Social Math: A collaborative, visual host for mathematical proof trees

Jianchi Chen
Dept. of Electronical
Engineering
jchen2@caltech.edu

Ying-Yu Ho
Dept. of Physics,
Mathematics, and Astronomy

yingyu@caltech.edu

Tim Holland
Dept. of Computing and
Mathematical Sciences

th0114nd@gmail.com

Kexin Rong
Dept. of Computing and
Mathematical Sciences
krong@caltech.edu

Abstract

Mathematical proofs and theorems, and the inter-dependencies

among them (edges) have the structure of a directed acyclic
graph (DAG). However, in most educational processes or
online mathematical libraries, theorems and proofs are typ-
ically presented in a linear fashion, which fails to connotate
the theorem’s inter-relationship with others, or how it is po-
sitioned in the mathematical world. Therefore, we propose
a web service to better present mathematical proof trees as
graphs, and allows users from all over the world to contribute
to the graph, and use it for their own interest. Supposedly,
the visualization should help users both navigate through
the existing mathematical library and also easily contribute
new proofs to expand the reach of the proof trees. The ser-
vice can serve as a stand alone online crowd sourced math-
ematical library, or can be incorporated into other systems
as a tool to visualize logical inter-relationship.

Keywords

proof trees, visualization, social network, education, graph

1. INTRODUCTION

The course of mathematical study can be frustrating. Af-
ter proving one lemma after another, students can easily get
caught in the details and forget about the big picture. In
another case, students can learn 10 different theorems with-
out understanding how they are related to each other. The
difficulty is caused by the lack of an intuitive ways to vi-
sualize these concepts and their relationships. If we model
mathematical theorems and proofs as nodes, and their rela-
tionships as directed edges, a mathematical library is indeed
a set of "proof trees” with the structure of a DAG. Acyclic
is guaranteed by the fallacy of circular reasoning.

We therefore created a service and web based front end that
allows the entry, modification, inspection, and visualization
of theorems, definitions, proofs and the dependencies be-

tween them. Dependencies include the relationship between
a theorem and its proof, between a proof and its lemma, or
a theorem/definition and its special case/generalization.

We have two possible choices to proceed on how to keep
the DAG logically sound. The first is more of an advanced
technical problem: automatic proof-logic verification, re-
quiring highly precise statements of additions to the tree to
be parsed, so that the logical statements can then be verified
(or rejected) by machine. Alternatively, with a more social
emphasis proofs could be stated in natural mathematical
language. Under this scheme, the correctness would have to
be verified by users, through a combination of moderation,
reputation, and democracy.

We hope that this is a service with fruitful pedagogical ap-
plications. For example, in a class taught via the Moore
Method, the service could be used as a study tool: A set of
isolated definitions and theorems are given at the start of
the term. Students’ progress can be easily assessed from the
completeness of the graph visualization.

Alternatively, the service can be incorporated as an useful
feature for other web services. The idea of a mathematical
proof tree can be generalize to a knowledge graph in any
field. For sites like Wikipedia, having a graphic interface
navigation to provide a map of topics to learn and modify
can greatly enhance user experiences.

2. RELATED WORK

Expii [?] is an extensive crowdsourced MOOC service that
has launched recently. It currently focuses on topics in Math
and Physics, and provides a zoom in style visualization of
the knowledge graph. When users zoom in from section
"Three Big Perspectives for Calculus” for example, they can
see three subsections ”"Algebra”, ”Analytic Geometry” and
”Sets and Maps”. Further zooming in from subsection "Sets
and Maps” will lead users to sub-subsections ”Set Defini-
tions”, "Special Sets” and "Functions as Maps Between Sets”.

Despite being similar crowd sourced products with knowl-
edge graph visualization, Expii and socialmath have distinct
emphasis. Expii aims to the biggest interactive tutor, while
socialmath focuses on becoming a intuitive and comprehen-
sive knowledgel library and a expandable visualization tool.
For one thing, Expii organizes topics in a pedagogical man-
ner while socialmath knowledge graph organizes according

to logical dependencies. For instance, theorems in algebra
and analytic geometry might not directly depend on each
other, but these two topics are closed related as background
knowledge to calculus. Thus, in socialmath, the theorems
may not be linked together whereas on Expii they may.
However, socialmath provides more flexibility through its
private graph features, where the user may define their own
rules for linking nodes in a graph.

3. TIMELINE

3.1 Initial Timeline
Below is the initial project timeline we proposed at the
project proposal presentation. The plan was to build a work-
ing prototype before midterm, and to add as many features
as time allows afterwards.

o Week 2 - 5: Basics

Client-server API
Database API

— Implement views and templates for browsing, edit-
ing, and adding theorems

— Front end visualization

e Week 6: Milestone:
Should have a simple working prototype, which al-
lows adding, deleting and viewing nodes from the proof
DAG

o Week 7 - 9: Useful advanced features

— Search by keywords

User profile
— Private graph

Auto-keyword-extraction

— Suggested theorems

3.2 Actual Timeline

Below is a summary of our actual weekly progress based
on the blogs. The front end progress was highly non-linear
because we either underestimated the amount of work or
overestimated the ability to stick to schedule of the person
in charge. Thus most features were first implemented on
the server-side, and then enhanced with Ajax. Nevertheless,
we were able to implement the three most useful advanced
features: keyword search, user profile and private graph. A
detail description of the end product is given in the next
section.

1. Week 1: Changing Gears

Due to the discovery of a fairly comprehensive open
source traffic simulator project, we decided to aban-
don the original 144 project proposal and to work, in-
stead, on a web application that accommodates the vi-
sualization of mathematical proof tree structures. We
discussed the basic application architecture, and de-
cided to use the typical LAMP stack with a REST API
and CRUD functionality. In our case the P stands for
Python with Django REST framework, the M stands

for SQLite, and the A could either be Apache or Ama-
zon Web Service.

The first steps we took were similar to any team mak-

ing a CRUD app: setting up the database and a method
of communication between the client and server. Specif-
ically, we determined a schema for the database and

fleshed out data structures for the DAG. We also started
to familiarized ourselves with the frameworks that we

will be working with for the rest of the term.

On the front end side, several JavaScript frameworks
quickly came to our mind: AngularJS[?] and/or jQuery
for DOM manipulation, Bootstrap[?] for style and
UI components, and D3.js [?] for data visualization.
These frameworks have some overlapping functions so
it was important to use them in a way that avoided
conflicts and, preferably, reflected separation of con-
cerns. Since we had very little experience in web devel-
opment, it took a significant amount of time to study
JavaScript and its frameworks before we could make
design decisions.

2. Week 2: Getting Started

This week, the first draft of the API was written. It’s
a fairly standard one that supports the collection of all
entries in a paginated manner, getting a single entry
for a close up view, and the CRUD operations.

On the server side, we've decided to go for AWS in-
stead of Apache. As a result, we switched to using vir-
tualenv, which gave us consistent versioning across our
local machines, as well as allowing us to use versions
required by AWS without having conflicts of the de-
velopment computers. We also migrated from SQLite
to MySQL, since AWS had the best support for the
latter. Although setting up MySQL was slightly frus-
trating.

On the backend side, we implemented serializers to
help form JSON responses, and view methods for cre-
ating and reading theorems/proofs.

On the front end side, we started by finding data vi-
sualization examples to understand the power of avail-
able tools. One of our particular interest was d3 pro-
cess map [?], which demonstrated a hierarchical layout
of graph that we could potentially mimic. Meanwhile,
we realized that AngularJS, jQuery, and D3.js all pro-
vided DOM manipulation methods. To avoid poten-
tial conflicts among the three frameworks, we decided
to structure front end applications on MVC (model-
viewer-controller) framework of AngularJS, avoid jQuery
as much as possible, and use D3.js mainly as a graph
layout engine. No JavaScript codes were written yet,
but we were able to write some Django view templates
to provide text-based interaction with DAG.

3. Week 3: Backend Milestone

After adding templates and view methods for editing
and deleting, we had a fully working set of CRUD func-
tionality implemented this week. We also did substan-
tial unit tests on database models and api calls to make
sure that our backend infrastructure had been robust
so far.

At this point, the backend side has already reached
the original midterm milestone. On the front end side,
we succeeded in driving AngularJS templates with D3
graph layout engine. However, the hierarchical force
layout algorithm in d3 process map wasn’t as useful
as we had expected. While D3.js provided nice force
layout algorithm, it required users to manually specify
the hierarchy relationships in the dataset. Therefore,
we started to design our own algorithm. Another ob-
stacle was that we formatted graphs as adjacency lists
while D3 Force Layout used nodes and edges as native
objects. Therefore, proper conversion was needed in
order to make use of the D3 framework.

. Week 4: Frontend Milestone

After reaching the milestone, the backend side has
moved on to advanced features, starting with the key-
word related ones. We first implemented functionali-
ties for keyword creation, edit and search . Users can
now tag theorems and proofs with appropriate key-
words. A search bar was added on the index page to
allow search by keywords.

As we moved one person from the backend to the front
end, the front end side was able to make substantial
progress this week. We wrote a stylesheet for the web-
site to make it more user friendly. We also set up
MathJax [?], a free online LaTeX compiling tool, to
support adding and displaying LaTeX code on the web-
site. Finally, we built a client-side knowledge graph
editor that made it possible to implement and test a
working graph layout algorithm. This graph editor
also served as an exercise on Bootstrap Ul components
and a reference of our final user interface. The next
step was to turn the graph editor into an Ajax appli-
cation that was able to communicate with the server.

. Week 5: Prototype online

This week, we have been focusing on putting a sim-
ple working version of our product online. On one
hand, we tried to connect the knowledge graph visual-
ization with backend database. On the other hand, we
worked on setting up Amazon EC2 (Amazon Elastic
Compute Cloud) to host the website. We were able to
seed the database with number theory theorems and
deploy the latest backend code. Knowledge graph vi-
sualization was not fully integrated yet, due to bugs in
API for Ajax calls.

Meanwhile, we have also been extending the website’s
functionalities. We started to implement user authen-
tication system, in the hope of enabling users to set up
private knowledge graphs for classroom settings in the

future.

Week 6: Makeover

We did a makeover to the website by refactoring the
HTML files using UI Bootstrap. We also redesigned
the index page so that it could nicely combine the
graph visualization with the search functionality. In
addition, we finished implementing user authentica-
tion systems and user profile. This was our first step
of incorporating the ”social” component in the website.

. Week 7: Merging

This week we successfully merged the backend Django
framework with the front end graph editor for knowl-
edge graph visualization. We made a single-page ap-
plication that can load latest submissions and perform
searches via Ajax calls. We were also able to display
all nodes and their dependencies in database with the
graph layout algorithm. Future work was needed to
make the visualization more interactive.

We extended user profiles to include recent activities,
so users can keep track of their latest contributions.
We started to keep track of users who published and
last modified each theorem/proof. We also added a
“following” feature for theorems to make it easier for
users to keep up with their interests. We moved the
website to a new domain: socmat.com/prooftree.

Week 8: MVP

This week we further polished the product. For the
front end, we merged and deployed user profile related
features. We were able to add a few interactive fea-
tures to the knowledge graph:

(a) Zoom and Panning: Since it is hard to fit the
entire knowledge graph on the index page, we de-
cided, instead, to giver users full control of which
part of the graph they would like to see.

(b) Recenter: In addition to the global knowledge
graph, we also allow users to view a local graph
centered around any chosen node. This feature
comes in handy when a user wants to explore
a specific theorem/proof. By default, only the
chosen node and its immediate neighbors are dis-
played in the local graph. However, users can ad-
just the number of higher-order neighbors shown
from the interface.

(¢) Add child: This feature allows one to add a new
theorem/proof directly from the knowledge graph.
This serves as a more intuitive way for users to
make contributions.

(d) Preview: This feature allows users to view the
content of a node without redirecting to the detail

page.

Finally, we finished implementing private graphs, which
was mainly designed for a classroom setting use case.

Users can choose to create their own knowledge graphs,
which will not be displayed on the public global graph.
CRUD functionality and keyword search were also im-
plemented in the private graph.

4. END PRODUCT

The end product would hopefully be a useful web application
that would allow publishing of proofs in a graphical format
subject to immediate review of other users, and a repository
for a large collection of proofs to be seen in a graphical
format upon request.

4.1 Graph Visualization
4.1.1 Layout

Def: Additive inv...
-«

Nullification
«
Infection of inve.

v
Proof of Infectio.

Figure 1: Parent nodes positioned above child nodes
(Green: theorem. Red: Proof.)

We build the graph layout engine based on D3 Force Lay-
out, which models nodes as repulsing charged particles and
edges as elastic cables holding nodes together. The layout
algorithm then runs a physics simulation to determine the
position of each node. For each node, we draw a text box
with its title inside, and an arrow from Node ¢ to Node p to
indicate that ¢ depends on p. Different types of dependen-
cies will be discussed in the next subsection.

So far the layout engine only takes care of undirected graph
structure. Ideally, for two nodes ¢, p with ¢ depending on p,
we want Node p to stay a little above Node ¢, so that the
root of a tree can always be pushed to the top. In order to
do so, we invented our own algorithm. If our graph is a tree,
we can unambiguously compute the height of each node and
assign a y-coordinate accordingly. To deal with cycles, we
can minimize the potential

Uy)= > (p—y.—H)?, (1)

<c,p>

where the constant H is vertical spacing per level. Note that
U(y) > 0 and that U(y) = 0 has solutions if the graph is a
tree. The solution is not unique because U(y) is invariant
under translation of all nodes by the same displacement, but
this issue turns out to be unimportant.

For example, if we have nodes 1,2,3,4 with edges (2 —
1), (3 = 1), (3 — 2), (3 — 4), the solution (subject to trans-
lation) to equation (1) is

2
y Y2 = 3, y3:07 y4:1'

= 3

[OVRI

We want to use this information to adjust equilibrium posi-
tions of nodes in D3 Force Layout, so we promote minimiza-

tion of U(y) to a dynamical process, and a natural choice is
gradient descent. Thus we differentiate U(y) with respect
to y; (and multiply by a constant —n) to obtain equations
of motion

C:iy;:n S —vi—H) =Y wi—y—H)|, (2

<i,p> <c,i>

which pulls nodes away from their D3 equilibrium positions
and minimize the sum of D3 potential and U(y).

4.1.2 Manipulation

_me Graph “
Show allnodes
Depth:
-2+
Axiom: $\mathbb{Z...
- Zoom:
a0k @ %
~ - Action on click:
N B
e TS oo
s Recentar
= il ‘ Add chid
Def: Multplcat... Gonsoe og
-
o e
I~
0
Uniqueness of the... s ST
X -
Proof of MY proof of muit by ...
Proof of distribu..

Figure 2: Knowledge graph UI Overview

e Scroll horizontally / vertically
e Zoom in / zoom out / reset

e Recenter: change the center node around which the
graph is explored

e Depth: the maximal distance from the center node to
display. For example, 0 only displays the center node,
1 also displays its parents and children, and 2 also
displays its grandparents and grandchildren.

e Show all nodes: display the whole graph or only nodes
around a center node.

e Preview: open a small window to show the node’s con-
tent.

4.2 Web Framework

The server middleware is based on the Django web-framework.
It provides a full set of functionalities for socialmath users
to conveniently contribute to the open mathematics library
and to build their own knowledge graphs:

e Nodes and Dependencies

The fundamental functionality in the socialmath web
framework is the node-dependency system. In the frame-
work, nodes contain information about its theme, con-
tent, type, publication and modification time. We

Show all nodes

Depth:
- 1+

Zoom:

@ 1.00x & x

Action on click:
Preview

Detail

Recenter

Add child

Console log

Figure 3: Knowledge graph UI Toolbar

Euclid's theorem

There are infinitely many primes.

Published at May 23, 2014

Keywords: [T

Figure 4: A node in socialmath’s knowledge graph

store node-node relationship as well as node-to-other-
object relationships.

Dependencies are classified into three types:

1. Proof-to-Theorem: Lemma dependency. This re-
lationship exists when a proof of one theorem cites
another theorem in the process.

2. Theorem-to-Proof: Prove dependency. This re-
lationship exists when a proof proves a theorem.

[Fundaments] ~ Euclid's theorem
3 <

Erdos’ proof of E.

Figure 5: Erdos’ proof of Euclid’s theorem exhibits
prove relationship to Euclid’s theorem, and lemma
relationship to Fundamental Theorem of Arithmetic

3. Theorem-to-Theorem: High-Relevancy dependency.
This relationship exists when a theorem is the
special case or a generalization of another, or they
have strong logical relationship with each other.
This also includes the relationship between theo-
rems and definitions. We also model definitions
as theorems in our system, except that definitions
can’t have proofs.

Axiom: Nontrivial...
Def: Less (<) #
»

Negativity is the...

Figure 6: Theorem-theorem and theorem-definition
relationship

e Keywords and Search

Keywords are words that imply a node’s content and
branch of study. They can be added when adding
the node, or when editing an existing node. Node-
keyword relationships are stored in a relationship set
called "Tags”. The search functionality is supported
by keyword mapping. Search can be used in two ways:
you can either enter text in the search bar displayed
at the index page, or click on the link of an existing
keyword.

Welcome, jchen2! | logout

Welcome to Social Math

prime factorization

Search Results (1 found)

® F 3 Fundamental theorem of arithmetic

Knowledge Graph v

Figure 7: Search results for the keyword ”prime fac-
torization”

e Submission and Editing

Adding a new theorem or proof can be done in two
ways: Click on the button at the bottom of the index
page, or use the ”add child” tool on the graph.

Users can edit an existing theorem/proof by clicking
the ”edit” button on the node’s detail page. The but-
ton links to an interface similar to the add-node page,
except that the existing information will be pre popu-
lated.

e Users and Profile

Socialmath doesn’t require a user to login to view its
content, but we provide additional functionalities for
logged in users. Once a user is logged in, his recent
activities (adding/editing nodes) will be recorded as
events in the database. The events will show up both
on the detail page of the modified node, and on the
user’s profile page.

Distributivity of negation
—(a+b)=—-a+-b

published at May 30, 2014, 5:06 a.m., by tho114nd
last modified at June 7, 2014, 11:30 p.m., by Anonymous

Figure 8: Change history of a node shows the initial
author and the last modifier.

Follow is another feature provided for registered users
to help keep track of topics they are interested in. The
user may click on the "follow” button of any given node,
and the server will capture it as a following event.

Clicking on a username redirects to that user’s profile
page. Since there is no search-for-user functionality

In addition to one public knowledge graph visible to
everyone, socialmath also provides private graph fea-
ture so that each registered user can create and edit his
own graph. Each private graph has an individual in-
dex page. Permission relationship-set makes sure that
no nodes in the private graph can be accessed from the
public one.

Welcome, jchenz! | logout

Create New Graph

Graph Name

Description

Permission Type ——pleass Select Protection Type— ™
[~-Please select Protection Type—
cand E.uh\lc

Figure 10: Creating a private graph

Upon creation, the user may choose to make the graph
public or only visible to authorized users. An attempt
to view private graph contents when you’re not invited
will result in a 401 unauthorized error.

yet, the only entrance for viewing other users’ profiles

is through the node’s change history. analytical number theory

Here are the latest works that have recently been added to the analytical number theory knowledge graph

jchen2

Email: jchen2@caltech.edu

test graph

« fest theorem

Activities
June 1, 2014, 9:03 p.m.

Add a new article or proof
Delete the graph
Jchen2 followed Subtraction is distributive .
May 30, 2014, 10:35 p.m.
jchen2 modified Proof of $0%'s inverse is $0%. .

May 29, 2014, 5:42 am.

Figure 11: The index page of a private graph, with
a node called "test theorem” added.

jchen2 modified Def: Additive Inverse .
May 23,2014, 6:33 p.m.

Jjchen2 followed Erdos' proof of Euclid's theorem .

4.3 Database

4.3.1 Entity-set Schema
e Node(node-id, kind, title, statement, pub_time, last_modified)

May 23, 2014, 6:33 p.m.

Jchen2 modified Euler's proof of Euclid's theorem .

Following
e Keyword(kw_id, word)

Erdos’ proof of Euclid's theorem Subtraction is distributive

e PrivateGraph(pgraph_id, name, description, pub_time,
Owned Graphs perm_type)

analytical number theory Thermodynamics . .
! ! !) e We used the default Django model for user authenti-

Add a private graph cation: User(user_id, username, email, password, ...)

Figure 9: The profile page of Jianchi Chen, consist
of basic info, activities, following-nodes, and private e Tags(node_id, kw_id)
graphs he owns

4.3.2 Relationship-set Schema
e Depends(node_id, node_id, dep_type)

e Modifies(node_id, user_id, pub_time, event_type)

Owns(user_id, pgraph_id)
e Private Graphs

Includes(pgraph_id, node_id)

Node
+1d INT
*kind CHAR(20)
stitle CHAR(100)
statement BLCBE
*pub_time DATETIME Keyword
+last_modified DATETIME @ sid _ INT
*word CHAR(100)
Modifies

PrivateGraph User
*1d INT +id INT
*name CHAR(100) *username
°description BLOB cemail
*pub_time DATETIME *password
*perm_type CHAR(S) °...

Figure 12: ER Diagram

5. FUTURE WORK

Here are a few additional Although the current socialmath
is ready for public usage, there are several additional goals
that we plan to achieve with socialmath in the future in
order to make it a better product:

. Protection against abuses

Right now, socialmath has no protection against ma-
licious activities such as deleting everything from the
knowledge graph, creating dummy nodes, or adding
unrelated contents. We can model our protection mech-
anism after Wikipedia, and build a more comprehen-
sive change history, which allows the system to revert
malicious changes and penalize misbehaved users.

. Correctness system
Another concern is that the website currently has no
way of assessing the correctness of a proof or a theo-
rem. We can either implement an user upvote system
similar to Stack Overflow’s, or a user "questioning” sys-
tem where users can request verification on statements.

. A more collaborative private graph system
An ideal model for a private graph is the github repos-
itory. Users are able to collaborate on a graph, fork
someone else’s work, assign and discuss issues, and use
version control. We would also like to include visual-
ization in the private graph.

. File support
In addition to in-box writing, we should support pdf
upload and display, so that users can also make con-
tributions by finding existing write ups.

. Lemma and keyword detection
A more advanced version of the socialmath node sub-

mission system includes lemma and keyword auto-detection.

A simple algorithm is to collect statistics on the text’s
N-grams (sequences of n consecutive words). Sequences

6.

with a significant number of occurrences are then can-
didates for the keyword/lemma [?].

. Better user interaction

There’s a lot of room for enhancing the "social” side
of the current product. The first step is to implement
handy features such as user searching, following, and
in-site messaging. We can implement a level-based ex-
perience system to reward active and reliable users.
We should also reward users who manage to invite new
users.

ACKNOWLEDGMENTS

We would like to thank our faculty advisor, Professor Steven
Low, and our teaching assistant, Qiuyu Peng, for their feed-
back and guidance.We would also like to thank Professor
Adam Wierman for co-hosting the class.

