Tweet Rises: Twitter Sentiment Analysis

Aleksander Bello
California Institute of
Technology

abello@caltech.edu

Archan Luhar
California Institute of
Technology

archan@caltech.edu

ABSTRACT

This paper focuses on the work of the California Institute
of Technology CS 145 group: Tweet Rises. It focuses on
a combination of Twitter sentiment analysis and effective
web-based visualization.

The group worked with several forms of natural language
processing and machine learning, and with two primary vi-
sualization methods.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Web-based ser-
vices; H.5.3 [Group and Organization Interfaces|: Web-
based interaction

General Terms
Visualization

Keywords

Twitter, sentiment analysis, 2D visualization

1. INTRODUCTION

How is the world feeling right now? That is a hard ques-
tion so to make it easier and narrow the scope down to the
quantifiable, we ask, how is Twitter feeling right now? We
propose here an application and underlying infrastructure to
categorize T'weets based on emotional content, create a rep-
resentative sample, and visualize the sentiments on a map
in a web browser in real-time.

2. FRONTEND

In order to make our work available to the widest audience,
we decided to work on visualizing our results within a web
browser. A major challenge was in, first, developing a work-
ing prototype and in, next, iterating upon it on a weekly

Alexandru Cioc
California Institute of
Technology

acioc@caltech.edu

Victor Duan
California Institute of
Technology

vduan@caltech.edu

Louis O’Bryan
California Institute of
Technology

lobryan@caltech.edu

Figure 1: Heatmap of Twitter sentiment.

basis. Among our most important priorities was to prevent
our clients from being flooded with too much information
and, from the other standpoint, still providing enough in-
formation to make viewing the website meaningful.

Our development primarily utilized the Google Maps API
in order to achieve a fast and effective visualization. Google
Maps allowed us to focus on the visualization itself, and
saved us the time of having to create a scalable map of the
United States.

Originally, we intended on visualizing our results using a
heat map, but quickly discovered that a more understand-
able mode of communication was to use a "state map.” Our
primary concern with using the heat map was that the Google
Maps API heatmap naturally scales based on the amount of
data it receives. This means that, within seconds, states
and cities with small populations have their data points
effectively reduced to obscurity, and our entire heat map
therefore only shows data for cities like Los Angeles, San
Francisco, and New York City. As previously mentioned,
we therefore focused on a different type of visualization, the
“state map.”

Our idea for using our "state map” came from analyzing vari-
ous forms of 2D visualizations, and seeing that a particularly
understandable visualization came from geographic electoral
maps during U.S. elections. This forms of visualization de-
picts an entire state with a solid color that indicates that

Figure 2: Example US electoral map.

state’s political preference. We believed that, since people
have already been predisposed to understand these maps
from news coverage, we could lower the barrier to entry for
understanding what our data actually depicts. Therefore,
in our own work, we decided to create an independent ge-
ometric shape for each state using the Google Maps API,
and then colored the state as the average color of the T'weet
sentiments it received. For visualization purposes, we let
negative emotions be depicted in red and positive emotions
be depicted in blue.

An issue that quickly arose was that, in averaging the color
over every Tweet received, every state would, given an ad-
equate amount of time, become the same shade of purple -
roughly an equal amount of "red” and "blue” sentiments. We
believe that this makes sense since, over a prolonged period
of time, we should notice an equal amount of both posi-
tive and negative sentiments since Twitter has a very wide
audience so whenever a wave of positive or negative senti-
ments are shown, people often respond with a contradicting
sentiment.

In order to alleviate this, we decided to allow for specifica-
tion of how many Tweets to average over. Thus, by lowering
the number to something more manageable, like 10 T'weets,
we see a more meaningful rise and fall of positive and nega-
tive sentiments.

Our final touches to our frontend’s visualization came in the
form of sidebar indicating trending topics and their overall
sentiments. Clicking on a topic allowed users to view the vi-
sualization for that single topic. This provided more mean-
ingful information for users who aimed at gauging overall
sentiments for a single topic as opposed to the overall Twit-
ter Tweet stream. Even further, the sidebar allows users
to estimate, at a glance, what a topic’s sentiment is. This
could potentially be seen as an exploratory tool, since it
gives users a chance to notice outliers - topics that might
be heavily weighed towards one sentiment, and then easily
gives them access to see the map for that topic.

Overall, we believe our techniques provided for an effective
visualization of our Twitter sentiment data.

The Tweet Rises States Heatmap

#YOUDIDITNIALL
#MakeASongDepressing
#HappyBirthdayCarter
#HannibalFinale

#FightL ikeAGrande

27 paints/secend.

Figure 3: State map of Twitter sentiment.

3. NATURAL LANGUAGE PROCESSING

The first step to analyzing the Tweets is natural language
processing (NLP). The techniques used to classify the Tweets
all focus on a bag of words approach. As such, the NLP por-
tion of the project focused on developing an efficient way to
get the best bag of words from any given Tweet.

Initially, we eliminate obvious stop words that don’t con-
tribute to the content of a Tweet. This list includes words
such as ’a’; ', ’she’, etc. Afterwards, we define "words” as
a string of alphabetic characters with whitespace on both
sides. Note that this ignores things such as numbers and
emoticons. Once the set of words in each Tweet has been
computed for each Tweet in the training data, mutual infor-
mation is used to determine the words that provide the most
insight to the content of the Tweets. For our purposes we
used about 1000 words. With these, each Tweet was thus
characterized by which of these 1000 words appeared. For
example, for the Tweet " am not happy. He is not happy”
and the mutual information words "not” and "happy”, the
Tweet would be characterized as ["not”, "happy”]. Note that
the number of times a word appears is not taken into ac-
count.

Once a Tweet has been characterized by the above steps,
it is passed along to the machine learning portion of the
classification.

4. MACHINE LEARNING

Our machine learning methods consisted of four algorithms:
Naive Bayes, Stochastic gradient descent, Support vector
machines, and Maximum entropy. Our first implementation
was Naive Bayes, due to its simplicity. Naive Bayes predicts
the classification of an observation by providing a partic-
ularly simple formula for the probability that an outcome
C is observed given that there are features Fi, Fs, ..., F, in
the observation. These probabilities can be compared for
each outcome to find the most likely one. Specifically, the
model assumes that the features variables Fy, Fi, ..., F,, are
independent, and the assumption implies that

p(C|F1, Fa, ..., Fy) = %p(C) [[»E10)

=1

where Z = p(F1, F»,, Fy,) is the ’evidence’ for these features.
In our case, the outcome C was whether the Tweet had

Classification Performance

5 Algorithm

* Naive Bayes

.
.

oss
Percent Correct

080

2500 =000 7500
Number of Training Tweets

Figure 4: Performance of Naive Bayes, Maximum
entropy, and Support vector machines algorithms
for up to 10,000 training Tweets.

positive or negative sentiment, the features were the words
determined by the mutual information algorithm, and the
probabilities p(F;|C') were determined from the training data
depending on their appearance rate. So, the formula gave a
way to compare the likelihood of the two sentiments given
the words in the Tweet.

One problem with this approach was that if a word did not
appear in both positive and negative sentiment T'weets, the
probability p(F;|C) was zero for one of the outcomes. Al-
though these terms were unlikely, they occurred in our calcu-
lation when we limited the number of training Tweets. We
decided to simply leave these terms out of our calculation.

The other three algorithms, stochastic gradient descent, sup-
port vector machines, and maximum entropy, were imple-
mented in the python scikit-learn package. So, our work
with these algorithms mainly involved tuning the parame-
ters to the scikit-learn functions. For example, we changed
the loss function, number of iterations, learning rate, and
whether or not to fit the intercept for stochastic gradient
descent.

Using 10,000 training Tweets, all algorithms but stochas-
tic gradient descent had an accuracy rate between 65% and
75% on the test data set. The performance of our stochas-
tic gradient descent implementation was poor, so we left it
out in the end. The support vector machines algorithm per-
formed better than the other algorithms when the number
of training Tweets was less than 10,000, achieving over 70%
accuracy.

Only our Naive Bayes algorithm was able to process signif-
icantly larger training sets in a reasonable amount of time.
We were able to train Naive Bayes on 1.6 million Tweets,
which gave the algorithm almost 80% accuracy, outperform-
ing the others. The other algorithms may have performed
better with the same amount of training data, but they took
significantly longer at only 20,000 T'weets, so this was im-
practical to test.

S. BACKEND

The first thing that needs to be done before we can produce
any results is to have the raw Tweets, i.e. the text and ge-
olocation information. This is obtained by the Twitter 1%
firehose API. There is a persistent connection between our
backend and Twitter that continuously streams new Tweets

* Maximum Entro
* Support Vector

Vachir"

Naive Bayes over Whole Training Set

L T T o e S S e
.

- . .

Percent Correct

[100100 150000

sos0n
Number of Training Tweets

Figure 5: Performance of Naive Bayes classifier for
up to 1.6 million Tweets.

Figure 6: An overview of the backend infrastruc-
ture. The ellipses represent the NLP workers, whild
the rhomboids represent instances of the frontend
servers.

in realtime. More specifically, we have two open streams
with Twitter: one to get a 1% sample from all Tweets, and
one to get a sample only for the specified trending topics.
The trending topics are collected and updated by a peri-
odically running script. This approach also allows for cus-
tom trending topics that we might like to add. All of these
Tweets are stored on Redis, a simple in-memory database.
There is one process worker for each stream, so that both
streams can be consumed at the same time. It is worth not-
ing that the official Twitter API documentation does not
allow multiple streams. Moreover, these consumer work-
ers have to be fast enough to keep up with the upstream
Tweets, otherwise the connection will be dropped. To miti-
gate these two issues (and any other connection issues that
might arise), several supervisor mechanisms are set up to
restart these services.

After the raw Tweets are obtained, they need to be pro-
cessed before they can be served to the frontend. The pro-
cessing part consists of the NLP /machine learning workers
categorizing the raw Tweets as positive and negative senti-
ments, extracting out the geolocation data, and then storing
this information on a second database. This being the most
compute intensive part, is fully parallelizable; more workers
can be spinned up to parallelly consume from the raw Tweets
queue. Unfortunately, Twitter does not support querying by
both geolocation data and topic, thus not all trending topics
will have geolocation data attached. We do, however, store
all of them, so that we have a more complete sentimental
assessment of the trends.

In parallel to the Twitter consumer and sentiment catego-
rizer, we have a node.js server that interacts with the user
client. This server has two objectives: handle the requests
for the website’s static files and send sentiment data points
in real time via an open socket connection. We used several
node.js libraries. Using node.js’s built in http server, we
mapped all http port 80 requests to a static content folder
containing html, css, images, and javascript. Using the third
party socket.io library, we structured the data point commu-
nication. On a new socket connection, the server sends all
sentiment points less than ten minutes old. Then, for ev-
ery current trending topic and hard coded permanent topic,
the server sends the last 24 hours worth of points limited to
a maximum of 1000 points. Independent of the individual
socket connection logic, the server sends all points gathered
in the last ten seconds to all connected clients every ten
seconds.

6. FINAL PRODUCT

The final result of our project is a real time Twitter senti-
ment analysis tool. There are two modes: states map and
heatmap. The states map collects the last five sentiments of
Tweets from each state, and displays the overall sentiment
of each state. The heatmap plots individual points for each
Tweet it receives, and the colors on the map represent the
overall sentiment of that small area.

Additionally, there are topics to choose from on the side.
Some of the topics are determined based on what is cur-
rently trending on Twitter. Others are custom topics that
we thought we be interesting for a new user to see upon first
visiting the site. Due to the limitations of the API, we were

unable to query for topic and location (Tweets with loca-
tion tag in USA) simultaneously. As a result, it was difficult
to get a lot of data for the topics that also had location
data. The currently trending topics often had fairly little
data, and the states are not all colored in. For the custom
topics, we tried to hold on to the data over a longer period
of time, giving us a chance to acquire more information on
those topics and display a better map.

See below for figures of the final state of the project.

7. FURTHER WORK

We believe further work could be done on our project’s fron-
tend. Since our "state map”, is an effective tool, we could
create sub-shapes for each state in order to see sentiments
for specific counties. Even further, we could continue work
on our heat map. We switched to the ”state map”, becomes
of inherent problems that the heat map caused, but we did
not have time to return to the heat map and actually fix
the problems we encountered. Thus, while our "state map”,
looks like a completed final project, the heat map remains
in a rudimentary state. Lastly, for our frontend, we could
try and speed up switching between topics. There is current
slowdown after a large number of points have been added so
optimization changes would prove effective.

8. ACKNOWLEDGEMENTS

We would like to thank Professor Adam Wierman and Ling-
wen Gan for helpful advice and guidance throughout the
project.

9. REFERENCES

[1] A. Go, R. Bhayani, and L. Huang. Twitter Sentiment
Classification Using Distant Supervision. CS22/N
Project Report, Stanford, 1-12.

[2] E. Kouloumpis, T. Wilson, and J. Moore. Twitter
Sentiment Analysis: The Good the Bad and the OMG!.
ICWSM, 11:538-541, 2011.

[3] A. Bifet and E. Frank. Sentiment Knowledge Discovery
in Twitter Streaming Data. Discovery Science, 2010.

[4] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
shakes Twitter users: real-time event detection by
social sensors. In Proceedings of the 19th international
conference on World wide web, 2010.

The Tweet Rises States-OKC Heatmap - OKG
— ! o—— = e —

:_,.--'A'--\.. . - . p | Satellit

[¢] et :‘ -

0

|

|_.+ IND
MIA
Caltech
Disrict of
Colembia .
Republicans
.\'_;—":
IH . Demaocrats
. Gulfol v
I;. Califorira
- NBA
Mexico Hayana
f_'l:":r’_r; [Gu] I-a. Sishw P
i adglajara o Map data 82014 Google INEGI | Termsaf Use 59 points/second.

About
This project originated from a class at the California Institute of Technology called C3 145: Projects in Networking. It was developed by Aleksander

Bello, Alex Cioc, Victor Duan, Archan Luhar, and Louis O'Bryan. We would like to thank Professor Adam Wiarman for his advice and guidance.

Figure 7: Final state map product, focusing on the OKC topic. At the time, the Oklahoma City Thunder
were playing the San Antonio Spurs in the Western Conference Finals of the NBA in 2014.

The Tweet Rises States - SATs Heatmap - SATs

="

L - calgary L Onterio | Fulisoreen _ Mop | Satellite | p)| points
) 1 = ‘I'd'inﬁr*]eg‘ \ P .. :

SATs

Chicharito

Augustus Waters

#tfiostio

#mexicovsportugal

ol o #Lebroning
Califarmia |

o
_Manterrey Maexica Mo dita ©201 4 Google. INEGI | Terms of Lise:

About

This project originated from a class at the California Institute of Technology called CS 145: Projects in Networking. It was developed by Aleksander
Bello, Alex Ciog, Victor Duan, Archan Luhar, and Louis O'Bryan. We would like to thank Professor Adam Wierman for his advice and guidance,

Figure 8: Final state map product, focusing on the SATSs topic.

