
Cards with Friends: A Generic Card Game Engine

David Ding
∗

Dept. of Physics,
Mathematics, and Astronomy

ding@caltech.edu

Theresa Lee
Dept. of Computing and
Mathematical Sciences

theresa@caltech.edu

Mike Qian
Dept. of Computing and
Mathematical Sciences
mqian@caltech.edu

Benjamin Razon
Dept. of Computing and
Mathematical Sciences

brazon@caltech.edu

Alexander Wein
Dept. of Physics,

Mathematics, and Astronomy
awein@caltech.edu

ABSTRACT
In recent years, networked and online gaming have become
ubiquitous; in particular, card games like poker and hearts
have flourished and found dedicated communities online.
However, any specific card game will have countless vari-
ations that are popular within certain circles or regions, and
if such a variation that someone wants to play does not exist
online, there is currently no fast and easy way for someone
to create it. We aim to solve this problem by creating the
application Cards with Friends, a generic card game engine.
In the application, we provide users an API that they can
use to write arbitrary card games, with functions they can
use that are necessary for online play (like passing cards,
bidding, and playing and receiving cards). This way, users
would be able to implement a non-existing card game from
scratch and play it online, or take the implementation of an
existing game and make a minor tweak to it. In this paper,
we discuss existing previous efforts for generic card game
engines that did not succeed or persist over time. Then, we
outline the flow of the creation of the application, as well
as the tools we used in our implementation. Finally, we go
into extensions of the application that we may create in the
future.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—reusable
libraries; K.8.0 [Personal Computing]: General—games;
K.8.1 [Personal Computing]: Application Packages—free-
ware/shareware

Keywords
∗All group members attend the California Institute of Tech-
nology and are pursuing a Bachelor of Science in Computer
Science.

Generic game playing, card games, AI, Flask, Socket.IO,
Gevent, Heroku

1. INTRODUCTION
The concept of networked games has been around for a very
long time. Back in 1975, people were already playing multi-
player videogames over a network such as STAR, OCEAN,
and CAVE. Card games were also popularized on the com-
puter and were easily extended to a multiplayer network
format. These games can be played both from standalone
applications (e.g. Internet Spades, which is bundled with
the Windows operating system) and within the browser (e.g.
card games available on Yahoo’s website). Most of the popu-
lar card games can be played online in a variety of websites or
standalone applications. However, there does not appear to
be a single leading site in online card games, leading to both
fragmentation in user base and a need for multiple systems
to access all the games the users want. This fragmentation is
evident in the dozens of websites providing multiplayer card
games, not to mention the numerous standalone applications
for specific games.

The difficulty in having a single platform for all card games
largely stems from the vast number of card games. There
are hundreds of different card games, each with many vari-
ations. Therefore, as a developer it is practically impossible
to manually support all the potential games and variations
on your own. However, as crowdsourcing has become more
popular, it may be possible to crowdsource the rules im-
plementation to players interested in specific games. This
system is very attractive for supporting small variations on
popular games since making small changes to existing rules
should be quite simple and not time-consuming. Supporting
completely new games may be difficult as programmatically
entering all the rules to a card game might be too com-
plicated for many users. It might be possible to automate
this process by using natural language processing on human
readable rules of the game.

Still, it is unclear what the best option for describing card
games would be. As discussed earlier, having a simple lan-
guage for defining rules would reduce the barrier to creating
a new game. However, using formalized language for de-
scribing games, such as the GDL (Game Description Lan-
guage) would allow the engine to work with the General
Game Playing (GGP) project from Stanford and thus pro-



vide AI automatically for all supported games. Unfortu-
nately, most of this work seems to have been done for board
games rather than card games. Card games were not de-
scribable until the recent extension of GDL to GDL-II to
account for unseen and random events. It is therefore un-
clear if a sufficiently powerful general playing program yet
exists that supports card games.

Card games consist of a much smaller set of categories than
board games. Examples of popular categories include trick-
taking games (like bridge and hearts), comparison games
(like poker and blackjack), shedding games (like Uno and
rummy), and accumulation games (like Go Fish and war).
By separating these categories it should be much easier for
users to implement new games within a category. Ideally,
the engine will be generic enough to support any game, but
by creating individual category templates, there will be sig-
nificantly more code reusability since every new game can
inherit most of its basic structure from its parent category.
Furthermore, defining a category is much more abstract and
complex, and thus is better left to experienced programmers
than to end users. This system would have the significant
benefit of allowing a developer to focus on one category (e.g.
trick-taking games) and only expand given enough time.

Therefore, the primary focus of our project was to imple-
ment a game engine that supports networked play of trick-
taking card games within a web browser. Ideally, this was
to consist of three general components:

• A frontend web application that displays game state
and facilitates user interaction. Different interfaces
provide the ability to begin or join games and to create
or modify games and rules.

• A server that handles all gameplay by receiving infor-
mation from users of the web application and mak-
ing decisions about legal moves, state transitions, and
scoring, which it relays to the frontend. The server
contains all the games and rules supported by the en-
gine. The server also stores user session information,
historical gameplay data, and statistics for use by the
AI (computer players) to improve heuristics and algo-
rithms.

• An AI component with one or more difficulty settings
capable of playing games against human and other
computer-based players.

The first card game we attempted to support through this
system was Spades, a relatively simple trick-taking game
where the objective is to score points by winning enough
tricks as determined by bidding before each hand. In this
case, bidding is one example of a distinguishing game char-
acteristic that must be supported by our engine, as not all
trick-taking games involve bidding. Through the term of the
project, we created a good abstract framework such that any
card game can be implemented and played on the network.

2. LITERATURE REVIEW
The first aspect of a literature review was searching for pre-
vious projects with similar goals and scope. Volity [3] was

described as a website which allowed users to play generic
card games, but it was shelved in 2011 and none of the
codebase is publicly available. Furthermore, it is unclear
exactly what functionality this project managed to achieve
as the site is now down and most mentions of it are rela-
tively vague. Another project which attempts to allow users
to play generic card games is gcge [4], but it appears that the
lack of inheritable categories makes it difficult to reuse code.
For instance, the project does not attempt to define broad
game categories and instead gives users freedom to progra-
matically create additional rules. It currently has only War
and Fluxx implemented. We believe that the complexity in-
volved with implementing new games combined with a lack
of browser based user interface severely crippled the project.
The developers also chose to omit an AI system from their
scope. Most other programs were designed for generic col-
lectible card games, which allow the cards themselves to be
replaced with anything and do not enforce any rules. These
may be useful to cherry-pick the presentation layer.

We then considered specific attempts to formalize game rules,
and specifically card game rules. One natural option is to
use Stanford’s GDL which is designed to describe the state
of a game and the possible transitions. Because of its highly
formalized nature, it would likely be too cumbersome for
end-users, but we could feasibly translate simpler syntax
to this formalism. Because GDL is used for general game
playing competitions, this would potentially allow us to use
existing AI for any user created game with no development.
The original GDL does not support the limited informa-
tion and potentially random nature of card games, however
GDL-II extends the machinery to handle these games. We
have found entries of GDL-II players on the Dresden GGP
server, but we have been unsuccessful in finding one that we
could incorporate into our project.

An online search for generic card game languages was thor-
oughly unsuccessful. Perhaps unsurprisingly, no generic card
game artificial intelligence seems to exist (probably since it
would be difficult to construct without a generic card game
language). Most existing card game AI systems seem to be
tailored to specific card games and programmatically fol-
low their creators’ strategies. This approach clearly will not
work for our general system.

Since we planned to first implement Spades and then con-
tinue refactoring and abstracting the code as additional fea-
tures were needed, we considered using a similar strategy
for implementing a potential AI. Although we did not end
up implementing such an AI, we did a fair amount of re-
search into the possibility. To gain insight into the feasibil-
ity of this approach, we reviewed an existing open source
Spades AI program called SARC. The project provides a
non-networked version of Spades for one person to play Spades
and includes a UI. However, the code is very specifically tai-
lored to Spades and is not properly broken down into modu-
lar components. The AI seems to be hard-coded with many
simple heuristics. One thing that the AI relies on is un-
derstanding which cards can still be played. While we did
not find this option in any literature or example problems,
it seemed like a simple option would be relaxing the con-
straint that the computer plays with limited information.
As long as the game experience is enjoyable and the AI is



still beatable, it is possible to provide the computer with
complete information, thus significantly simplifying the AI.
This would allow us to use standard approaches such as
alpha-beta pruning with minimax.

Some broad suggestions for the AI found online include us-
ing machine learning on previous games to learn strategy.
Another option is to use Monte Carlo Tree Search to try to
model the game space. Anecdotal evidence seems to indicate
that this strategy would likely need some type of heuristics
to prune particularly poor branches . It might also be possi-
ble to use more general automated planning and scheduling
techniques such as Markov decision processes.

3. TIMELINE
3.1 Initial Timeline
Below is the initial rough timeline of the phases in the project
and the estimated time of completion for each phase. The
goal was to complete the project within 9 weeks, with the
output described in Section 4 (End Product). Note that
we planned for some of the phases to be done in parallel.
Additionally, we realized that some phases may or may not
have required more than the estimated time depending on
the time spent in debugging.

0. Version-Control System (1 day)
A version-control system such as git will need to be
set up in order to allow multiple people to work on the
same code.

1. Designing Game Structure and Abstraction (1 week)
During this first phase, we need to create all the neces-
sary framework for a generic game. This involves cre-
ating the abstract base classes in which specific games
will extend from, including a CardGame class to rep-
resent an general card game, a Deck to represent the
deck of cards (as well as a Card class), a Player, which
can be split into a HumanPlayer and AIPlayer, and
Phases, which describe the phases of the game. The
exact details of the implementation as well as any ex-
tra specifications of a game must also be determined
and constructed.

2. Game Implementation with Spades (1-2 weeks)
This phase will be done in parallel with the server
backend. After the initial phase with the abstract
game classes, this phase will involve actual implemen-
tation of those abstract classes. In particular, we will
implement the Spades card game extended from the
CardGame class, and define the rules and phases of the
game. This will be tested out on the server, once that is
completed. Restructuring of the abstract classes may
also be required if any issues occur during this imple-
mentation.

3. Server Backend Part I - Game Playing (2-3 weeks)
This phase involves the implementation of the server
backend that will be hosting the game. We need to
design the process by which the server takes a game
(an extension of the CardGame class) and plays it. An
implementation of the rule system of the game must
also be well-defined, so the server can understand valid
moves, keep score, and knows when a game ends and

who the winner is. This phase will involve a lot of test-
ing with the specific game in the second phase (Game
Implementation with Spades). This will primarily be
tested via a command-line interface.

4. Server Backend Part II - Game Creation (2-3 weeks)
Prior to this phase, some further research may be re-
quired. This phase requires heavy planning and the
creation of a GDL to describe a game, its phases, its
players, and its rules. Afterwards, a way to create a
new game using the GDL, which can then be trans-
lated into a class, needs to be implemented.

5. Middleware - Message Passing and Communication (1-
2 weeks)
A well-defined method of communication between the
the server backend and the web frontend must be de-
signed. The structure of the message must be designed
such that it contains the necessary details so the web
interface will understand what to display to the user,
and the server will understand what the user is doing
on the web interface. The messages will be constructed
and optimized in a way to reduce server load, although
this may be done later if we are running out of time.

6. Frontend Part I - Playing the Game (1-2 weeks)
This phase requires the creation of a simple web in-
terface that an average user can interact with to play
game. This will involve some designing on paper in
order to figure out where to put the components of the
game (such as the cards, other players, scores, etc.).
The message system must also be fully refined in or-
der for smooth message-passing between the server and
the web interface. The logistics of the game must also
be implemented, such as the flow of the game (how the
user joins a game, starts a game, and exits a game),
user feedback (valid and invalid moves), and other
bonus features such as playback of games may also
be established. If time becomes an issue here, we may
instead borrow a web interface from a pre-established
online card game, although that is probably not nec-
essary.

7. Frontend Part II - Creating a Game (1 week)
The web interface that allows the user to create new
games with new rules as well as variations of standard
games must be implemented. Also in this phase or in
an earlier phase, the server and frontend needs to be
transferred from a local server to a web server in order
to test and simulate real conditions.

8. AI (2-3 weeks)
The AI will be created to allow users to play against a
computer if no one else is avaiable to play against. De-
tails on how the AI will understand good game-playing
will need to be defined (either via machine learning or
manual training).

3.2 Actual Timeline
Below is the acutal timeline of our progress based on weekly
scrums that we held throughout the course of the term.

1. Week 1
We discussed what frameworks to use for web develop-
ment. After considering some alternatives, we decided



to use Flask [5], which would integrate well with our
backend (implemented in Python). A lot of our discus-
sion formalised what ’trick-taking’ games encompassed
as well as how users would input their ’rules’ into the
application. David wrote an initial version of Hearts.
We all looked into Flask to discuss what functionali-
ties it provided as well as how it would work with our
backend.

2. Week 2
We created the Deck and Card classes as well as the
abstract classes Game and TrickTakingGame. In addi-
tion, we discussed the preliminary design of card game
web UI. Furthermore, we discussed the level of abstrac-
tion needed in games, and wrote functions accordingly.
We also wrote a Hand class representing a player’s ac-
tive hand to support the TrickTakingGame class. We
also familiarized ourselves with Flask.

3. Week 3
We continued discussions on how best to implement
server-side communication between the backend and
frontend components of the software. We also finished
most of the abstract framework for the backend and
began looking into extensions of this code for public
use.

We also researched HTML5 WebSockets and decided
that gevent-socketio (a Python implementation of Web-
Sockets) should be easy to use. We got some chat
server code working using this package and we de-
cided that we would be able to get all the necessary
server push notifications for the card game working
with gevent-socketio. In addition, we edited and added
more functions into the Game and TrickTakingGame
classes, recalling and continuing discussions about the
level of abstraction needed in various functions.

We also created a Player class to keep track of a per-
son’s name, score, hand, and other attributes, and
wrote functions accordingly to make accessing these
attributes easy. Furthermore, we continued changing
our implementation of Hearts to reflect new develop-
ments (like the creation of the Player class), which
we thought would be pretty close to what the custom
game code would look like in the end. Additionally, we
edited the Card and Deck classes to be more consistent
with the other classes we had written.

4. Week 4
We built a prototype webpage for the game-playing
interface using Flask and Socket.IO:

• Two players can connect to a server.

• They are each dealt a hard-coded hand of cards.

• They then take turns playing cards until their
hands are empty.

• Cards can be displayed, clicked on, and removed
from the screen.

We also added more code development structure, in-
cluding internal object representations for debugging
purposes. We finished rewriting the Hearts code. Fur-
thermore, we tried exercising some of the code manu-
ally. We also introduced the notion of a thread pool

or “event manager” for scheduling tasks. Some game
actions needed to be run simultaneously for different
players (e.g., card passing), and obviously the game
engine needs to support running multiple games con-
currently at some point. We implemented card passing
e.g., for use with the Hearts “trading” phase.

We added basic bidding functionality to the Player
class, which was the last major component of a trick
taking game that we had not yet covered. We also cre-
ated an implementation of Spades, a basic trick tak-
ing game with bidding, in order to get another sample
game created as well as think about how much abstrac-
tion is needed with bidding. Furthermore, we wrote a
rough draft of the API, which will be essential for other
people to create their own games.

We also made a “highest card” dummy trick-taking
game in order to test interaction with the frontend
in the coming week.

5. Week 5
We implemented the GetPlay function in the backend
to begin the process of connecting the backend and the
frontend. While doing this we realized that the back-
end doesn’t have a system to notify the frontend, so
we also decided on a subscription model to handle this.
We also made some pages on the website to explain the
project and have a login system that persists sockets
across pages.

In addition, we worked on establishing communication
between the frontend and backend so that a game can
be played using the graphical interface.

We also implemented a basic server app using JavaScript
and Node.js to test how different users would log into
the same “table” for card games. We also implemented
a rudimentary representation of cards played onto the
table (not images, only text); and when players play
their cards the card images disappear from their hand.
Furthermore, we worked on sequencing the order of
the players so that the user will be able to see the
correct order of players; for this week it was simply
implemented as a numerical order.

We added support for 3 and 5 player games to the
Hearts module (simple variants). We also created func-
tions for finding a card by properties (suit, number,
etc.) within a deck or hand. At this point in time, we
still needed to make sure that there’s a unique iden-
tifier we can stick to when referring to objects. We
also planned for a robust subscription model to handle
message-passing.

We created a command-line interface on which to test
and play games we have written, by editing the Player
class. The interface currently supported playing cards
and bidding, but it did not support passing, since pass-
ing is often a simultaneous action between all players,
and it was unclear to us how to do this in a terminal.
We also used the command-line interface to debug the
demo game we were testing the frontend with, as well
as Spades and Hearts (with no passing). This way,
once the frontend and backend interaction had solidi-
fied, we could test gameplay on the frontend without
worrying about correctness of the backend code.



6. Week 6
We refactored the demo of the basic card game into
flask and expanded the demo of the basic card game
to see how rearrangement of the placement of the user
worked in relation to other players. We also added
some elements to the frontend of the table for games
(i.e. message boxes, player attributes such as tricks
taken, money, and current score).

We also implemented a message-passing paradigm so
that the backend can request cards/bids/etc. from the
frontend application as well as notify it of state changes
(e.g., cards were added to the player’s hand). We also
fixed trick scoring in Hearts and Spades, which hadn’t
taken into account ace high. Additionally, we began
work on a main module that will import all games and
maintain the mappings of all the objects.

We implemented frontend functions that the game en-
gine backend calls through message-passing. We also
changed bidding functions to make sure they took ar-
bitrary strings instead of integers. In addition, we
started work on Bridge, which seems to be far more
complicated than any game we had so far. We also
attempted to get a game working with the frontend
graphical interface, but failed.

Furthermore, we successfully implemented the entire
game-joining interface. Players could now login, host
games, delete games and join games. Additionally, no
two players are permitted to use the same username.
When a game is full, the host has the option to start
the game (although the “start game” button did not
yet work).

7. Week 7
This week we were able to get a demo working.

We worked on how to handle redirecting users to the
game table once enough players have joined and the
host chooses to start the game. We also discussed
some frontend UI design choices as we started to flush
out the remaining missing components in our fron-
tend/backend integration.

We finished implementing all middleware stubs except
for getting bids. We also added support for displaying
card images in the trick taking area. We also created a
system for initializing the game table with initial val-
ues for all the player information.

We also started learning about Heroku, a cloud plat-
form supporting Python on which we can host our app.

8. Week 8
We implemented getting bids from players and started
implementing getting multi-card plays from players.
While doing this, we ran into the issue of how to vali-
date the combination of cards. Ultimately, we decided
that the backend should do validation. In addition, we
let people view the last trick by adding a delay before
clearing the trick.

We also solved a circular import issue that we were
experiencing while importing server components. We
also began work on a GameManager to keep track of
existing games and score history. Some of this code
would need to be merged with the existing frontend/server
code.

In terms of deployment, we also tried to get our appli-
cation working with Heroku. The application managed
to get past the login screen, but got stuck when trying
to create a new room. The issue seemed to be related
to how gunicorn interacts with the other packages we
were using.

9. Week 9
We finished implementing multi-card plays, passing
cards, a combo box for bids, and error messages shown
on invalid card clicks. We also fixed some remaining
bugs in the game list. Additionally, we changed card
dealing so that cards are added to player’s hands in
sorted order, in order to facilitate more natural dis-
play of cards to users in the frontend.

We also figured out how to use Doxygen to automat-
ically generate documentation in a nice format based
on the documentation in our backend code and briefly
looked into other documentation options such as Epy-
doc and Sphinx.

We also implemented drop-down lists on the room list
page that allows the host to choose a game (e.g. Hearts,
Spades, Bridge) and a number of players. Each game
supports a different set of values for the number of
players.

10. Week 10
We allowed users to upload their own code files, fin-
ished support for selecting different games at start
time, implemented end game dialog, and extensively
tested everything.

Additionally, we got the code uploaded to Heroku so
that Cards with Friends can be hosted remotely.

Finally , we filled in any existing holes in the documen-
tation and finalized a format for the documentation.

4. END PRODUCT
4.1 Initial Goal
The final product, ideally, was to be a website or web ap-
plication, where a person would be able to use the following
features:

• Search for an existing card game using its common
name or nicknames, or using a subset of the rules of
the game.

• Add a new card game if it does not yet exist on the
website, via a web interface where the user would be
able to specify the rules. For example, one would need
to specify such aspects of a game as the cards to use,
the number of players, the criteria for ending a round,
points received per card, and other guidelines. Alter-
natively, if someone wants to create a minor variant of
a game (add “house rules”), then they would be able
to make a copy of the rules of the existing game, and
then simply edit a few parameters. The newly created
game would be made available to everyone.

• Start a game with a private group of friends, or in a
public room. In the case of a private group of friends,
one person would create a unique ID or URL (similar
to the current implementation of Google+ Hangouts),



which others would then be able to join given the ID. If
a user wants to play with anybody, they would specify
the game they want to play, which would then be visi-
ble to everyone else in the room, who could then join.
The game would start once there are enough players.

• Play through a specified card game with other people,
where scoring and legal moves are automatically deter-
mined by the rules (gameplay will be similar to that
of Microsoft Hearts).

• Play through a game with one or more computer play-
ers, which will have multiple difficulty levels.

In addition to these main features, we realized it was possi-
ble to expand in many directions if time permitted (which
we realized was admittedly a bit unlikely, even at the very
beginning). For example, if we made our implementation of
a card game sufficiently abstract, we might have also tried
to implement other general categories of the games such as
shedding or accumulation games. With extra time, we might
also have tried to make our AI increasingly sophisticated. At
the most basic level, the AI would simply play random cards.
More advanced AIs would include some aspect of machine
learning, like looking at previous games played and analyz-
ing which moves of a given game resulted in the most points
for a round. To do this, we would also need some standard-
ized method of storing previous games. Another potential
direction we considered would be to improve the look of the
user interface. At the very least, a user’s cards would be dis-
played in text form, but we could also add actual pictures
to represent cards, or animate cards as they go from a user’s
hand to the center (again, similar to Microsoft Hearts).

In the worst case, we planned to have the general abstract
structure to play a card game, along with perhaps one im-
plementation of a card game like Spades (hard-coded in, as
opposed to the desired method of inputting the rules). Ad-
ditionally, we wanted to have the web interface that would
display cards and games, but non-functional interaction with
the server, so that it would not really be possible to play an
actual game online or create one.

4.2 Actual Product
After working on this project for a term we were able to
create a website, hosted on Heroku, where multiple players
can connect and play card games together. Details of the
frontend and backend follow.

4.2.1 Frontend
1. Login Screen

Each player starts at the login screen. Here they must
enter a nickname that will uniquely identify them dur-
ing this particular session. No two players are allowed
to have the same nickname. In the future we could
actually give each player an account with a password
that they log in to every time they come back to play.
For now, however, nicknames only last for a single ses-
sion.

2. Room List
After choosing a nickname, players are redirected to
the room game list. Here, players can create and join

“rooms”. A room eventually becomes a game when
enough players join. On the room list page, players
can choose to create a new room. In doing so they
select the game type and number of players from a
dropdown list. We currently have support for Hearts
with 3-5 players and Spades with 4 players. We of
course hope to expand this as users submit rules for
their own games. Once enough players have joined a
room, the host has the option to start the game.

3. Game Table
When the host starts a game, all players in the room
are redirected to the game table page. Here, the card
game begins. Figure 1 depicts the GUI that players use
on the game table page. This GUI supports features
such as passing and bidding that may or may not be
used by any given game. A log window displays mes-
sages to players instructing them what they need to
do next in the game. Players can play cards simply
by clicking on them. The cards played in the current
trick are displayed in the center of the screen. Statis-
tics such as number of tricks taken and total score are
displayed for all players in the game.

4. Game Submission
When a user decides to implement their own version of
a game, they write a Python file desribing their game.
In order for this file to be integrated into the server it
must be uploaded. Currently a rudimentary system is
in place to upload the file from the users computer and
generate a submission file with important information
such as the author’s name and email. After the file is
submitted, it must be manually inspected and tested.
If there are any problems the author will be emailed,
otherwise it will be moved into the games folder and
added to the game creation list. In the future, we
hope to automate some or all of this process. This
will necessitate the creation of a sandbox environment
for security purposes but is clearly worthwhile as users
will receive instant gratification when creating games
while also providing a reasonable testing suite for de-
velopment. Automated uploading will also accelerate
the development cycle of these users.

4.2.2 Backend
The first components of the backend were the Card and
Deck classes, which provide information and images for a
standard deck of cards, as well as methods for interacting
with the cards. We also have a Player class, in which we
store a player’s name, as well as their hand, their score, and
the cards they have taken. These classes are used in the
Game class, which has general methods to start and reset a
game. This class has the subclass TrickTakingGame, which
has methods more specific to trick-taking games. When
users create games, they inherit functions from the Trick-
TakingGame class. Specific details about classes and func-
tions can be found in the documentation of the application
on the application website.

4.3 Tools Used
We used a couple of tools to make Cards with Friends. Fig-
ure 2 illustrates the various components of the application
and how they interact.



1. Flask
Flask is a microframework for Python based on Werkzeug
and Jinja2. This allows Flask to be a very lightweight
and extensible web framework. Flask is able to handle
routing and serving webpages while using a sophisti-
cated templating system to create customizable pages
based on a Python backend. This was an ideal sys-
tem to integrate the backend game logic, which was
also written in Python, with the frontend which is dis-
played within the browser.

2. Heroku
Heroku is a cloud application platform which we used
to deploy our web application. We used Heroku to host
our web application on a website rather than hosting
it locally on a personal machine. Heroku is not ideal
for hosting our application because it causes it to run
very slowly. One reason for this is that it does not
fully support WebSocket and falls back to XHR long-
polling. Ideally we will eventually host the project
elsewhere but Heroku was the easiest option for now.

3. Socket.IO
Socket.IO is a JavaScript library for real-time web ap-
plications. It includes a client-side library and a server-
side library for Node.js. Socket.IO connects the browser
to the server, which was written in Python.

4. gevent
gevent is a concurrency library for Python based on
greenlet and libevent. gevent fundamentally modifies
Python’s threading to create a cooperative threading
environment. This means that all context switches
must be performed cooperatively instead of forced by
some external thread manager. This is very efficient
for applications with network and user latency, such
as our WebSockets. Unfortunately, the learning curve
was non-trivial and led to some tricky race conditions.

5. FUTURE WORK
5.1 Automated Submission Process
Currently, to submit a game, users upload their file, which is
moved to a staging area, and reviewed by a developer before
it is made available to everyone. An automated process to
put users’ games online would greatly streamline the game
creation process and make it more convenient for all parties
involved. Relatedly, we would also want to implement a
sandbox in which users would be able to test their games
before submission. Clearly, for all of this, we would also
have an automated code review process so that users would
not be able to execute arbitrary code.

5.2 Social Integration
To make the gameplay experience more human, we could
add in social components to our application. Natural paths
we could take include adding video chat to ongoing games, so
that players can see each other; however, this would require
a significant upgrade to the web hosting service we use. We
could also add forums to the website, so that users can dis-
cuss such topics as variations on games and implementations
of said variations.

5.3 Improved Interface
The current interface is authentically spartan. The initial
landing page greets you with unformatted text and jarring
hyperlinks. The game playing interface also trades aesthet-
ics for functionality. A push towards beautiful design would
definitely help the product feel much more elegant and pol-
ished. Functionally, the user interface is missing some small
features such as simultaneous plays, chat, and clearing un-
needed clutter such as money in non-monetary games and
stale error messages.

5.4 AI Player
Something else that could be added to Cards with Friends
would be the implementation of a rudimentary AI or com-
puter player that could play against humans or other AI
players. An advantage of having an AI player would be that
there would not be a required number of human players to
play card games that require a specific number of players.

6. CONCLUSIONS
In conclusion, card games encompass a varied landscape of
different games. The wide range of possibilities makes card
games appeal to many different people. Unfortunately, this
diversity also makes providing support for the entire range
of possibilities a daunting task. By providing users with a
public API, supporting new games can be effectively crowd
sourced. We explored this possibility by creating a minimal
viable product to better understand the feasibility and desir-
ability of this approach. To do so, we limited the scope of the
project to only support trick-taking games because the sev-
eral broad categories of card games can easily be developed
separately and then integrated. Furthermore, developing
in an overly generic setting can be stifling, so starting with
trick-taking games helped motivate our decisions. The prod-
uct we made was surprisingly compelling. Supporting new
games, while not trivial, was also not overly cumbersome.
Clearly there are still mountains of low-hanging fruit which
we detailed in the future work section. However, the ini-
tial version shows enough promise that further exploration
seems worthwhile. Based on the research conducted on prior
work, it appears that this approach may actually be novel
and capable of unifying all card games in a single website.

7. ACKNOWLEDGMENTS
We would like to thank our faculty advisor, Professor Steven
Low, for guiding us throughout the course of the project
and for providing us with helpful feedback on our progress.
We would also like to thank Professor Mani Chandy and
Professor Adam Wierman for co-hosting the class.

8. REFERENCES
[1] Browne, Cameron, Powle, Edward, et al. A Survey of

Monte Carlo Tree Search Methods. IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4,
no. 1, Mar. 2012. <http://www.doc.ic.ac.uk/~sgc/

papers/browne_ieee12.pdf>.

[2] Card Game. Wikipedia. 12 Mar. 2013. Web. 15 Mar.
2013. <http://en.wikipedia.org/wiki/Card_game>.

[3] Volity. <www.volity.net>.

[4] General Card Game Engine.
http://code.google.com/p/gcge/.

http://www.doc.ic.ac.uk/~sgc/papers/browne_ieee12.pdf
http://www.doc.ic.ac.uk/~sgc/papers/browne_ieee12.pdf
http://en.wikipedia.org/wiki/Card_game
www.volity.net
http://code.google.com/p/gcge/


[5] Flask (A Python Microframework).
<http://flask.pocoo.org>.

[6] Game Description Language. Wikipedia. 11 Jan. 2012.
Web. 15 Mar. 2013. <http://en.wikipedia.org/wiki/

Game_Description_Language>.

[7] General Game Playing. Wikipedia. 4 Dec. 2012. Web.
13 Mar. 2013. <http:

//en.wikipedia.org/wiki/General_game_playing>.

[8] Love, Nathaniel, Hinrichs, Timothy, et al. General
Game Playing: Game Description Language
Specification. Stanford University: Stanford Logic
Group, 2008. <http://games.stanford.edu/

language/spec/gdl_spec_2008_03.pdf>. Print.

[9] Markov Decision Process. Wikipedia. 15 Mar. 2013.
Web. 15 Mar. 2013. <http://en.wikipedia.org/wiki/

Markov_decision_process>.

[10] McLeod, John. Card Games and Tile Games From
Around the World. Card Game Rules. Pagat.com. 1
Mar. 2013. Web. 4 Mar. 2013.
<http://www.pagat.com/>.

[11] Multiplayer Video Game. Wikipedia. 14 Mar. 2013.
Web. 15 Mar. 2013. <http://en.wikipedia.org/wiki/

Multiplayer_video_game>.

[12] Spades. Wikipedia. 8 Mar. 2013. Web. 15 Mar. 2013.
<http://en.wikipedia.org/wiki/Spades>.

[13] Tielscher, Michael. A General Game Description
Language for Incomplete Information Games.
University of South Wales: School of Computer Science
and Engineering, 2010. <http:

//www.cse.unsw.edu.au/~mit/Papers/AAAI10a.pdf>.
Print.

http://flask.pocoo.org
http://en.wikipedia.org/wiki/Game_Description_Language
http://en.wikipedia.org/wiki/Game_Description_Language
http://en.wikipedia.org/wiki/General_game_playing
http://en.wikipedia.org/wiki/General_game_playing
http://games.stanford.edu/language/spec/gdl_spec_2008_03.pdf
http://games.stanford.edu/language/spec/gdl_spec_2008_03.pdf
http://en.wikipedia.org/wiki/Markov_decision_process
http://en.wikipedia.org/wiki/Markov_decision_process
http://www.pagat.com/
http://en.wikipedia.org/wiki/Multiplayer_video_game
http://en.wikipedia.org/wiki/Multiplayer_video_game
http://en.wikipedia.org/wiki/Spades
http://www.cse.unsw.edu.au/~mit/Papers/AAAI10a.pdf
http://www.cse.unsw.edu.au/~mit/Papers/AAAI10a.pdf


Figure 1: GUI for playing generic card games. Players can click on cards to play them. Features such as passing and bidding are
supported. A textbox displays relevant instructions, warnings, or other messages to the user.

Figure 2: Schematic diagram of how the application works.


	Introduction
	Literature Review
	Timeline
	Initial Timeline
	Actual Timeline

	End Product
	Initial Goal
	Actual Product
	Frontend
	Backend

	Tools Used

	Future Work
	Automated Submission Process
	Social Integration
	Improved Interface
	AI Player

	Conclusions
	Acknowledgments
	References

