Near

*

Ryan Batterman
Department of Computer Science
California Institute of Technology

batterman@caltech.edu

ABSTRACT

Near is a web-based mobile application for sharing posts
bound with the location at which the post was made, and
browsing posts through the use of a map.

Categories and Subject Descriptors

D.3.3 [Language Constructs and Features|: Frameworks;
E.2 [Data Storage Representations]: Object represen-
tation; J.7 [Computers in Other Systems]: Consumer
products

General Terms
Mobile application, Geohash

Keywords
Near, Android app, posts, Google Maps API, geographic
coordinates

1. MOTIVATION

The authors of the Near application realized that they did
not have a good way of figuring out what people around

the world were saying at any point in time. Using the ’fol- 5.

low’ feature of Twitter, one can see what individual users
are communicating; but one cannot easily see what, for in-
stance, people in the Egypt are saying about the Egyptian
revolution. Near was created to solve this problem. Near
lets users easily see what people in different parts of the
globe are saying.

2. SCENARIOS

1. Ralph is a Junior at MIT who is taking a very tough,
badly taught Physics class. He wants to vent his frus-
tration anonymously, but Facebook does not let him
do so — it requires that he have his name attached to all
his posts. He could employ Twitter; but then none of
his classmates would see his post. So Ralph decides to
employ Near. Using Near, he is able to anonymously
write about his frustration and share it with the entire
world (not just his friends). Ralph writes his commen-
tary, and is happy.

2. Robert is a Caltech student who wants to comment
on David Politzer’s antics with the rest of his Caltech
Physics class. He could write it on Facebook, but Face-

book only allows him to communicate the idea with his 7.

*Ryan Batterman: Main front-end developer.

TJ oseph Choi: Main back-end developer.

T
Joseph Choi
Department of Computer Science
California Institute of Technology

jichoi@caltech.edu

friends; he wants to share it with the people in his im-
mediate vicinity. So Robert creates a post and puts it
on Near. Other people in the class who are messing
around on their phones at the time see his nearby post.

Alice is a high school senior who was admitted to Cal-
tech and MIT. She already toured both of the schools,
but she wants to get a better sense of how people at
the two different schools compare. She opens up Near
and sees MIT students complaining about their prob-
lem sets; by contrast, the Caltech students all write
happy posts about their experiences on campus. She
chooses Caltech over MIT.

Alex is touring Paris and wants to see what people
have to say about the different tourist locations. So
he opens up Near and sees what others post about the
different monuments, museums, and restaurants. Near
gives him upclose commentary about all the touristy
parts of Paris. In fact, in Near, he sees a picture of a
particular exhibit in the Louvre that greatly interests
him. He decides to spend his day at that museum.

Helga is a reporter for the New York Times and wants
to see what Egyptians are saying about the revolution
occurring in their country. Twitter does not provide
her an easy way to search by location; she can look in
an ad-hoc manner for people who say, for instance, that
they are Egyptian — but this does not allow her to see
exactly where these people are in the country. It does
not permit her to easily compare what people in Cairo
are saying to what people in Suez are saying. In fact,
it is quite hard for her to do any analysis whatsoever.
So she opens up the Near application and is easily
able to see what normal Egyptians are saying about
the situation in their country. She analyzes this and
submits her article to the New York Times.

Eva tried out a new coffee shop on Lake Street. It
took her 25 minutes to get her coffee, and when she
finally obtained it, it tasted terrible. Eva wants to rant
about the shop so that no one else makes the mistake of
spending money there. She could write a Yelp review.
But she is lazy and wants instant gratification, so she
opens up Near and quickly writes up her rant.

Eliezer is procrastinating on his PS 12 assignment at
Caltech and wants some way to entertain himself while
he is waiting. So he opens up Near and starts reading
the funny, interesting posts to pass the time. After

awhile, he decides to contribute his own comments —
so he writes ironic posts about the class which are later
read by other Caltech students.

3. EVOLUTION OF IDEAS
3.1 Initial Idea

Near was first envisioned as a single-page (single-tab) ap-
plication. This page contained a standard map created us-
ing the Google Maps API. When the user selected a ’center
point’ by clicking on the map, posts around that point would
appear on the screen. The bottom part of the application
would contain a text box which, when selected, would ex-
pand and allow a user to type his post. A nearby ’send’
button and the 'return’ key would allow him to submit his
post. Upon submission, his post would be displayed on the
map next to his location, for the world to see.

We considered only allowing users to only see posts from
their nearby area. We believed this would provide some
degree of privacy to the application (e.g. Caltech students
would only want their posts to be seen by other Caltech
students) and we initially thought that people would not
find much utility in reading posts from locations far away.
However, we came up with (seemingly) plausible use cases
to demonstrate that the second assumption was false. Fur-
thermore, it was noted that this would create a major prob-
lem with network effects. If only Caltech students are using
the application, and their posts are not displayed to MIT
students, why would the first MIT student start using the
application? He would have no content to see, so he would
not use Near. Hence, we decided to allow users to see all
posts.

3.2 Posts Tab

Soon thereafter it was realized that having an additional
page containing a list of posts would be useful. A list of
posts would allow the user to more easily read the posts
from a particular location: instead of having to awkwardly
zoom in and out to see all the posts in a particular place,
the user would just have to select a location on the map by
clicking and then scroll through the 'posts’ page to see the
local content. Thus we decided to add a page containing all
the posts.

The above ideas coalesce into a two-page application which
looks something like Figures 1 and 2.

We further realized that having the 'posts’ page would al-
low us to order the posts based upon relevance to the user;
instead of just giving the user all the posts around some
particular location, we have some complicated function de-
termining which posts the user will see; having this function
gives us flexibility with respect to what the user is shown.

We noted that it would be easy to add upvote and downvote
functionality in the posts page. This would allow us to use
the feedback from different users to determine the relevancy
of posts for the user. And it also gives users an incentive to
put content into the application. Instead of just hoping that
someone will read their posts and find them interesting and
useful, users will get explicit feedback as to how well others
liked their posts — in the same way that the ’like’ feature of

?E iffel Tower
Landmark 317 m-hi

58 Tour Eiffel {11 19th-century tower
o,
e
&
<A
3.
z o
< e
0
%
o%‘q-
) s
%
%
a.

Figure 1: Preliminary mockup of the Near applica-
tion. The red marker specifies the center point.

~Map Near Settings—

Anonymous
The architecture is so inspiring.

Joseph C.
A cool picture | took at sunset.

Ryan B.
#yolo
Anonymous
test

Christine C.

Checked off the Eiffel Tower on my
list of places to visit.

Figure 2: This was the early design for the posts
interface.

Facebook and an innumerable number of other applications
encourages users to continue posting, this feedback will en-
courage our users to put more content on Near. To display
the upvotes and downvotes that a user received, we decided
to add an additional page to the application for the posts
which the user had submitted.

We also considered adding a display which showed the num-
ber of times that a particular post was viewed by other users.
However, it was decided that this did not provide additional
benefit over that provided by the upvote/downvote feature.

To further incentivize users, we considered adding ’follower’
functionality similar to what exists on Twitter and Quora;
if a user follows a poster, then he would start seeing the
messages of the poster in his feeds. It was hypothesized that
this would provide a way for users to filter for more relevant
posts. But this feature adds a large degree of complexity to
the application (we would need another feed for displaying
posts from the people the user is following). Furthermore, if
users want to follow other users who provide useful content,
they can use Twitter; Near’s geographical focus provides no
additional benefit over Twitter.

3.3 Posts Ordering

We considered different forms for the ordering scheme. The
ordering function would map the posts to a real valued ’rele-
vance’ number; posts would be displayed in order of decreas-
ing relevance. The ordering function was imagined to take
as input the distance between the selected map location and
the post, the time since the post was created, and the num-
ber of upvotes and downvotes; closer, more recent posts with
many upvotes but few downvotes would be more relevant.
It was noted that the way in which the ordering functions
weighted these things relative to each other would deter-
mine the character of Near. If the function highly weighted
the upvote/downvotes of posts, then Near would start re-
sembling Quora. Everyone would only see the highest rated
posts. If, alternatively, the function put a high weight on
the newness of the posts, then the application would become
very transient and would begin to resemble 4chan. We fur-
ther realized that the smaller the weight put on distance,
then the less our application is differentiated from our com-
petitors (like Twitter) — hence, we decided to put a high
weight on the distance factor.

3.4 Selection Using Circles

We also considered adding circles to Near. The idea was
that, instead of selecting a single center point (where posts
which were closer to the center point would tend to have
higher relevancies), the user could instead draw a circle on
the map — posts which were in this circle would be displayed
instead of just posts around the center point.

This would allow us to distinguish between users who wanted
to search for posts within an immediate vicinity (e.g. some-
one who wanted to see what people are saying about the
Eiffel Tower) and users who wanted to identify posts in large
geographical areas (e.g. someone who wanted to see the top
content of the entire United States); users would be permit-
ted to give their degree of specificity. Thus we would be able
to cater to a wide array of user desires.

Figure 3: Circle on a Google Map. We considered
using this feature in the Near application to allow
users to give locational specificity.

There are drawbacks to this approach, however. Instead of
just selecting a center point, the user is forced to place two
markers (one to specify the center point and one to spec-
ify the radius). This additional complexity increases the
amount of time that it takes the user to find posts, and
it makes the application much more difficult for beginning
users: they need to figure out how to draw circles and what
these circles mean. We could possibly mitigate this issue by
adding a tutorial to the application, but that makes the ap-
plication harder to use. It is unclear if these costs outweigh
the benefits of allowing users to do queries which have a
low degree of locational specificity; after all, these sorts of
queries do not distinguish Near from competitors such as
Reddit (i.e. Reddit shows the top content from across the
world; these low-specificity Near queries show the top con-
tent from large geographical areas — hence we are effectively
competing with Reddit). Thus, we put the circle issues as
a low-priority item and did not implement it in the first
iteration of Near.

3.5 Search Bar

We also noticed that users would find it awkward to scroll
through the map to find a particular location (e.g. the Eif-
fel Tower). Hence we decided to put a search bar into the
application. We also decided that it would be useful to have
swiping between the pages of the application — so we added
that, as well. And we created a login page to allow users to
become associated with a particular identity. The applica-
tion at this point is shown in Figures 4, 5, and 6.

4. SERVER-SIDE
4.1 Web Framework

The back-end was coded with Node.js. Node.js is a software
platform where applications are developed in JavaScript,
which is run internally by the Google V8 engine. The V8
engine compiles JavaScript into native machine code before
executing it. From the outside, the use of JavaScript makes
it appear that the code is interpreted, as no manual compi-
lation step is necessary. This is done behind the scenes by
Node.js. This also prevents changes in the code from being
visible without restarting the application, so it doesn’t pro-

e
E Del Mar Blvd 8 5 ‘ @

(%)
Q
=i
o
&
@

o
dney Jaylon: My doctor asked if any members of m...

™

Lura St Qo Moore Walk o

Tolman -
Bacher House Q

Q -
o ° 9
Geng Pool
9 °
Q
9
)
Beckman Mall Qo
o [
California Institute
o of Technology | .
Ol

Figure 4: Map interface in the Near application.
The green dots correspond to posts; the red marker
is the center location; the search icon expands to a
search bar.

® . qQ

POSTS MAP

| Sign Up or Log In to Post

252 feet away
20 minutes ago
Text someone and tell them "Hey, | lost my
phone, can you call it?" and see how many
people call it

Clara Finbar

312 feet away
20 minutes ago
WARNING: | have officially been left
unsupervised. | take no responsibility for
what may happen in the next few hours.

Mercedes Mika

377 feet away
20 minutes ago
After watching CSlI, Cold case, Law & Order,
and all those other educational shows, I'm
99% sure | can make sure nobody notices
you missing. Just saying...

Renata Candice

0.1 miles away
20 minutes ago

things to do at Walmart: hide behind teddy
bears and make evil laughing noises when

Ursula Hyacinth

Figure 5: Posts feed page. This page displays the
posts of nearby users, and upon login, allows users
to post. In the future, the upvote/downvote feature
will be implemented here.

P OQH@a 3 NE T .4%206PM

@ Q

Sign Up

Figure 6: The signup/login page of the Near appli-
cation.

vide this advantage of interpreted languages. However, be-
cause the code is actually compiled to machine code, rather
than being converted to bytecode or being interpreted di-
rectly, this allows the server to be fast.

In Near, we used the asynchronous event features of Node.js
to maximize throughput and efficiency. Accesses to the
database, reading files, and computing proximities from Re-
dis are all asynchronous, using an event system to call a
callback function on finishing. This means that other com-
putations could keep running while waiting for the data to
be retrieved from the database. This allows one server to be
able to handle many concurrent users at the same time.

4.2 npm

Node.js provides the benefit of the back-end code being writ-
ten in JavaScript, and a significant portion of the front-end
code is also written in JavaScript. This allows a substan-
tial amount of code re-use between the front-end and the
back-end, which accelerates development. Traditionally, the
front-end and the back-end would be written in separate lan-
guages; popular server-side choices are Python, Java, and
PHP. Furthermore, the vast amount of libraries in Node.js
managed by an easy-to-use package system called npm, the
Node Package Manager, allows easily downloading of rel-
evant libraries, and a dependency tracking system, which
alleviates these complications. There is no need to re-invent
the wheel with the vast collection of libraries for Node.js.

Node.js provides a rich set of libraries that greatly expedite
web development. There are simple wrappers for creating
and starting a server, which allows one to quickly develop
server-side code and iterate on it. Express 4.0.0, a web ap-
plication framework for Node.js, was used to handle the logic

of resolving URLs, serving static files, and providing error
handlers.

4.3 Data Store

For storing the data, Redis was used. Redis is an in-memory
data store that maps keys to several different kinds of values,
including strings, lists, sets, and sorted sets. Redis is written
in C, and stores the whole dataset in memory. This allows
reads and writes from the data store to be fast. With Re-
dis, we used an AOF system. This system puts any changes
made in the data store to an append-only file, such that
writing changes to disk was fast and corruption-resistant.
The AOF was set to sync every second, which means that if
the server unexpectedly goes down due to an power outage,
then at most only 1 second worth of data is lost. Further-
more, the data that is changed is only appended to the end
of the file, which means that if the server went down while
data was being appended to the file, only the last append
would be corrupted. This could be fixed such that Redis
discards this corrupted entry, and thus we have a working
backup with less than 1 second worth data lost.

4.4 WebView

The posts user interface is used to show users the posts
closest to their selected location on the map. Users can
view the posts that are made without having to be signed
in. However, in order to post, users must either create a
new account or sign in if they already have an account. In
order to do this, the user clicks on the “Sign Up or Log In
to Post” button at the top of the posts user interface. After
signing in, the user may now post, and the user’s current
location will automatically be associated with the post. The
background is light blue, which was chosen to be the same
color as the marker indicating the user’s current location
on the maps fragment. This decision was made in order
to indicate that the user is posting at his or her current
location.

The user interface for posts is done by rendering a web-
page in Android using WebView. Using a WebView allows
for rapid development, using familiar tools such as HTML
and CSS in order to markup content and design the user
interface. Furthermore, it takes a while for updates to the
Android app to get on the Google Play Store. This inhibits
updates to the way a page is display, changes in the way the
data is sent to the client, and changes in the posts function-
ality. However, by placing this in a WebView, these updates
can be done independently of the process for uploading apps
for download on the Google Play Store.

Using a WebView allows the use of JavaScript to program
the user interface. Ajax (Asynchronous JavaScript and XML)
is used to asynchronously fetch data from the server. Re-
trieving posts is done by sending an asynchronous request
with the location of the marker to the server. The server
then fetches the posts data from the data store, sorts them
by distance, and returns the posts data. The JavaScript in
the WebView is then used to update the posts user interface
with the new posts.

When fetching posts, the new posts have to be added to
the map. This is done by transferring the geographical co-
ordinates of the posts to Android native code through the

202 feet away
23 minutes ago

My doctor asked if any members of my
family suffered from insanity ,I replied, no,
we all seem to enjoy it

Blanche Trenton

206 feet away
23 minutes ago

For Sale! One used alarm clock. damn thing
rings when | am trying to sleep.

Karl Kaylie

210 feet away
23 minutes ago
Things to do at Walmart #365: bring or take
atent, set it up in a camping supplies corner,
and camp out for the weekend until they kick
you out!

Miriam Elton

211 feet away
23 minutes ago

I'm going out to look for myself, if you see
me before i return, please tell myself to call
me so i know where i am.

Jordan Elsa

Figure 8: View after signing in or logging in.

use of a JavaScriptInterface. There is a special class in
the Android code that responds to specially marked code in
the webpage’s JavaScript, which then are forwarded to the
Android code. This method is used to transfer the coordi-
nates to Android, which then marks the coordinates of the
retrieved posts on the maps fragment.

4.5 Fetching Algorithms

Consider the problem of storing geographical coordinates
¢ = (latitude, longitude) inside a database represented by
a set of geographical coordinates C, such that one can ef-
ficiently apply the fetching operation: get the set of stored
geographical coordinates C’' € C' within a given distance d
of a geographical coordinate c.

The naive approach would be to store the geographical coor-
dinate c in an array representing C, and given a geographical
coordinate ¢, we loop through the array, computing a dis-
tance from each each coordinate in C'. We have

C' = {c € C|dist(c,c’) < d}

A different algorithm involves generating a quad-tree mapped
to the sphere. The globe is separated into four sections,
which are recursively divided into four sections such that
each section has at most one geographical coordinate. This
tree structure could then be traversed in order to find all the
posts within a given distance of a geographical coordinate
in O(log |C|) time. However, this approach was not taken.

4.6 Distance Formula

Note that the distance operator cannot be naively defined
asd'(c,c') = y/Alatitude? + Alongitude? since latitude and
longitude are isomorphic to ¢ € [0, 7], 0 € [0, 2], and the

Client

Android =] WebView

v v

Google Maps Posts Ul /|
Fragment

/

Server

Node.js =
/]

v

Redis

Express

Geohash =

Figure 7: Diagram of the overall front-end and back-end architecture.

area element df) = sin ¢ df d¢ is a function of ¢. The correct
distance formula between coordinates ¢ = (a,b) and ¢’ =

(a',b') is

2arctan< lfz) 1—-2>0
(e,) 2arctan(lfz) +2r 2>0,1—2<0
R 2arctan(1fz)—27r 2<0,1-2<0
™ z2>0,1—2=0
-7 2<0,1-2=0

. —a . b—b
where 2z = sin® (%) + cosacosa’ sin’ (T

and R = radius of the Earth

Note that the naive algorithm of computing distances and
finding all the geographical coordinates with d'(c,c’) < d
takes O(]C|) time where n is the number of geographical
coordinates in the database. This does not scale well with
millions of posts, with many users.

4.7 Geohash Algorithm

A special Geohash algorithm was used in order to imple-
ment putting 2-dimensional geographical coordinates in a
1-dimensional database, with efficient fetching of nearby ge-
ographical coordinates. The algorithm supports the follow-
ing operations

o Insert a (latitude, longitude) coordinate into the database.

e Fetch all (latitude, longitude) coordinates within a given
(latitude, longitude) in O(|C’|) time, which is gener-
ally much better than O(|C|) time.

The algorithm works as follows. In order to insert a geo-
graphical coordinate ¢ = (a,b) into the database, the geo-
hash h of even length n for ¢ must be computed. For the lat-
itude a, construct the binary array apaiaz...a,/2—1 of length
n/2 as follows: let lo = —90°, 79 = 90°,mo = (lo + r0)/2. If
a < my, then set a; = 0, 7,41 = m;, otherwise set a; = 1,
li+1 = m,;. Repeat for the longitude b, except set the ini-
tial variables lp = —180°,7¢9 = 180°. The geohash is then
computed by interspersing the binary arrays for a and b:
h = aoboaibrazbz..an/2_1bn/2_1.

This actual geohash is used as a key for a post entry in
the data store. For the case of Near, this entry is stored
in a sorted set, where the keys are sorted by their value.
We thus have a linear data store where posts are ordered
by their respective geohashes. The geographical coordinates
within a distance d of a geographical coordinate ¢ can then
be found by computing a hash h of ¢, and then looking at
the first few binary digits of h, hx = aoboaibiazbz..arbg. k
is chosen such that the next geohash hj, of hx, where aj, =
ar + 1 which is carried to increasing i until a; = 0, and
similarly for bj, represents a distance from hy of at least
d. All the geographical coordinates whose prefixes are the
same are within this block. Then the distance formula for
geographical coordinates can be used to find the set C’. For
edge cases where c is close to the edge of a block, the 8
neighboring blocks are computed and retrieved, and then
the distance formula for these geographical coordinates can
be used to find the set C’. This algorithm runs in time
o(IC)).

5. RELATED PRODUCTS

Secret is a mobile application for iPhone and Android that
lets you share sentiments and pictures anonymously with
your friends. It recently got $10 million in funding at a $50
million valuation. The difference between Near and Secret is
that Near sends messages to people nearby, and these peo-
ple are not necessarily your friends. Furthermore, Near is
more of a real-time application that lets you find out what’s
going on right now, at this moment, at the place you’re at.
Thus, Near is a location-based anonymous sharing appli-
cation, while Secret is a friends-based anonymous sharing
application.

Whisper is a mobile application for iPhone and Android that
lets you share sentiments and pictures anonymously with the
entire world. It recently got $30 million in funding at a $200
million valuation. The difference between Near and Whis-
per is that Whisper is not a real-time stream of incoming
messages, rather, it is a series of messages in boxes that
were sent. Near shows you the posts that are the most re-
cent as well as the closest. Whisper has separate sections
for nearby posts (which are not the most recent), and the
latest posts (which are not nearby). Thus, Near is more
of a real-time and location-based sharing application, while
Whisper is more of a generic application for sharing things
anonymously with the world.

6. FUTURE WORK

There are several features which could be implemented to
further improve the Near application.

At the moment, users can specify only a single center at a
time. This forces them, if they want to stream posts from
multiple locations, to switch back and forth between the
different positions — a nuisance for the user. We could fix this
by allowing the user to save pins. This may add additional
complexity (and hence make it more difficult for new users
to understand the application), though.

It may be useful to add messaging to the application. If
Alice sees that Joe consistently posts high quality content
to the application, then she may want to communicate with
him individually. We left this feature out of the initial prod-
uct, because of lack of time, and because we thought this
might make Near to similar to our competitors. But it may,
nonetheless, be worth implementing.

It was noted that the color scheme of Near does not work
well for users with color blindness; these users tend to have
difficulty distinguishing between red and green, and hence
are probably unable to differentiate between the red center
marker on the maps page and the posts. If so, this makes
using the application difficult to use for the approximate
10% of color blind people. It may, in fact, be more than
10%, because computer users are color blind at higher rates
than average members of the population.

We could integrate picture functionality with the Near appli-
cation. Pictures allow users to express certain things that
they cannot through simple text — for instance, if some-
one wants to display a particular building on Caltech, doing
so with text is impossible. This feature could probably be
implemented with little effort, little downside, and lots of
upside.

We could use machine learning techniques to improve the
relevance of the posts displayed to users. One option would
be to feed the upvote/downvote values into a collaborative
filtering algorithm to try to predict whether a user will like
a post or not. An issue with this approach, however, is the
sparsity of the data; most of the posts will have few upvotes —
so predicting by, for instance, a straightforward application
of the support vector decomposition algorithm on the posts
probably would not work well. We could also try natural
language processing techniques; if e.g. a user liked all 100
posts which referenced ’food’, then we could determine that
a new post with the word 'food’ in it will probably be liked
by that user. Naive Bayes would be the first classifier to try,
because it is quite simple and has a reputation of working
quite well on text classification tasks.

To get more people using the application, we could try ask-
ing more friends to use the application. Once we have a few
useful or funny posts on Near, new users will have better
experiences on the application and hence attracting more
people to Near will be easier. After that, growth may oc-
cur organically (i.e. the current users bring new people to
the application), or it may not. If it does not, then we could
try altering the search terms in the Google Play Application
description to target specific keywords. At the moment, we

are not targeting any particular keywords — so users are not
finding Near through the ’search’ feature of the Play Store;
fixing this may bring many new users. Alternatively, we
could try setting up advertisements for Near. This could
require a fair amount of capital and hence VC involvement;
hence we would employ this option only as a last resort.

7. CONCLUSION

If Near takes off and becomes widely used, then people will
easily be able to share their sentiments, thoughts, and pic-
tures with all the people near them. People will be able to
use Near to share relevant information about the situation
with the people near them, start conversations, and possibly
even make new friends.

8. ACKNOWLEDGMENTS

The authors would like to thank Adam Wierman for his
valuable input on various aspects of the project, including
the design of the user interface and the structure of the back-
end code.

