after viewing, and other users may even reload the photo
feeds, i.e. like the normal social network feeds. However,
for our model, we believe sharing photos with everyone in
a defined comunity, so that everyone will have a chance of
enjoying high quality photos. Therefore, in Grapevine, the
user will not limit their photo sharing to friends or fam-
ily member only - a larger audience of the community are
waiting for the user’s high quality photos.

2.3 Flickr

Flickr does not have a unique vision, but rather attempts to
serve multiple needs. It’s primary use is as a private or pub-
lic photo repository. As one of the first photo-sharing apps,
it enjoys a large community of photographers and quality
content. However, exploring others’ photos is not Flickr’s
focus. There is a page showing the most popular photos, but
they often only receive about 10000 views. In contrast, we
want to create an app singularly focused on exploring con-
tent by others. It should also be easy for any user to have his
work seen by others, rather than the rich-get-richer” phe-
nomenon that occurs when only the most popular photos
are exhibited.

2.4 Facebook

Facebook is a social network focused on sharing content
among friends, messaging and dedicated pages for a vari-
ety of interest groups. Our app will focus on photo-sharing
in a larger community as opposed to Facebook where photos
are only shared between friends. The emphasis on virality
is quite different from Facebook’s model of photosharing via
likes and comments. However, our app will have a photo
feed similar to Facebook’s Newsfeed.

2.5 Secret

Secret was an app that allows users to contribute anony-
mous posts to three separate groups: friends (and friends of
friends), colleagues at work and those nearby. The groups
are completely separate. It also allows private anonymous
messaging between users, and messages disappear if they re-
main idle for 24 hours. While Secret is now defunct, other
anonymous sharing apps like it exist.

On the other hand, our app focuses on photo sharing. It is
not anonymous and photos are not spread based on group
affiliations such as workplace, location, or friend circles. In-
stead, photos spread and disappear based on their virality.

3. PHOTO FEED
3.1 Functionality

The Photo Feed forms the crux of the Grapevine experience.
It is the main entry point to the app after the login page.
It displays one photo at a time, taking up the majority of
the screen. Inspired by Instagram’s design, there is only
the image author and timestamp above the photo. Though
we do not allow titles, users may enter a description to be
shown below the photo (figure 2).

P 5 Jlid 3:26 PM

Grapevine

@ Future

K Photo Cascades

Figure 2: The section above an image is minimal,
only displaying the image author and timestamp.

The portion of the Photo Feed below the image handles user
interaction and social features (figure 3). Imgur provided a
good starting point for many of our design choices below the
photo. Icons allow a user to like, dislike, and/or favorite an
image. Furthermore, users can click on the comment icon to
see and reply to comments on the photo. Indeed, with re-
gard to viral images, the discussion of the image contributes
a significant proportion of the content value, making the
commenting system critical for Grapevine’s success. Fur-
thest to the right is a progress bar showing the popularity
of a photo as given by the ratio of likes to views.

K New photos should arrive soon.
Swipe to reload!

vE 9,6 -

Figure 3: The section below an image shows the
image description and facilitates user interaction.

The key distinguishing feature of the Photo Feed is its swipe
interface, as used in Tinder (figure 4). After a user is done
viewing a photo and its comments, he/she can simply swipe
the photo right to like it or left to dislike it. This is re-
inforced by a green background color when swiping right
and red background color when swiping left. The same next
photo arises regardless of the swipe direction, as if viewing
through a vertical deck of photos. The depth animation also
creates a smooth transition by making the outgoing photo
increasingly transparent as it is swiped off the screen, while
simultaneously increasing the opacity of the incoming photo
from underneath. Such an interface facilitates quick and
fun perusing through content, which is exactly how users
approach viral media.

3.2 Implementation

Implementing the Photo Feed was a hack on two fronts:
the underlying data structure and the accompanying anima-
tion. Regarding the former, the Photo Feed is built on the
ViewPager class provided by the Android framework, which
supports a horizontal rather than vertical slideshow. Indeed,
the content shown by ViewPager is meant to be static, so
that swiping left corresponds to advancing to the next page,
while swiping right corresponds to going back a page [1].

Swipe right to like!

Swipe left to dislike!

Original photo in feed.

Figure 4: The Photo Feed allows users to swipe left
or right to dislike or like a photo, respectively, before
moving on to the next image.

We were able to use this framework by maintaining a slideshow

of three photos, with the middle page containing the current
photo, and the first (left) and third (right) pages containing
the identical next photo. Thus, by maintaining the app on
the middle page, the user could swipe in either direction and
see the same next photo. After loading the next photo, our
app re-initializes ViewPager to the center page and loads the
subsequent image on the side pages.

Along with the underlying data structure, we implemented
a DepthPageTransformer to create the illusion of viewing a
stack of photos. The code for this animation largely con-
sisted of counteracting the horizontal slideshow animation
hardcoded into ViewPager, along with tuning page translu-
cences based on their displacement from the center of the
screen.

The final incarnation of Grapevine should have a custom
View class specifically designed for a vertical slideshow, as we
expect Tinder does. This would eliminate the redundancy
in storing the same image on two separate pages and having
conflicting animation schemes. Crucially, it would be more
efficient as the view would need to re-initialize after every
swipe by the user. For the purposes of this project, our hack
allowed us to expedite the creation of a proof-of-concept
without compromising noticeably on the user experience.

4. CAMERA

4.1 Functionality

Grapevine provides a smooth and quick interface to upload
photos which makes the app fun and easy to use. To promote
photos clicked personally by the user as well as provide a
simple interface, photos must be uploaded directly from the
mobile camera, as on Instagram.

To upload a photo, the user must click on the Camera icon
on the Action Bar at the top of the Photo Feed (Figure 2).
This directly opens the mobile camera. When a picture is
taken and saved (Figure 5), it is displayed in an intermediate
screen with a description box above and a SUBMIT button
below it. The user can then add a description by directly
typing into the text box with the picture in view, and then
submit (Figure 5). The photo is re-sized to fit the screen as
shown.

The final incarnation of Grapevine should have filtering and
other photo editing options for photo uploads. This would

6oy

Photo Upload

Coding in the lab

Take the photo.

Add description and submit.

Figure 5: The Camera interface allows the user to
click a photo, add a description and submit.

constitute an additional step after saving the photo and be-
fore displaying the SUBMIT screen.

4.2 Implementation

The Camera feature required us to accomplish two main
tasks: interacting with the mobile camera, and uploading a
new photo with description to the cloud.

When the Camera button is clicked, the Camera Activity is
started. In the onCreate method of the Camera Activity,
an Intent to use the mobile camera is sent. When a picture
is clicked and saved, the onActivityResult method sets up
the view (Figure 5) and re-sizes the photo to fit the screen.

Finally, when the user clicks on the SUBMIT button, the
uploadBtn method saves the photo, description and author
name to the Parse server. This is done asynchronously in the
background so that the user doesn’t experience any delay.

S. USER PROFILE

5.1 Functionality

The Profile displays all the photos uploaded by a user labeled
by their popularity (i.e. likes/views). The user can open her
own profile by selecting the My Profile option in the menu
from the Photo Feed. Moreover, if the user likes some photo
in the Photo Feed and wants to view more photos from the
same author, she can click on the author name above the
photo to open the author’s Profile.

The photos are displayed in a square grid with translucent
labels (Figure 6). This gives a quick glance over a user’s
activity on Grapevine and also puts the emphasis on how
well each photo has been received by the community. Each
photo can be clicked to get a full screen display along with
the description. The user can return to the grid of photos
by simply pressing the Back button on the Action Bar.

The Profile serves as a fun interface for a user to see how her
photo uploads are being received in the community. In the
final incarnation of Grapevine, the Profile will also be used
to follow another user: if a user likes a photo on the Photo
Feed, she can go to the author’s Profile, peruse the rest of

Figure 6: The Profile displays the photos uploaded
by a user labeled by their popularity (likes/views).
Each photo can be clicked to get full screen display
as in the Photo Feed.

the author’s photos and then decide to follow the author if
she likes.

5.2 Implementation

There were three main tasks in implementing the Profile
feature: designing the square grid elements with translu-
cent labels, obtaining photos from the cloud, and managing
memory efficiently.

For the grid elements, a SquareImageView class extending
the ImageView class was used. Then SquareImageView and
TextView were combined in an XML file to create the square
photo with label design.

In the onCreate method of the Profile Activity, the GridAdapter

and collectionManager are set up. The collectionManager
(described in the Backend section) asynchronously obtains
all the photos uploaded by a user from the Parse cloud.

To ensure efficient memory management, when the Profile
Activity is paused or closed, the references to the images in
the grid are set to NULL so that they can be garbage col-
lected. This is done in the onPause and onDestroy methods.

6. BACKEND

For our backend, we mostly used the infrastructures written
by Parse.com, so that we can just focus on the design our
App. To be more specific, we just need to design the con-
tents of each database table, and write some special cloud
functions which we want to run remotely in the background.
Note, for the database system, Parse has created convenient
create, get, query with constraints functions for the front-
end to call.

6.1 User

We used the default User table of Parse. Each user has
fields of object ID, email, password, creation time, modifi-
cation time, username, and access control list (specifies the
authorization and access level for the user). Thanks to ac-
cess control list for each user, Parse can help ensure the
security of our database and App automatically.

6.2 Photo Feed

6.2.1 Photo Object

The Photo Object table consists all the photos that has been
uploaded by the users. For each photo object, we have ob-
ject Id, author (which is a User Object), description text,
the image file (which is also saved in our database as a file),
number of likes of this photo, number of views of this photo,
creation time, modification time, a boolean field ("hasCom-
ment”) whether the photo has comments, and a popularity
parameter of this photo.

Most of the fields are filled, once a user uploaded the new
photo. However, many other fields are modified when an-
other user sees this photo:

1) Whenever this photo is transmitted so a user and the user
has chosen to like or dislike the photo, then we will always
increment the number of views by one for the corresponding
Photo Object;

2) Similarly, if a user chooses to like the photo, we will in-
crement the number of likes field;

3) Whenever a user has commented on this photo, we will
make sure the boolean field hasComment” to be true (which
is defaulted as false);

4) Whenever the Photo Object has been modified, in the
cloud, we will update the popularity parameter of the Photo
Object to be fraction of likes among all views. Note in order
to make sure new photos will have some decent chances of
being transmitted, we will fix the popularity parameter to
be some fixed constant (e.g. 0.5) if number of views of this
photo is smaller than some threshold (e.g. 20).

6.2.2 Feed Object

We defined a Feed Object to be uniquely identified by a
Photo Object and a User Object, representing the user has
seen this photo. Then the Feed Object table can be consid-
ered to be the history of all the photos some user has seen.
Each Feed Object has the Photo Object, the User Object
(i.e. the viewer), an integer status (indicating whether the
user has liked or disliked the photo), a boolean field ("fav”)
indicating whether the user has ”favourited” the photo, cre-
ation time, and modification time.

Note in our cloud, we made sure to do sanity check that the
pair of Photo Object and User Object to be unique among
all Feed Objects.

6.3 Comment

The comment table consists all the comments a user has
added for some photo. Note for our commenting system, we
only allow to one-depth of reply, i.e. you can reply on a com-
ment that is not a reply. For each comment, we have the au-

thor (a User Object), the Photo Object, the comment text,
a boolean field ("IsReply”) indicating whether the comment
is a reply, a boolean field ("HasReply”) indicating whether
the comment has a reply, number of likes, the parent com-
ment (note if the comment is not a reply, then this field is
NULL), creation time, and modification time.

6.4 Cloud Function of Fetching Photo Feeds

As we are serving new photos (according to popularity) each
time a user requests, then we implemented a backend cloud
function to do the transmission algorithm.

Each time the frontend calls this cloud function, it will pro-
vide two parameters: the User Object requesting the photos,
and the number of photos it requests. Then in the cloud,
the function will first query all the Photo Objects this user
has not seen and order them in descending order of the pop-
ularity. Then for each photo of the results of the query, we
will generate a random number from 0 to 1, and if the num-
ber is smaller than the popularity of the photo, we will then
choose this photo to be returned to the frontend. We will
continue iterating through the results of the query, until we
have enough photos or we have exhausted all the results.
We will return the list of Photo Objects chosen.

This method not only ensures no photo will be sent to a user
twice, but also, because of its randomness, allows photos of
low popularity still have a chance (though relatively low) of
being transmitted - so the system is fair.

7. APP ARCHITECTURE

7.1 User Sign-in Flow

When the user opens up the App, we will send the user to
the user sign-in page. Then we have two separate situations
for user sign-in: 1) If the user already has an account, then
by entering his email and password, and pressing the sign-
in button, we will verify the credentials through our Parse
backend; After the user is logged in properly, then we will
send the user to Photo Feed page. 2) If the user is a new
user, than the user can press the button for ”sign-up”, and
enter his email, password, and username (optional); we will
then send those credentials to our backend and create a User
Object; if we created the account successfully - note email
address should be unique for all users - then we will auto
login the user and send him to Photo Feed page.

7.2 Photo Feed
7.2.1 PhotoFeedManager

For the frontend, we have implemented a PhotoFeedManager,
which locally keeps a queue of Photo Objects, that will be
send to the user in the near future. The PhotoFeedManager
will call the cloud function of fetching to refill the queue,
whenever the queue size is smaller than some fixed thresh-
old.

Moreover, the PhotoFeedManager is also in charge of updat-
ing the feedback of the user to the current photo. Whenever,
the user likes or dislikes a photo, the PhotoFeedManager will
create a corresponding Feed Object, save it to the cloud in
the background, and remove this just viewed photo from the
queue.

7.2.2 Photo Feed Flow

All our basic functionality stems from the Photo Feed, be-
cause as soon as the user signs in, we will send the user to the
Photo Feed page. Thanks to PhotoFeedManager’s heavy lift-
ing, whenever the frontend want to render some Photo Feed
page, all it needs to do is to ask PhotoFeedManager for the
data of the current Photo Object (since PhotoFeedManager
always keeps its queue updated and the current Photo Ob-
ject is simply the head of the queue).

Note, whenever the queue of PhotoFeedManager depletes,
either because we PhotoFeedManager is still in the process
of fetching photos from the cloud or we have exhausted all
the photos in our database, we will show a default Photo
Feed indicating to swipe later for new contents.

7.3 Camera Activity

From the Photo Feed page, whenever the user presses the
camera icon in the top action bar, the App will send the
user to the flow of uploading new photo:

First, we will open up the default camera App of the user’s
phone. The user will then take a new photo or choose some
photo from his local directory. Next, with a photo image
returned, we will show a preview page for the user and a
text field where the user can add description to the photo.
Finally, when the user presses the submit button, two things
will happen: 1) in the backend, we will create a correspond-
ing new Photo Object, and save it to our database in the
background; 2) in the frontend, the user will be returned to
the Photo Feed page.

7.4 Profile Activity

From the Photo Feed page, whenever the user clicks on the
link of the author of the photo feed, we will send the user
to the Profile page of that specific author.

Then before we renders the page, our frontend will query
our database for all the photos this author has uploaded in
descending order of creation time. Finally, we will rendered
all the photos, when we have finished our query.

The user can return to our Photo Feed page, by pressing the
return button.

7.5 Comment Activity

From the Photo Feed page, whenever the user clicks on the
comment icon under the photo, we will send the user to the
comment page of this photo.

Before we render the comment page, we will also query our
database for all the comments of this photo. Upon receiving
the results of the query, we will render all the comments of
this photo. Moreover, at the bottom of this screen, we have
a special box where the user can enter new comments for this
photo. Then when the user presses the ”"send” button, our
App will create the corresponding Comment Object of this
new comment, save it to our database in the background,
and after we have saved the object, the comment page auto-
refreshes itself, so that the user can see his new comment.

Finally, upon clicking the return button, the user can return
to the Photo Feed page.

8. FINAL PRODUCT

Our final product is a usable Android application. Although
we have not published our App officially on Google Play, we
have asked our friends and interested people from the poster
presentation session to do some user testing. During our
poster presentation session, our App went very smoothly for
all functionality.

9. FUTURE WORK

Grapevine currently implements the basic machinery of shar-
ing photos, but does not perform sophisticated data analyt-
ics. While our transmission algorithm tracks a rudimentary
version of a photo’s popularity (ratio of likes to views), it
does not tailor photos to users. There is a lot of potential to
be tapped in harnessing the data we collect from users and
using it to personalize their photo feeds. The following lists
some features that would help make this possible.

9.1 Photo Tags

Users should have the ability to tag their photos based on
its content. This could be implemented within a photo’s
description using a hashtag or through a separate tagging
protocol.

Tagging photos creates much-needed structure within Grapevine.

First, it would let users organize their collection of photos
for perusing by themselves and others. More importantly, it
could facilitate the learning of users’ tastes and preferences
based on the tags of photos they tend to like and dislike
over time. Tags would also help understand the ”state of the
system” at a particular moment in time. Grapevine could
then not only show the most trending photos, but also dis-
play users trending tags like on Twitter and show associated
photos upon inquiry.

9.2 Image Categories

Image categories would allow users to take control of their
content. While it may be possible to algorithmically learn
a user’s general preferences, one cannot automatically tune
content to moods at the moment. Categories, on the other
hand, would let users manually filter their Photo Feed to
display photos they are currently interested in.

Image categories would tie well with photo tags. Indeed,
a photo tag would be one way of classifying a photo into a
category. This need not require photo tags to refer to partic-
ular categories explicitly, as this can be learned. The other
means of classifying a photo would be through unsupervised
learning by associating a photo to a category based on the
set of users who appreciate it.

9.3 Followers

Grapevine is designed towards an open network, with users
sending and receiving content from people they do not nec-
essarily know. Nevertheless, this vision is compatible with
users associating and subscribing to certain other users they
particularly like. Allowing followers for a user is one way to
let the network form ties within itself.

Following a user would be akin to turning on an image cat-
egory. The app should handle merging content from various
sources by taking into account the quality of the content,

the user’s tastes, and frequency of content from a particular
source. Adding this feature would make Grapevine’s func-
tionality more closely resemble establish social networks,
however it will still be distinguished by its emphasis on viral
content.

10. ACKNOWLEDGMENTS

We would like to thank Professor Adam Wierman for his
mentorship. We also would like to express special thanks to
Parse for the amazing backend cloud and database support.

11. REFERENCES

[1] W. Jackson. Android’s viewpager class: Using
viewpager to navigate horizontally. In Pro Android Ul,
pages 497-516. Springer, 2014.

