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ABSTRACT

As unmanned aerial vehicle (UAV) technology improves, it
will become increasingly efficient to use UAVs as part of
package delivery networks. However, while the vehicle rout-
ing problem (VRP) is well studied, studying routing on a
system of drones that can near-instantaneously transmit in-
formation about position, held packages, and destination
while also able to near-instantaneously recieve new com-
mands is difficult. Unlike simpler versions of the VRP, the
routing problem on UAVs that we present is not only dy-
namic, stochastic, multi-vehicle, and capacitated, but also
does not operate with a hub.

This paper gives an introductory analysis of routing algo-
rithms on package delivery systems with UAVs. We present
a flexible theoretical model. We then show some saturation
limits on a simplified version of the full model using a greedy
algorithm.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols; F.2.2 [Non-
numerical Algorithms and Problems]: Routing and
Layout; 1.2.9 [Robotics]: Commercial Robots and Appli-
cations

General Terms
vehicle routing problem, routing algorithms, traveling sales-
man problem

1. INTRODUCTION

Unmanned aerial vehicle (UAV)E] technology has developed
significantly in recent years. Modern-day drones are now
capable of doing an assortment of complex tasks, tasks as
varied as throwing and catching a vertical pole IGE] to au-

n this paper, we use "UAV”, ”drone”, and “quadcopter”
interchangably.

2While a little unrelated, we recommend the following video:
https://www.youtube.com/watch?v=pp89tTDxXul.

tonomously navigating through a space [7].

With these improvements on the flight ability of UAVs, it is
now possible to consider a broader scope of application for
these drones. One proposal has been to use these UAVs as
part of a transportation network.

There are many reasons why a drone-based transportation
network is attractive. Consider the differences between small
arial vehicle-based transportation system and existing ones.
Unlike large trucks, airplanes, or other vehicles in traditional
delivery systems, UAVs are smaller and have more mobility.
Because they are capable of autonomous flight, quadcopters
can be programmed to fly to some location almost instanta-
neously, as long as a network connection is available. Since
they do not need to travel on roads, quadcopter flight is not
inhibited by ground traffic. In these ways, a drone-based
network has more flexibility.

An example of a proposal attempting to exploit the benefits
of UAV flight include the recently announced “Prime Air”
delivery system by Amazon|5|. In Prime Air, claims that it
will be able to fullfill orders of its customers in 30 minutes
or less, using UAV technology to bring parcels directly to
customers’ doorsteps.

There have also been other proposed uses for a drone-based
delivery system. Unlike trucks, cars, or planes, aerial vehi-
cles do not require expensive infrastructure such as highways
or airports. In third world countries where construction of
such objects may be cost prohibitive, a UAV network can
be used as a way of delivering food, water, medical supplies,
and other vital necessities for a much cheaper price. On
this front, Matternet (http://matternet.us/| and similar
startups have already begun investigating the requirements
for the implementation of such a system, with trials having
occurred in both Haiti in the Dominication Republic.

Additionally, as a topic of study, UAV delivery networks
have a set of unique conditions not present in many existing
networks.

1. Unlike packets in a network, an existence of a node
does not guarantee that a package will be able to im-
mediately move through that node. There must also
exist a drone to move the package. In this sense, there
is some risk of starvation.

2. Trucks, trains, and airplanes generally do not have
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their routes changed once they have been set on some
path. Because of the ability for drones to communi-
cate via the Internet our model included the ability to
change route any time a node is reached.

3. We feel that loading and unloading with drones will be
cheap. Thus, our model included being able to drop off
a package at some node, even if it is not the destination
node.

2. MODEL

In this paper, we present two models. The first is the full
model, describing an ideal drone package system incorporat-
ing all of the abstractions needed to capture all of the detail
of the drone package delivery which we present here. The
second is a restricted model that we used for simulation. We
will present that model with the simulation.

2.1 Full Model Description
1. A global clock with discrete time t.

2. A graph G with nodes n; and edges e; = ns,n:. Edges
have an edge weight d,

3. Packages pn,,n,,t- These packages have start node ns,
destination node ng4, and enter the system at time
t. Associated with these packages is a probability
function Pr(ns,nq,t) to stochastically determine ar-
rival times.

4. A set of robots, R, where each r; can move along
the graph. Each robot is initialized at some node n;.
These robots have some weight capacity w;;, making
our model capacitated.

At each t, it is the systems job to decide 1) whether or
not to move a robot, given the probability of a new pack-
age approaching and the arrival of other packages/robots
2) if so, to which node and 3) while picking up/dropping
off which packages such that it minimizes the cost function
C(P), which is a cost function applied to all packages in the
system. Because the command from the system are sent to
each drone at every time step, the system that we present is
dynamic.

2.2 Full Model Justification

We design our model as we do for many reasons. Because
we assume that we will have real-time communication about
drone location while also being able to send quick com-
mands, we want our system to be dynamic. Since real cus-
tomers have requests that occur somewhat randomly, we
have our full model be stochastic. We also assume that our
system is hubless — essentially, we invision each node to be
a drop off /pick off point for packages that includes some-
thing like a small set of charging stations such that we do
not require a centralized hub. As energy technology grows,
we believe this is something feasable to include.

2.3 Basic Model Description
1. A global clock with discrete time ¢, all timesteps are
unit intervals.

2. A graph G with nodes n; and edges e; = ns,n:. Edges
have an edge weight of 1.

3. Packages pn, n,t- These packages have start node ns,
destination node ng, and enter the system at time t.
The packages are generated at a start node with a
given frequency.

4. A set of robots, R, where each r; can move along
the graph. Each robot is initialized at some node n;.
These robots can carry 1 package (eliminating the ca-
pacated nature of the problem) and cross one edge per
unit time (move at speed 1).

2.4 Basic Model Justification

Our simulation archetectre can represent the full model;
however, we decided that we wanted to study the effects
of graph structure and package arrival locations on the wait
time for packages and the number of robots required to keep
the system clear of packages. In order to do so we elimi-
nated the complexity of varying robot speed and capacity
along with the stochastic package arrival. This allowed us
to simplify the analysis of the performance of the system.
We note that the greedy algorithm we studied did not take
the periodic arrival of packages into account.

3. EXISTING WORK

In this section, we discuss some of the research into existing
work we did during the exploratory phase of the project. We
divide this part into two sections: one for work done prior to
the start of the project period and one for after, to illustrate
some of the progress that we made in understanding some
existing research.

3.1 [Initial Research
3.1.1 Vehicle Routing Problems

In transportation, classes of problems suchs as the vehicle
routing problem deal with finding the optimal delivery or
collection route, given a set of constraints [1]. In many
ways, the problems of swarm robot routing are similar to
that in vehicle routing problems (VRPs), specifically the ca-
pacitated VRP with multiple vehicles.

The capacitated VRP with multiple vehicles has many of
the same requirements as our proposed problem. In the
capacitated VRP with multiple vehicles, one needs to deliver
goods to the recipients using multiple vehicles with specified
capacities. The goal is also to minimize route cost. However,
since there is no central hub and the routing decisions are
made each time step our problem has significant differences
from the standard VRPs.

We researched several methods that have been applied to
VRPs. One of the most interesting was the Simulated an-
nealing heuristic [2]. Simulated annealing gives each state
of the system an energy value depending on the cost of
that state. In this case a state would be a potential route
and its energy would be the cost. Neighboring states are
states with the order of one pair of nodes swapped. Dur-
ing each iteration the algorithm examines neighboring states
and transitions as determined by a probability function func-
tion P(e,enew,T) of the current state’s energy, the new
states energy and the Temperature. The function has the
property that as T tends to 0 the probability of transition
to a state where epew > € tends to 0. In effect the algo-
rithm becomes more greedy as the temperature is reduced,



while begining in a less greedy manner to avoid becoming
trapped by a local optimum solution. This method works
well when a fairly large amount of computational resources
can be devoted to to determining a routing plan that does
not need to updated frequently, as in the case of determining
the optimal route for the next days package deliveries.

However, in our model robots do not have to return to a
central hub to pick up packages and routing decisions can be
made whenever a robot arrives at a node. Since examinging
the full system to compute an optimal route is expensive,
and decisions can be made at each stop it may be optimal
to compute only a next step instead of a full route. Thus,
this particular ARP model and approprach may not be as
appropriate as others.

3.1.2 Graph Properties

In thinking about ways of doing optimal routing on our sys-
tem, we examined the feasibility of dividing a graph into
clusters by minimizing average distance between verticies in
the same cluster. This would allow us to reduce the size
of the graph to be considered for intra-cluster operations as
well as potentially reducing the number of nodes to exam-
ine for inter-cluster opperations. Unfortunately we found
that a similar problem, partition a graph so as to minimize
subgraph diameter, is NP-hard [3].

3.2 In-Project Research

As part of the early weeks of the term, we continued doing
research on the dynamic, stochastic form of the VRP. By
doing so, we were able to come to models that were much,
much closer to the model that we proposed above. While
there were still differences, many of the techniques found
in these papers seem promising. Most of these approaches
choose some method of calculating a traveling salesman like
tour of the requests or a portion of a tour and then reculcu-
late periodically or when the sub-tour is complete.

3.2.1 Policies based on TSP

These approaches use a standard TSP tours over a portion
of the graph, or a portion of the tour, in order to remain
flexible to incomming service requests. Generally the TSP
tour is approximated using the Lin-Kerninghan heuristic.
The single vehicle divide-and-conquer policy (DC) starts by
partitioning the graph; then a TSP tour is computed on the
partition with the highest volume of requests. This tour is
executed and another tour is cumputed when it is completed
and the proess repeats. With multiple vehicles each vehicle
is given its own partition the single vehicle policy is imple-
mented within each sub-graph. Another approach computes
a full TSP tour and then selectes a portion of it to be cm-
pleted by each robot. Then after a certain time, or when all
tour segments are completed the tours are recomputed|4].

3.2.2 Metaheuristic Approach

Many of these approaches are based on the tabu search
heuristic created by Fred Glover in 1986. Tabu search is
similar to simulated anealing, however, it allows the pro-
cess to exclue potential solutions that violate some criteria,
called a tabu (as well as solutions that have been tried re-
cently). The metaheuristic maintains a pool of potential
routes. When a new request is received it is checked for

compatability against all the routes in the pool and the new
best candidate is chosen|9].

Some research has also been done applying genetic algo-
rithms to the dynamic vehicle routing problem. Genetic
algorithms generate a pool of potential solutions and com-
bine elements of the solutions to contain offspring, which are
checked for fitness before themselves breeding new potential
solutions. In order to apply this heuristic to a dynamic prob-
lem the approach takes a snapshot of the state and breeds
paths for the next time slice. One of these solutions is chosen
and run until the end of that time slice at which point the
process repeats. This approach is similar to the partial TSP
method described above, however, it uses genetic algorithms
to find a path instead of a TSP solver|11].

4. SIMULATOR

Our simulator archetecture is capable of representing our
full model. However, the simulations we ran focussed on
the basic model presented above. The cost function we used
was simply the amount of time that a package spends in the
system.

We wrote our simulator primarily in C++, using the li-
braries and additional programs mentioned below. We also
used some amount of bash and python scripting to aid in
generation of output animations and images, which we have
also described below.

4.1 Design Overview
The simulator was designed with the goal of making the
system as modular as possible.

In order to achieve this, rather than hard coding in any
parameter that could be changed (ex. cost function, routing
policy used, generation scheme of packages),

This allowed us to implement several robot child classes with
differing speeds, capacities, and special routing rules. FEach
input source of packages is also modular, allowing us to gen-
erate packages with different user defined functions.

In order to use these different settings without having to
recompile the system every time, we defined a "UAV Input
File” format. In this format, we have the following sections:

1. Graph Adjacency List (for describing node structure)

2. Drone Initializer Settings. Must include type of drone
(regular, capacitated, package-targeted, etc) as well as
starting node for each drone.

3. Package Creator Settings. Each line includes informa-
tion about node for which package creator is to act
upon, destination of package (ex. fixed or random),
type of package creator (completely random, random
with fixed average, interval, etc) and any extraneous
parameters that type of package creator needs.

3This is suboptimal in a more general model. However,
since we primarily implement the greedy algorithm, it works
for most of our purposes. Generally, something hyperlinear
would be better since (intuitively, on average) older package
should have higher precedence.



4. System Routing Algorithm Type.

Each of these different settings generate a set of different
classes which interact, but are otherwise separated from each
other. This allows our system to be easily extendable for
future use.

4.2 OQOutput

In addition to simulating the simple UAV package delivery
system itself, we also integrated together a series of tools to
aid us in generating both output video and output graphs.

As seen in we used a variety of additional libraries to aid
us in generating our output.

4.2.1 Data Graph Generation

Data graph generation was fairly straightforward. At each
timestep, the simulator would write important system sta-
tus information (ex. number of packages in system, aver-
age length of time of packages in system, information about
drones, etc, etc) to a set of output files, with one output file
for each series of data. After we produced this, we used a
simple python script to plot the graphs in the output files.

4.2.2 Animation Generation

Animation generation took a decent amount of background
work. For this part, we used the OGDF graph libraryﬂ

At the beginning of program initialization, we would make
a copy of our network graph in the program OGDF. During
each timestep of simulator update, the system class would
take a snapshot of its current status, updating the label of
each node in our graph in its corresponding OGDF graph.
E| This graph would then be output to a .gml file.

Once the simulator was done running, we used the program
GMLQPICﬂ to convert our .gml files to images.

From here, we stiched together the images using the FFM-
PE{ library.

We built a set of bash scrips that would allow us to run
all of these operations in one command-line input. This
one line input included flags for options relating to input
file location, output file location, and various other internal
image settings.

4.3 Greedy Algorithm

The greedy algorithm we used in our simulation updates
the destination of each robot in a simple manner. We use
a globally implemented shortest-all-paths table to calculate
where each drone with a destination should go to next.

Upon generation, each drone does not have a destination.
Once packages begin entering the system, the oldest package
in the system is assigned to some destination-less drone. The

“http://www.ogdf .net

5For why our program behaves this way and challenges in-
volved in getting to that point, see [4.4]

Shttp://www.ogdf .net/doku.php/project : gml2pic
"http://www.ffmpeg.org

destination of that drone is then changed to the current
location of that package. Once the drone is at the location
of the package, the drone picks the package up, changing
its destination to the end point of the package. Once the
package’s goal node is reached, the package is considered
dropped off, and the drone’s current destination is set to
"none”.

4.4 Challenges

In implementing our simulator, we ran into quite a few chal-
lenges.

Contrary to what one might think, libraries for implement-
ing dynamic graph updating do not readily exist for C++.
There are an assortment of static graph generators, however.
For example, the group attempted to use Boost:Graphvizﬂ
another graph creation library, in order to generate images
for our animations, however we ran into issues upon realiz-
ing that the library regenerated an image of our graph every
single time, including recalculating graph layout. This was
something that was not at all appropriate for an animation.

The solution that we settled on, OGDF got around this
problem by storing the locations of nodes in our graph in
its own graph structure. However, this meant that when-
ever anything was changed, we had to manually generate
labels to interface with OGDF’s print format such that the
text would appear properly.

Even while using OGDF, we noticed a few limitations. For
example, it would not be particularly well suited for a graph
with a large number of nodes since the screen would be
overly full. Additionally, the layout algorithms we tried
never quite seemed to be as optimal as we would have liked
them to be.

In hindsight, it perhaps would have been easier to have im-
plemented a dynamic graph generation library from scratch.
However, given time constraints, this did not end up occur-
ing.

S. RESULTS

As a baseline, we ran a few tests of the Greedy Algorithm on
a variety of graph structures with different types of package
generation.

In figures 3-8, we provide graphs of the average number of
packages in system given a variety of different graph struc-
tures and package generation schemes.

These behave as one would expect. As the number of drones
increase, the increase in the number of packages in the sys-
tem decreases. It is also possible to notice some very clear
threasholds in some of the graphs.

It is possible to come up with a fairly simple explaination
of why these threasholds are located where they are in some
of the graphs. In the line and ring networks, the average
package spawn rate is 1 package over the entire system per
time step. Thus, the amount of additional distance that

Shttp://www.boost.org/doc/libs/1_55_0/1ibs/graph/
doc/write-graphviz.html
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Figure 1: The workflow involved in generating the animation and graphs for our simulator. Green denotes
input/output files. Red denotes intermediate files. Blue denotes programs that must be called. Yellow
denotes major code libraries used.
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Figure 3: This graph shows the number of packages
in our system at a given time. For this graph, we
use a graph that consists of 8 nodes in a line with
each node generating a package once every 8 time
steps.

some drone needs to cover for that package is equal to the
number of steps that drone needs to take to get to that
package, plus the distance from the source to the destination
node of that package.

Thus, since the total average distance that the packages re-
quire covering linearly increases (when the number of drones
is below some threashold amount), we get the graphs that
we see.

6. CONCLUSION

With this project, we explored some basic behaviors of a
greedy routing algorithm on a variety of network graphs.
To do so, we built an easily extendable, modular simulator
capable of taking a variety of different options in an input
file.

With the simulator, we showed that a simple, greedy algo-
rithm works as expected. Additionally, we have also investi-
gated a variety of different techniques relating to the vehicle
routing problem.

7. FUTURE WORK

While we have done some basic, preliminary work with the
given model, there is a large set of interesting and varied
questions that one could ask with minimal changes to the
model itself.

The best policies thus far seem to still be reliant on solving
the Traveling Salesman Problem on some subset of the nodes
in our graph. Would it be possible to come up with a h(n)-
approximation algorithm (where h(n) is the ratio between
the cost of the approximate algorithm and the cost in the
ideal) based on some other method?

In our greedy algorithm, we do not penalize nodes for mov-
ing freely between nodes. Thus, it would be possible to in-
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Figure 4: This graph shows the number of packages
in our system at a given time. For this graph, we
use a graph that consists of 8 nodes in a ring with
each node generating a package once every 8 time
steps.
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Figure 6: This graph shows the number of packages
in our system at a given time. For this graph, we use
a graph that consists of 8 nodes in a line with each
node generating a package randomly with probabil-
ity 1/8.

600 Number of Packages at Time for 8-node Ring

— 3 Drones
— 4 Drones
5 Drones
—— 6 Drones

[0
=]
o

N
o
=]

Number of Packages in System
N w
o o
=] =)

100

Figure 7: This graph shows the number of packages
in our system at a given time. For this graph, we use
a graph that consists of 8 nodes in a ring with each
node generating a package randomly with probabil-
ity 1/8.
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Figure 8: This graph shows the number of packages
in our system at a given time. For this graph, we use
a graph that consists of 9 nodes in a random con-
figuration with 5 nodes each generating a package
randomly with probability 1/5.

clude ”send drones to node n, while idle”. How much would
this increase or decrease the performance of the drones?
What about if we included a cost function?

Our UAV package delivery system assumes knowledge of a
full-snapshot of the system. What happens if drones are lim-
ited to only knowing the location of a subset of the packages
and only a subset of the other drones’ locations?
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