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ABSTRACT

A reasonable definition of bubbles in financial markets is a
period of unsustainable, super-exponential growth followed
by a sharp crash. They are responsible for some of the
largest economic downturns, but their dynamics have yet
to be understood. Of the existing research attempts at un-
derstanding and predicting the behavior of financial bubbles,
the log-periodic power law model is a somewhat popular ap-
proach to predicting a bubble’s crashing time. It argues that
the log of the prices follows a power law drift decorated by
log-periodic oscillations that increase in frequency as they
approach the crash time. After implementing this model,
we believed the oscillations about the power law drift were
in fact a stochastic process which shouldn’t be captured by
a deterministic model. We instead propose that a bubble’s
growth is better explained by a power law drift in the log of
the prices, decorated by a stochastic process with increasing
variance.

1. MOTIVATION

Crashes in financial markets can have devastating impacts
on the economies of nations and industries. Furthermore,
the countless relations among nations arising from global-
ization can cause these crashes to cascade into global down-
turns. There are numerous examples of this phenomenon.
The 1987 crash known as ”"Black Monday” affected coun-
tries all over the world. It began with a crash in Hong
Kong’s Hang Seng stock exchange on October 19th and
made its way across the world to western Europe and the
United States in less than a day. Just to give an idea of
the widespread effects of this crash, stock markets in Hong
Kong, New Zealand, Australia, the United Kingdom, and
the United States had fallen by 45.5%, 60%, 41.8%, 26.5%,
and 22.7%, respectively by the end of the month. Similar
global effects arose from the United States housing market
crash in 2008, which led into the global financial crisis of
2008-2009, having devastating effects that caused national
recessions across the world. In the United States alone, the
federal government had to spend over $700 billion to bailout
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failing banks.

The negative impacts resulting from the crashes of financial
bubbles can be immense, with devastating impacts on the
government and citizens of nations across the world. Despite
these disastrous effects, not much work has gone into investi-
gating financial bubbles. This lack of research suggests some
sort acceptance of these events, that they’re unpredictable
and the best we can do is react to them. Several researchers
didn’t share this sentiment and began to develop a model
that would predict a bubble’s crash. Before we can reach the
point where we can look at a forming bubble and infer the
necessary actions needed to mitigate the harmful effects of
its crash, we need to first understand how it works and what
underlying processes are responsible for its behavior. The
goal of our research is to be able to begin characterizing these
underlying processes in order to provide this understanding.

2. BACKGROUND & PREVIOUS WORK

Before we can talk about bubble detection, prediction, or
characterization, we need to have an understanding of how
a bubble actually forms in a microeconomic perspective. In
the simplest terms, a bubble is a period in time when the
perceived value of some commodity is much higher than its
intrinsic value. For a classic example, consider the price
of tulips during the early seventeenth century in western
Europe. A single tulip was worth an amount equivalent
to $10,000 today simply because people believed its value
would keep increasing. This sort of belief is generally brought
on by self-reinforcement. People believe that the value of
some commodity is high or will become high and are then
able to convince others of the same thing who then, in turn,
convince others and so on the process continues. But all
bubbles pop. And what generally makes them pop is the
herd mentality which makes them form. Someone gets the
idea that the commodity is no longer worth its value, begins
offloading, and other quickly follow. We are interested in
trying to understand when and why a bubble has reached
its critical mass. How large must the herd grow before it can
be brought down? Since human behavior is very difficult to
model accurately, we study bubbles from the perspective of
a model that has already been applied in physical systems.

2.1 Critical Events

Detection and prediction of critical events has generally been
studied in the context of natural phenomenons and thus
much of the research and proposed models has been done by
physicists. But before we discuss how some of these models



can be applied to financial markets, we need to make the
notion of a critical event a bit more clear. The easiest way
to do this is, of course, to consider a physical system. Imag-
ine a balloon being filled with air. If we were to observe the
structural integrity of the system in time then everything
would seem fine until the very last moment when we have
put in just enough air that the balloon bursts. It is this
burst that we call a critical event and we are interested in
studying its identifiable causes. The amount of air needed
to bring about the burst is dependent on numerous factors
including the way the balloon was constructed, the materi-
als used, and the speed at which the air flowed in. Simple
experiments can be designed to study exactly what precur-
sors lead to the balloon bursting, and we can look for any
patterns that may be indicative of the upcoming explosion.
It is the detection of these patterns which would hopefully
stay invariant under certain changes in conditions that we
really care about. There two types of information that we
would want such patterns to tell us. The first is weather our
system is a state where a critical event is likely to happen.
If we were to let the balloon sit or slowly fill it with air,
then we shouldn’t expect a burst to happen anytime soon.
In our balloon example, it is very easy to tell whether we
should be expecting a critical event or not, but when we
start analyzing financial bubbles then it’s no longer obvious
what the regime of the market is. The second type is that,
given we are in a state where a critical event is likely, we
would like an indication of how close we are to the critical
point. Our work focuses on examining the model that tries
to capture patterns that give predictive information, so we
will generally assume that our data is in a regime likely of a
critical event.

We want to perform a similar analysis when considering fi-
nancial bubbles. Of course this becomes much harder, be-
cause we can no longer design experiments to help us collect
relevant data nor do we know what data would be most
helpful. All we have to work with are index prices, so we
can only create models which attempt to capture patterns
in this time series data. To get a better idea of what the
data looks like and what kind of qualitative observations we
can make about it, consider the following plot which shows
the logarithm of the price of Hong Kong’s Hang Seng index.
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Figure 1: Logarithm of the prices of the Hang Seng
Index from 1970 to 2000.

It is fairly obvious the overall growth of the logarithm of
the prices is linear which is an observation consistent with
the Black-Scholes-Merton model. But what if we considered
smaller time scales? There are sections of the plot that ex-
hibit faster than linear growth and are generally followed
by a large crash. Such sections of the data are compatible
with the idea of self-reinforcement growth which we used to
characterize bubbles, and hence we say that a bubble is a
period in time when the logarithm of the prices of a certain
index grow faster than linearly and are followed by a steep
decline which we call the critical or crash time. The most
obvious next step is to say that the growth we are observ-
ing is instead polynomial. This may seem like a completely
unjustified assumption, but let us consider critical systems
in nature. In statistical mechanics, we tend to model multi-
particle systems that are close to a critical time by a power
law (for example the two dimensional Ising model). For fur-
ther details see [7]. Experimentation has shown that such
models are fairly accurate descriptors of real world events,
so it is not entirely unreasonable to expect a large multi-
agent system, like a financial market, to behave similarly.
With this heuristic motivation in mind, we can write down
a deterministic model for the prices p(t) of some commodity
in a bubble regime, mainly

log(p(t)) = A + B(tc — 1)° (1)

where t. is the time of the crash, A is the logarithm of
the price at the crash and B, ( are constants such that
B < 0,0 < B8 < 1. If we already knew the critical time ¢,
then fitting this model to a data set is simply a matter of
running a power-regression, but having to also infer ¢. makes
this a non-convex minimization problem which is not easily
solved. We will discuss the problem of estimation further in
Section 3.1. For now let us examine how well this model does
in predicting t.. We fit the model to well-known financial



bubbles by taking the time series of prices for a certain index
starting at the time we believe is the beginning of the bubble
(the point where we first observe faster than linear growth
in the logarithms) and ending around two weeks before the
crash.

Index Interval Crash Date | Predicted Crash
S&P 500 | 1982-1987 | 10/19/1987 02/04,/1988
NASDAQ | 1997-2000 | 03/10/2000 |  06/17/2000
Hang Seng | 1993-1997 | 06/04/1997 11/02/1997

Figure 2: Critical time predictions for the 1987
Crash, The Dot-Com Bubble, and the 1997 Asian
Financial Crisis using the model given by Equation

(1).

This model performs quite poorly in its ability to predict
a crash, as is clear from the Figure above, but it does well
in capturing the mean drift of the market as indicated by
strong R? values. This result can be interpreted to mean
that the crash time is not fully determined by the accelera-
tion of the price. A qualitative observation of a single bubble
reveals that there many small crashes within the bubble for-
mation and their frequency increases the closer we get to the
actual crash time. The next model we present, proposed by
Johansen, Lediot, and Sornette [5], attempts to capture this
observation.

2.2 Log-Periodic Power Law Model

The Log Periodic Power Law (LPPL) model has become
the de facto model when attempting to predict bubble crash
times. It has seen most use at the Financial Crisis Observa-
tory at ETH - Zurich which is a research group attempting
to show and exploit inefficiencies in the market during bub-
ble regimes to be used for predictability. The model can be
derived in two entirely different ways both of which capture
different assumption we can about modern financial mar-
kets.

The first method exploits the susceptibility of a fractal struc-
ture known as the hierarchical diamond lattice. If we look
back to the model given by Equation (1), its striking similar-
ity to the Ising model tells us that, from the perspective of
microscopic modeling, all investors are connected in a uni-
form way. This is due to the way the Ising model treats
interactions between particles. But in a real market some
investor can be more or less connected to others. Certainly
someone working on Wall Street and making hundreds of
trades every single day is much more influential to many
investors than someone casually investing from home. The
diamond hierarchical lattice is a way to capture the con-
nectedness of an investor to other investors in the market.
So let us consider an ideal market with no dividends and
ignore risk aversion, interest rates, and liquidity constrains.
We start with two investors that are linked in this market.
When we say linked, practically we mean that the decisions
of one of the investors can influence the decisions of the
other. Mathematically, we mean an undirected graph with
two vertices and an edge between them. Now we substitute
this edge with 4 new edges, forming a rhombus and adding

two new investors to the graph. We can take each edge and
again substitute it for for new edges, adding two additional
investors at each substitution and forming a diamond lattice.
The following figure (taken from [1]) shows the the first few
steps in the procedure of building our investor lattice.

—

Figure 3: Recursive construction of the hierarchical
diamond lattice.

A little bit of combinatorics tells that after n iterations our
lattice contains 2(2 + 4™) investors with 4" links between
them. This model was solved by Derrida, De Seze, and
Itzykson in 1983 [1]. They arrived at the following solution

for the susceptibility of the system
x=Ao(Ke— K) 7 + A (K. — K)" 7T 4 .

It is quite common in physics to deal with complex numbers,
but the same cannot be said for economics, so we will take
the real part of the above equation and then its first order
approximation to obtain the hazard rate of the market,

h(t) = Ao(te — )77 + A1 (tc — t)” cos(wlog(te — t) + ¢)

Plugging this hazard rate into simple model of rational ex-
pectation for a network of investors (for more details see [5])
we obtain

log(p(t)) = A+ B(te — t)°[1 + C cos(wlog(t. — t) + ¢)] (2)

with the constraints: B < 0, 0 < 8 < 1, and 0 < ¢ < 27.
We call the model given by Equation (2), the Log Periodic
Power Law. If we think about our observation that oscil-
lations become more and more frequent the closer we get
to the crash time, we notice Equation (2) captures exactly
this behavior. The cosine term allows for fitting of oscilla-
tions and the logarithmic term drives them closer to each
other as they approach the bubble’s crashing point. We can
also arrive at this model from the assumption that a bubble
regime has discrete scale invariance because log-periodicity
is an observable of systems with discrete scale invariance [3].

Mathematically, scale invariance means that for some ob-
servable function ®(x) there is a function p : R — R such



that for arbitrary A,
D (@) = p(N) @A)

Since our invariance is discrete, we say the above equation is
valid only for a countable set {A1, Az, ...} where we can write
An = A" with A being our invariant scale ratio. With this
in mind, the most general solution to the above equation is

B(z) = 2P (%)

where P is an arbitrary function of period 1. We can write
down the Fourier expansion of ®(z) to obtain

= 27Tni710g<$)
d(z) = Z cne Tog(X)

n=—oo

Hence ®(x) is a sum of power laws with an infinitely discrete
spectrum of complex exponents, so if we are to take the real
part of the first order approximation, we would obtain the
right hand side of Equation (2). Now that we know where
our model comes from, we discuss methods of estimation and
potential short-falls as our log-periodicity may be fitting to
observable noise rather than an inherent property of bubbles.

3. MODEL DYNAMICS

3.1 Estimation of the LPPL Model

Estimating the parameters of the LPPL model is not an
easy task as its cost function is non-convex and contains
many local minima. We use a standard cost function which
calculates the average of the sum of squared residuals. Let
{y:}IL, be a time series of the logarithms of the observed
prices for some index and set 8 = (A, B, C, t¢, 8,w, ¢). Then

F(0,t) = A+ B(te — t)° + C(t. — t)° cos(wlog(te — t) + &)

C0) = 3 Sl — £(6.6)?

Hence our problem becomes

n%in c(9)

This a minimization problem over a seven dimensional pa-
rameter space. However notice that f(6,t) is linear in the
arguments A, B, C' and hence we can reduce the problem
to a minimization over a four dimensional parameter space
with a standard OLS technique as follows. Define

ki = (te —t)°
gt = (te — ) cos(wlog(te —t) + ¢)

This allows us to write f(6,t) as

f(97 t) =A+ Bkt + Cgt

The above equation gives rise to a matrix formulation, mainly

we define,
1 kl g1
X=1: @
1 kn gn
and y = (y1,...,y~n)” then
A
B | =(xX"Xx)'x"y
C

This leaves us with a non-convex optimization problem over
a four dimensional parameter space. There are many non-
linear programming methods that can yield solutions. The
one most commonly used in the literature is known as Taboo
search, but, in practice, any alternative grid search method
works just as well. First we strengthen our constraints, so
the oscillations are not too slow or too fast as suggested by
Lin [6], as follows

0.1<B<0.9
6 <w< 15
0<¢<2m
N <t. < oo

These give us a relatively small grid for the solution space
of (B,w). So let Si,...,S, C [0.1,0.9] x [6,15] be disjoint
squares of equal side length such that U7_;S; = [0.1,0.9] x
[6,15]. Then pick candidate solutions z1 € Si,..,zn €
Sn. Now we use each x1,...,z, as a starting value for the
Levenberg-Marquardt nonlinear least squares algorithm to
obtain solutions (¢, tc)1, ..., (¢, tc)n. We again use these val-
ues as starting points for Levenberg-Marquardt to re-calculate
(B,w)1, ..., (B,w)n. We can continue to do this until we are
confident that each solution converges to a minima and then
we take the solution which gives the smallest sum of squared
residual as our final solution. We found no significant im-
provement when picking n > 25, and the algorithm generally
converges for around 2 to 3 epochs.

Jacobsson [4] has suggested an alternative method of esti-
mation via a genetic algorithm, which starts with a pop-
ulation of random solutions in the four dimensional space
and breeds and mutates new populations until a minimum is
found. More recently, Fantazzini [2] has shown that it is eas-
ier to fit the LPPL model to "anti-bubbles” (where we simply
reverse our time series to be {y:};—n) and proceed to use
a 3-step MLE approach via the Broyden-Fletcher-Goldfarb-
Shanno algorithm with a quadratic step length method. In
practice, we found that all three algorithm perform about
as well, but the grid search takes less time to converge as
compared to the genetic and MLE approaches. The follow-
ing figure shows the LPPL model fit to the S&P 500 index
before the crash of October 1987.



S&P 500 During 1987 Bubble
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Figure 4: The LPPL model fitted to the S&P500
index from 1982 to 1987. The model parameters are
t. = 87.8046, w = 10.8986, S = 0.5886, and ¢ = 3.7631.

The above fit predicts that the crash would happen on Octo-
ber 21th, 1987 which is only two days away from the actual
crash which occurred on October 19th, 1987. We have tested
this model across numerous other bubbles in various global
financial markets, and it tends to perform fairly well, being,
on average, around twenty days off of the actual crash.

3.2 Residual Analysis

After we implemented the LPPL model, we began to con-
sider what ways we could improve it. The idea we ended up
pursuing was that the oscillations about the power law drift
belong to a stochastic process. This completely shifted our
implementation of LPPL since a stochastic process shouldn’t
be captured by a deterministic model. Our claim is that
when looking at the logarithm of a stock’s prices, a bubble’s
behavior can be explained by a deterministic power law drift
component decorated by a stochastic process which has in-
creasing volatility as it approaches the time of the bubble’s
crash.

3.2.1 Sample Variance across Bubbles

Our first approach was as follows. We found 39 bubbles in
the composite indices of stock exchanges across the world.
When isolating bubbles in the time series we examined, we
chose intervals which best matched our definition for bub-
bles: they exhibited super-exponential growth by having
convex growth in the log of their prices, and a sharp de-
cline followed this growth. We then normalized the prices
for each bubble to be between 0 and 1 (by dividing all the
data points by the maximum value in the set), so we can
group data points across different bubbles. We then fitted
each bubble to a power law and saved the residuals from
this fit to give us the stochastic process about the power
law drift. The time series of residuals were then aligned at
0 (as though we’re aligning the bubbles at their origin) and
we made sample populations consisting of points defined by
their distance from the origin (see Figure 5). For a given

distance, we calculated the sample variance for a popula-
tion consisting of points (that were the given distance away
from their origin) across all sets of residuals. This approach
supported our claim. Figure 5 indicates an increase in the
variance of the stochastic process underlying the residuals
as the distance from the bubble’s origin increases.
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Figure 5: Sample variances across the residuals of
39 bubbles.

These results, however, should be taken with a grain of salt
due to complications with identifying the origin of a bub-
ble. When isolating bubbles in stock indices, we could easily
identify their apparent crashes, but their origins were much
more difficult to select. The goal is to capture the first point
at which faster than linear growth occurs. But daily dynam-
ics of stock prices are very volatile so it makes picking an
exact origin almost impossible. One could ask why we did
not align the bubbles at their crash given that’s a much eas-
ier point to identify. Such an approach would, defeat the
purpose because we would not expect small bubbles to be
as volatile at their crash as large bubbles.

3.2.2  Dynamic Linear Models

In order to avoid complications from the noteworthy error in
choosing the origin of a bubble, we decided to take another
approach using Dynamic Linear Models (DLMs).

DLM Overview.

DLMs are a Bayesian approach to modeling processes given
by a time series. They create a linear environment with
Gaussian noise which makes it simple to estimate variables
using Bayesian conditioning. A DLM consists of an under-
lying process that evolves linearly, with each evolution (or
step through discrete time) introducing Gaussian noise into
the process. We can make observations of the underlying at
any time, but each observation will introduce another source
of Gaussian noise. The general structure of a DLM is given



below:
Uy ~ N(07 ‘/t)
wt ~ N(O7 Wt)

Yt = [t + vt,
e = dpe—1 + we,

where z; are the hidden states, y; are the observations, w;
and v; are Gaussian noise in state evolution and observation,
respectively [8].

DLMs are normally used to predict the values of the hidden
states over the observed time series. After first selecting
the structure (observation and hidden state equations) and
prior distributions for the DLM, posterior distributions for
the DLM variables can be estimated using Kalman filtering.
We took the following steps for the Kalman filtering part of
our DLM implementation.

1. Carefully choose the structure (observation and state
space equations) to provide an appropriate setting for
modeling the desired process. Note that any part of
the process not captured in u; will appear in v;.

2. Assume a reasonable prior for the variables in the DLM
structure: yi—1, phe—1

3. Update the observation and hidden state variables us-
ing their past values and the update equations from
the DLM structure, giving p:|Di—1, y¢|Di—1

4. After observing y:, replace y¢|D:—1 with the observed
y+ and now use the updated information to make a
posterior estimate for the hidden state, p¢|D;.

This process gives the following iterative updating equations
that allow us to Kalman filter forward from ¢t =0tot =T,
giving us the hidden state values at each step. The pre-
defined linear relationships are used to forecast future val-
ues, observations are made and compared with their pre-
dicted value, and then the error in this prediction weights
the update of the hidden process to give a more accurate
prediction. This is done in the update equations given be-
low:

ue|Di—1 ~ N(a¢, Re) ar = ¢my_1, Rt:¢20t+W
yt|Dt—1 NN(ft:Qt) ft = as, At:Rt/Qt
pt| Dy ~ N(my, Ct) Qi=R:+V, Ci :Rt*Ath
me = (1 — At)ar—1 + Aser, et =yr — fi

After filtering forward, the DLM variables will have a pos-
terior distribution at each time ¢ conditional on the DLM
values at t — 1 and the observations up to time ¢ (D). Even
better estimates can be found using retrospective smooth-
ing to update the DLM posterior distributions from forward
filtering. Retrospective smoothing conditions the posterior
distribution at time ¢ on additional information: all future
values of the hidden states {u:}ry; and all information re-
vealed through observations Dr. We took the following ad-
ditional steps to get better estimates of the posteriors for
the variables in our DLM structure:

1. Use Kalman filtering to find p(ur|Dr) ~ N(mz,Cr).

2. Characterize posterior distribution for prior state vari-
ables using the equations from the DLM structure:
P(pel s, ooy oy D) = ppe|pesr, De) ~ N(mi, CF)
my =my¢ + By(pey1 — ary1), By = ¢Ci/Riqa

3. Beginning with pur_1|pr, Dr ~ N(m7, Ct), iteratively
update p; for t =T — 1,...,1, and then sample from
the updated posterior distribution to get the estimates
for the hidden state process and variances v¢, wy.

Fixed Yty [t
The first DLM structure we tried allowed v; to vary between
a low and high volatility state throughout the time series.

ve~ (1 —=m)N(,V)+7N(0,sV)
w ~ N(0, W)

Yt = Ut + v,
e = Ophi—1 + Wy,

®3)

where y; is fixed to the price observations, u: is fixed to
the power law drift, and v, w; are independent, zero-mean
Gaussian random variables representing the observation and
state evolution errors, respectively. pi is the probability of
the process being in a high-volatility state where the obser-
vational variance is scaled by x > 1.

We began with the prior assumptions that y: is the log of the
stock prices, u. is the fitted power law to y¢, w; is drawn from
the sample variance of u:, and v; is the residuals of y; — .
We then did a 2000 iteration "burn-in” of the DLM to get rid
of any bias from our prior assumptions and allow the DLM
to reach a stationary state. This was done by updating the
model variables on each iteration using forward filtering and
backwards sampling (FFBS). We used FFBS to update the
DLM variables for another 10,000 iterations and averaged
over these values to generate the plot in Figure 6.

DLM for fixed observations and power law
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Figure 6: Sampled hidden states for DLM (3)



Sampled residuals from DLM with autoregressive variance
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Figure 7: Sampled hidden states for DLM (4)

The vertical blue lines at time ¢ indicate v; was in a high e=Y —aX
volatility state. We hoped to be able to observe some sort of
indication that the variance of the error in the observation
process v, is more likely to be in a high volatility state as you

move away from the bubble’s origin, but we failed to make

The results of this DLM are shown in Figures (7) and (8).

Figure (7) shows the smoothed hidden state process for

any such connection and restructured the DLM to attempt the residuals, and Figure(8) shows that the variance in the

to provide a better setting to capture increasing volatility in residual process increases with time from the bubble origin.

V. These results support our claim that the stochastic process
about the power law drift has increasing variance as the dis-
tance from the bubble origin increases.

Autoregressive vy.

The second DLM structure we attempted was

G Residual Variance from Autoregressive DLM

Yt = Ut + v,

Mt = Pue—1 + we,

ve ~ N(0V%)
Vi=ao+oarVioi +me
n ~ 1idN(0, 0y)

wy ~ N(0, W)

(4)

0.025 -

where the observations y; are now the residuals of log(prices)
and the power law fit to the log(prices). Our hope was to
smooth out p: by capturing the volatility of the residuals in
v¢, which has an autoregressive variance.

0.015

variance

We used the same update equations as listed in the overview,
only we added another step to update the autoregressive
variance V; after sampling{,ut}lT. The process to sample v
from an autoregressive V; is shown below:
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3.3 Stochastic Models

We can propose several models for the stochastic process
governing a bubble regime. It is widely accepted the returns
of a commodity, outside of a bubble, follow a Geometric

Vi=a1Vici + o
vt ~ N(07 ‘/t)

where Y = {6,}T 7', X = {6:}%, 0 = (&, e ), and
2




Brownian Motion. More precisely, if we let S; be the price
of some stock at time ¢ then S; evolves in time according to
the stochastic differential equation,

dSt = /,LStdt + O'Stth (5)

where p and o are constants representing the mean drift
and mean volatility respectively, while W, is the standard
Wiener Process. The above equation implies that the loga-
rithmic returns of a stock are linear in p and quadratic in
o, mainly for any ¢ > 0, we have

log(S:) — log(So) = ( — "2—2) t+ oW

assuming Wy = 0. This implies that we if we fix some start-
ing price, we should observe linear growth in the logarithm
of the prices following. If we think back to the Hang Seng
composite index shown in Figure (1) then that is exactly
what we see in the long run. However during each bubble
regime, we observe faster than linear growth. To account for
this, as well as the increasing frequency of oscillations prior
to the crash time, we propose the following two stochastic
models for S; while the market is in a bubble regime,

dSy = BB(t. — )" ' Sidt + oS, W; — 85N (6)

dSt = %Stdt —+ O'Sth (7)

where f(0,t) was defined at the beginning of Section 3.1, ¢
is a constant, and V; is a jump process. The model in Equa-
tion (6) says the mean drift in the market during a bubble
is characterized by a power law, and we account for the in-
creasing number of oscillations by including a jump process.
The model in Equation (7) claims that drift of the market
is a log periodic power law. If we subscribe to the idea that
the LPPL model captures something inherent to the bub-
ble regime, then Equation (7) gives us a full description of
the underlying stochastic process, while if we believe that
LPPL simply captures increasing noise then Equation (6)
is a much more likely candidate for the underlying stochas-
tic process. Based on our result about increasing variance
in the residuals, we believe that Equation (6) accurately
captures the stochastic process of bubble regimes. We are,
however, yet to find a statistical method for comparing the
two models apart from qualitative observation which is not
only non-rigorous but also incredibly difficult as stochastic
models are very sensitive to parameter changes. The follow-
ing figure shows a few simulations of Equation (6) with the
parameters tuned to a bubble in the SWE market.

Bubble Simulations
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Figure 9: Simulations of Equation (6).

4. CONCLUSIONS

We began our examination of bubble dynamics using the log-
periodic power law model; however, after we implemented
it, we observed that the log-periodic oscillations it captures
are most likely a stochastic process. Specifically, the log-
periodic oscillations are a stochastic process with increasing
variance which shouldn’t be modeled with a deterministic fit.

We first investigated this claim by creating populations con-
sisting of residuals (from the a power law fit) across 39 bub-
bles that are defined by their distance from the bubble’s
origin. We then looked at the sample variance of these pop-
ulations against the distance each population was from the
origin and observed that the variance increases with the dis-
tance from the bubbles’ origins. There was a noticeable
amount of error in selecting origins for the bubbles, so we
decided to use dynamic linear models (DLMs) as a more re-
liable source of evidence.

When using a DLM with the structure specified in 4, we were
also able to observe that the residual process’s variance in-
creases with the distance away from a bubble’s origin. This
approach allowed us to look at bubbles individually, so we
no longer had to worry about error resulting from an inac-
curate specification of a bubble’s origin.

This evidence leads us to believe that a bubble is best mod-
eled by a process similar to the one given by Equation (6).
A way to experimentally verify such a claim is however un-
known to us, so we have began looking at the microeconomic
modeling theory for an explanation as to why random jumps
occur.

S. FUTURE WORK

Improve Characterization of Underlying Process.
We were only able to show that the stochastic process deco-



rating the power law drift has an increasing variance. There
are other characteristics about the process (eg. like the fre-
quency of its oscillations about the mean drift) which we
may be able to characterize. This would provide a better
understanding of the process and improve its potential ap-
plication.

Look for Predictive Correlations.

Once we understand the time evolution of a bubble’s vari-
ance, we can try to look for certain indicators that would
tell us how close we are to the crash. We would hope that
all bubbles evolve in reasonably similar ways according to
their volatility. This could lead us to some modifications to
the LPPL that would improve its predictive strength.

Adapt Analysis to Use Incomplete Information.

So far all of our analysis is conditional on all of the data in
a bubble, from its origin up until just before its crash. This
is useful from a more academic perspective simply hoping
to understand the underlying processes in a bubble. How-
ever, this contingency on complete information prevents a
real-time application of our work since only incomplete in-
formation is available in practice.
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