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ABSTRACT
In the typical networked computer game, one or more clients
communicate with one server process. The server process is
responsible for performing the simulation required by the
game and sending any results back to the clients, and the
client processes are responsible for displaying the game state
to their users and retrieving command input to send back
to the server. Most games capable of supporting several
thousand concurrent users choose to partition or duplicate
the game universe in order to spread out server load ac-
cross independent server processes, but these solutions can
be inconvenient for players and can still become overloaded.
We consider mechanisms by which arbitrarily many players
could be supported by a single server cluster that can dy-
namically provision computational resources as required by
system load, and we implement a simple networked game
as a proof-of-concept of an arbitrarily scalable game server
software.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed
Systems—Client/server

General Terms
Distributed Systems

1. INTRODUCTION
The modern Internet era has brought with it the “massively
multiplayer” genre of games supporting thousands of con-
current users in the same universe. It is a challenge to
write server software for such games, as the requirements
are steep: any server must be able to process input from a
large amount of users, simulate the results of every interac-
tion performed by every user’s avatar, and send the results
back to every user in real time - for any conceivable number
of users. Evidently, there are limits to how many users a
single node can process: after a certain amount of load is

placed on the server, it simply becomes impossible for the
node to support any more users while still running the sim-
ulation at full speed. Hence, it is inefficient to run an entire
game world on a single node, unless the size of the game
world is appropriate for the effective user limit.

For games where the expected user base is much larger than
the user limit of a single node, there are a number of exist-
ing solutions. One common model is to run multiple copies
of the game world, called “shards”. Each shard is mutu-
ally independent of the others; there are usually few mech-
anisms by which users on different shards can interact with
each other, and often player characters are not permitted
to move between shards (without, for example, paying a
“character transfer fee”). Another common model is to di-
vide up the game world into multiple independent “zones”
between which players can move at will, usually by travers-
ing a designated boundary within the game world, and host
each zone on its own node. This model works well when
players are fairly uniformly distributed; however, network
effects can make certain zones (like trade hubs) particularly
popular, causing those nodes to be frequently congested at
peak hours. In addition, the act of zoning carries a non-
trivial computational cost, and objects on different sides of
a zone boundary are usually invisible to each other, which
places constraints on where zone boundaries can be located:
it would be unacceptable if a zone boundary were located,
for example, in the middle of a frequented public space.

This discussion applies primarily to games where real-time
positional data is involved - in other words, for systems
where a soft-real-time guarantee applies. Turn-based games,
tick-based games (with tick intervals on the order of minutes
or hours), and thinly disguised Web applications have dif-
ferent scalability issues that are not discussed here.

2. A CASE STUDY: EVE ONLINE
EVE Online is probably the best-known modern example
of a single-shard universe, supporting tens of thousands of
concurrent users in a single world. The world of EVE is nat-
urally partitioned into 7929 distinct solar systems. EVE’s
internal architecture allows one or more solar systems to be
placed on a single compute process [5]. With many compute
processes distributed over around 60 physical machines (as
of 2007), the entire game universe can be simulated.

However, each compute process can only handle so much



load, and with EVE Online’s gameplay structure capable
of spontaneously generating load spikes of several thousand
users at a time (for example, during fleet fights between
major alliances), it remains a challenge to make sure that
the game experience remains smooth. In the past, large
fleet fights have been rough for the server cluster to han-
dle, with long load times, long delays for actions, discon-
nections, and node crashes being common. A recent feature
called “time dilation”, which slows down simulation speed
on heavily loaded nodes, has permitted large battles on the
scale of 3,000 concurrent users [1] to proceed without be-
ing affected by the problems of the past, but slowing down
simulation speed for a portion of the game world can have
significant ramifications of its own. In particular, doing so
gives both attacker and defender much more effective time
to raise reinforcements, further compounding the load prob-
lem.

There are some solar systems that are continuously loaded
- for example, Jita, currently the game’s most important
trade hub, which continuously averages over 1,000 concur-
rent users and processes tens of thousands of transactions
per day. The Jita system is hosted on a dedicated physical
server, but even so, the occupancy of the solar system must
be capped at a particular level (currently around 2,300) to
prevent the node from becoming overloaded and to maintain
the high responsiveness required by a major trade hub.

The motivation for a dynamic scaling mechanism at the per-
solar-system level is not hard to see. For continuously loaded
server processes, it would enable essentially arbitrary capac-
ity growth, allowing more traffic at peak hours. For the dy-
namic and unpredictable loads generated by fleet fights, it
would enable additional capacity to be allocated on a whim,
allowing such load to be absorbed easily.

3. RELATED WORK
Prior research by Müller and Gorlatch [2] has addressed the
problem of distributing simulation load for a single node
across multiple servers. Their approach, aptly called “mul-
tiserver replication”, replicates the game state for a node
across multiple proxy servers, each one responsible only for
a subset of the actual computation. Each proxy server, after
computing its own “share”, rebroadcasts its own intermedi-
ate result to every other proxy, while simultaneously reading
in intermediate results from every other proxy to construct
a picture of the full game state that can be sent to clients.
Their research addresses the problem of proxy failure and
data redistribution, which is essential for a robust system.
We considered using their architecture for our project but
they do not appear to address the problem of provisioning
additional proxy servers in response to load, which we wish
to address. In addition, though this would allow a fairly
conventional design for individual nodes, adding new nodes
could potentially be a costly operation, as any new node
would have to receive a full copy of the entire game state.

Other prior research by Raaen et al [3] addresses the prob-
lem differently, using a model they call a “lockless relaxed-
atomicity parallel game server” (LEARS). In this model, ev-
ery entity or action in the game world is assignable to a
compute thread, and the thread pool updates every entity
or action based on a definable schedule. This approach re-

quires that the game architecture be specifically designed
for parallelism - for instance, objects are required to use
message-passing to change other objects - but rescaling be-
comes almost trivial: the thread pool need only be resized
to deal with transient load.

One potential item of concern is that any parallel architec-
ture where every node may potentially interact with every
other node leads to quadratic scaling problems as nodes get
added, which means that capacity scales less-than-linearly
with increasing node count. This problem could be allevi-
ated by traditional zone-partitioning, with dynamic scaling
applied only to individual zones. This architecture would
allow load transients like those in the EVE Online exam-
ple (discussed below) to be absorbed, while still allowing a
large single-shard universe without the quadratic overhead
required by a single-zone world.

An attractive feature of the LEARS model is that it does
away with most of the locking and other synchronization
present in most models. The thousands of players playing
the massively multiplayer games in question are in differ-
ent locations, using different hardware, communicating over
variously patchy internet connections, etc., and so given how
coarse the server’s knowledge is about which client com-
mands were actually issued in what order, expending system
resources ensuring that commands remain exactly in order is
almost silly [3]. Instead, LEARS introduces a model where
state is kept consistent by allowing objects to modify only
their own state, while all other interactions are scheduled as
“tasklets” to be executed by worker threads.

4. OUR PROJECT
We opted for the LEARS “tasklets” model for this project,
largely because we were interested in exploring the practical-
ity of the relaxed-synchronization model presented in that
paper. This required that the game architecture be care-
fully designed to work within the constraints imposed by
the “tasklet” model, but adding more worker nodes becomes
a relatively simple matter.

The scope of this project was strictly proof-of-concept. We
created a multithreaded, asynchronous, task-based simula-
tion engine, as well as some example objects for the simula-
tion. We present the result as a technology demonstrator in
two parts - a server component and a client component - to
validate the practicality of our chosen approach.

4.1 Server Architecture
The architecture for a single “node replacement”, i.e. a
server entity responsible for simulating all of the objects
and interactions for a particular defined subset of the game
world, consists of the following components:

• One “master” thread. This thread is responsible for
keeping track of pending “tasks” and scheduling tasks
for consumption by local worker threads. It also main-
tains a handle on all game objects for this node.

• Several game objects. Each game object represents an
item in the game whose state might change. Changing
a game object’s state occurs only when some thread



Figure 1: A high-level overview of our server architecture.

runs a task associated with that object. With proper
scheduling of tasks, it should not be necessary to main-
tain atomicity of game object state changes.

• Several tasks. Almost every task is associated with an
object and represents some interaction or update that
object must process. A few other tasks (such as univer-
sal collision detection, which notifies two objects that
they are too near each other) run without associated
objects.

• A few “worker” threads in a threadpool. Each thread
consumes a task from the master thread’s ready queue,
performs necessary calculations, and updates the state
of the objects the tasks represent – potentially gener-
ating other tasks during this process.

• A communication proxy. This proxy spends most of
its time idle, but it wakes up periodically to publish
the current game state to all clients and to respond to
game commands issued by clients.

• A MySQL database. The master thread interfaces with
a database to load and save game objects and environ-
ment state to and from long-term persistence. This
would be used when users log in, sign out, or open
saved items.

Our technology demonstrator server runs one such node.
The world is initialized with a planet and a field of asteroids
with randomized initial positions and velocities. Once ini-
tialized, each object in the world schedules an update task
every 100 ms. Additionally, every 100 ms, the system sched-
ules a collision detection task, which identifies all pairs of
objects that are sufficiently close to each other and applies
a repulsive force to objects determined to be overlapping.

Finally, every 200 ms, the server broadcasts a snapshot of
the current game state to all connected clients.

Tasks are held in a ’waiting’ queue until the server clock has
advanced to the point where the task must be executed, then
moved to a ’ready’ queue from which worker threads can
consume them immediately. An estimate of instantaneous
load is taken approximately every 1000 ms by counting the
number of threads actively processing tasks and adding the
number of tasks in the ready queue; if this number is greater
than the number of running threads at any point, the server
is ’overloaded’, i.e. it cannot keep up with the volume of
tasks being scheduled. This state manifests as lag: tasks
are executed later than scheduled.

4.2 Client Rendering
By way of comparison, the client compute architecture is
quite simple, with most of the effort devoted to visualization.
Here are its components:

• A master thread. Once again, there is a master com-
pute thread. This thread is devoted to graphical visu-
alization of interpolated game object actions, and cur-
rently simulates the server. (When interpolating the
entire game state becomes too difficult, we will restrict
this thread to interpolate only visible or local objects.)

• Several game objects. Exactly as in the server. In fact,
the game objects in the client should be a (partial)
mirror of all game objects in the server.

• A client-side proxy. This proxy also spends most of
its time idle, but it wakes up whenever it receives an
update of the game state or a command to forward to
the server.



Figure 2: A graph of our client/server communication network, detailing threads and socket types.

The technology demonstrator client provides a visualization
of the current server state, provided by 3D graphics engine
OGRE using the library OpenGL. Because server state is
sent only intermittently, and because of the potential for
network outages, the client does a limited simulation of the
visible game state in order to interpolate between state up-
dates. This interpolation currently consists of running the
simulation using the same update rules as the server, but
with much smaller timesteps. This approach can cause prob-
lems with object warping during state updates, since some
of the forces affecting objects are velocity-dependent. As a
first iteration, though, the approach seems sufficient.

Because none of us are artists, all art assets have been
procedurally generated. The background starfield was pre-
generated by an external program called Spacescape. Aster-
oids are created by running the ’marching cubes’ isosurface
algorithm on a noisy three-dimensional scalar field weighted
by distance. Planet heightmaps are generated by sampling
a noisy three-dimensional scalar field along the surface of a
sphere; planet textures are created by mapping heights to
colors. Coherent noise is provided by the Perlin noise algo-
rithm; the unique identifier for each procedurally generated
object is used as a “seed value”. Hence, every procedurally
generated asset is different from every other one, but objects
look the same across clients and accross separate runs of the
technology demonstrator since the same unique identifiers
are used on each initialization.

4.3 Client/Server Communication
Communication between the server and clients is mediated
by proxy threads using the concurrency library ∅MQ as a
transport layer. There are two types of messages that need
to be transmitted between a server and all of its connected

clients. Each message type is handled in its own thread and
uses its own private communication port.

• Game state from the server. Game state messages con-
sist of lists of objects in the zone the server process is
currently tracking.

• Game commands from each client. Command mes-
sages are simply specifications of tasks the server should
schedule immediately.

Our server and client proxies use several types of ∅MQ sock-
ets to structure the flow of messages. All communications
between server and client occur through TCP ports.

• State update threads follow a publisher/subscriber pro-
tocol (PUB/SUB, in Figure 2). In this protocol the
server uses a single socket to communicate with arbi-
trarily many clients (which can join or leave the net-
work at will). The server periodically pushes messages
out to a port, and all connected clients simultaneously
receive the same messages by listening to that port.

• Command threads use a somewhat more complex pro-
tocol (DEALER/ROUTER, in Figure 2) than state
threads. The server once again uses a single socket to
communicate with transient clients, but this time it is
able to receive and send messages to specific clients.
In our code, each client asynchronously sends an arbi-
trary number of commands to the server port, either
requesting private data or sending tasks for the server
to perform. The server then fair-queues these mes-
sages (while tracking the source address of each mes-
sage) and schedules the relevant tasks using the game



Figure 3: A screenshot of the technology demonstrator client rendering a planet and asteroids.

manager. If a client had requested a reply, then the
server looks up the source address and sends a message
only to that specific client.

• Finally, all our threads communicate with their parent
threads using a pair protocol (PAIR/PAIR, in Fig-
ure 2). These are one-to-one asynchronous channels
for miscellaneous communications such as passing data
between the command and game state threads or broad-
casting kill signals so that the child threads can join.
As both socket ends of a pair occur in the same process
(albeit different thread), they send messages over an
interthread protocol instead of TCP, which is slower.

Encoding all parts of the application as strings was neces-
sary for server-client communication. Data were serialized
into strings by interpreting each byte as a character. At
the other end of the communication channel, data were re-
stored by reinterpreting an appropriate number of characters
depending on the data type. This is obviously not endian-
independent, or safe in any other sense for that matter, and
would have to be refactored before a public release of the
game. As it is, when an object is serialized, a string is built
up of the byte strings representing each of its fields by con-
catenating them together. Since concatenation and trunca-
tion of strings is more efficient at the end, it was necessary
to both add and remove from the end of the string (treating
a serialized string as a stack). Thus, for each class, the fields
were serialized in one order and unserialized in the reverse
order. The first piece of data recovered from any serialized
object string is information about the object’s class, so that
unserialization would not require any information outside of
the string itself to reconstruct the correct objects.

4.4 Technology Demonstrator Behavior
Our demonstration consists of an asteroid field that users
can interact with. Users can select a single asteroid and
then shift-click a second asteroid to “throw” the first one at
the second. We decided to implement limited physics uncon-
strained by reality, so asteroids bounce off each other quite
energetically when they collide, and in free space have a
noticeable drag force slowing them down. The user has con-
siderable freedom to pan, zoom, and shift the camera view
of the procedurally generated asteroids and planet against a
starry background (see Figure 3).

5. OBSERVATIONS
The task scheduling system we wrote, because of the neces-
sary consistency checks and context switching, incurs a small
but significant amount of overhead for every task—in par-
ticular, large compared to simple tasks like physics updates.
We observe that, when tasks are small compared to schedul-
ing overhead, adding more threads is of limited utility. In
particular, when the server is tracking as many objects as
a single thread is capable of processing without significant
load increases—on the test server platform (2.67 GHz Core
i7 920, with ample available memory), we empirically deter-
mined this threshold to be around 11,000 objects—adding
more threads causes the size of the ready queue (and hence
the load estimator) to increase, from much less than 10 to
more than 600 on the test platform.

On the other hand, when tasks are large compared to schedul-
ing overhead, multithreading on a single machine does pro-
vide an approximately linear increase in load capacity. To
verify this observation, we inject a small amount of synthetic
load to each update task, forcing a sleep for 5 milliseconds.



A single thread can then only handle 20 objects without
falling behind; however, adding more threads increases this
threshold, up to 80 objects with 4 threads. We did not add
more than 4 threads in any given run, since doing so would
be of limited utility on a quad-core machine.

We wrote our task framework to use absolute timestamps
everywhere. During testing, we observed that, from some
machines, there were significant delays between task trans-
mission and task execution. We determined that the delay
was due to client and server clocks being out of synchro-
nization. This problem could be remedied by using relative
timestamps everywhere except the actual scheduler, but was
not considered important for the technology demonstrator.

We successfully ran client applications on four machines si-
multaneously, with the server running on a fifth machine.
Effects of commands from each of the clients were visible
in all other clients. All of these machines had 64-bit archi-
tectures. We found that, while both the client and server
applications could be compiled and run together on 32-bit
machines, we were unable to use a client on a 32-bit machine
with the server running on the 64-bit machine. This may be
a result of the serialization paradigm, which depends heavily
on the actual binary representation of data in memory.

6. FUTURE WORK
While the technology demonstrator provides a promising ini-
tial implementation of the ideas behind this project, it is
substantially incomplete as a computer game, and indeed
there are fundamental issues that we were not able to ad-
dress in the time allocated. We discuss items for potential
improvement, iteration, and addition here.

6.1 Large-Scale Implementation
The architecture of the technology demonstrator server as-
sumes only one machine, on which all components of the
server run as one process with many threads. We asserted
as part of the motivation for this project that loads can po-
tentially climb to the point where no single server can keep
up with the simulation in real time. In such a scenario, the
logical step would be to distribute the simulation among
multiple physical servers, allowing a potentially unlimited
number of computation threads.

There are serious issues that must be tackled to allow such
an architecture, and we were not able to address them in
the time given. An important unanswered question is that
of dispatching tasks to remote threads: how much data
must be sent, and how much data must be sent back? In
the model where all object descriptions reside in a single
shared memory space, it suffices to pass around addresses of
objects—but when this model no longer holds, memory ad-
dresses become meaningless. One solution is to pass object
descriptions to remote computation threads, and return de-
scriptions back to the“master”thread pool; another solution
is to use a replication model similar to the Müller-Gorlatch
model, having certain thread pools responsible for certain
sets of objects and broadcasting state among each other.

If we were to pursue this objective, we would want to im-
plement one or both of these methods, and evaluate the ef-
fects on performance. The distribution of compute threads

to multiple servers increases communication latency, which
could impact both performance and accuracy; we would
want to quantify these effects and determine whether the
approach would be useful in high-load conditions.

6.2 Database
Storing persistent data is essential for representing long-term
character progression and is useful in the case of moving
characters between “zones”, so we would need to construct
a database backend. We began implementing this in this
project using MySQL, a popular and free relational database
solution which is easy to interface with from C++ using the
library mysql++. We created one table to store the common
data fields of every object that inherits from the base class
SpaceObject, and another specifically for the class Asteroid,
where the additional information characterizing each Aster-
oid could be stored. We wrote a PersistenceManager module
which can connect to this database remotely and save and
load Asteroids, but since it was not an essential part of the
technology we wanted to demonstrate, we did not complete
and integrate this module.

Further work on the database could integrate Memcache, a
distributed memory-based caching system. The game data
would be stored in key-value format in a distributed cache
that is built on the memcache. This, to some extent, would
alleviate disk latency. A memcache layer can handle all the
reads and writes while a separate queuing process would
run the data into the MySQL database. It is possible to run
the MySQL, memcache, and queuing process on different
machines in order to lighten the load.

We could experiment with a hashing algorithm (perhaps a
modulo selection algorithm) in order to distribute the keys
uniformly across the memcache server clusters. This would
be an constant-time operation and also provide a good dis-
tribution of keys without necessarily creating overcrowded
hot spots.

We would also need to consider the problem of a database
server failing. The standard solution for this problem is to
have at least one failover server that remains synchronized
to the master server and can take over if the master server
encounters issues.

The nature of a massively multiplayer online game is that
it will quickly spread throughout the social graph. In a
production environment, we would need to quickly be able
to respond accordingly by scaling the storage layer without
interruption. Perhaps we could accomplish this by simply
doubling the size of the cluster by promoting the slave server
to masters and adding the newly promoted nodes to the
hashing, further removing items that no longer hash to the
old master servers. This would give us flexibility and would
not interrupt the application layer. Or perhaps we would
take advantage of another concept called vbuckets [4].

6.3 Bandwidth Reduction
In our technology demonstrator, game state changes are cur-
rently encoded by serializing all game objects and publishing
this full state. In order to reduce bandwidth, a planned ex-
tension would be to frequently publish differential (“diff”)
updates instead of full game updates. These diff updates



would only encode the game object fields that have been
modified since the previous diff update. Our network topol-
ogy already supports handling such messages, but we still
need to implement time-stamping of changes so that the
server proxy can know which fields it needs to send.

If diff updates are ultimately implemented, we would need
a procedure for providing new clients a copy of the full
game state. This could trivially be accomplished by query-
ing the server through the command thread and forwarding
the server’s reply (a full game update) to the state thread.
It would be very natural to integrate private full game up-
dates with login/authentication requests (another possible
extension).

7. CONCLUSIONS
Our testing suggests that, as long as scheduling overhead can
be kept small compared to task size, the architecture we have
demonstrated could be very useful in creating arbitrarily
scalable game server software.
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