
SIPping Wikipedia
Using Statistically Improbable Phrases (SIPs) to Determine Document Relatedness

Alexandre Boulgakov
Computer and Mathematical Sciences

California Institute of Technology
Pasadena, CA 91125

boulgako@caltech.edu

Giordon Stark
Physics, Math, and Astronomy

California Institute of Technology
Pasadena, CA 91125
kratsg@caltech.edu

Abstract
Statistically improbable phrases, phrases that occur more fre-
quently in a particular document than they do in a containing cor-
pus, are currently used as keywords. We propose a framework that
uses statistically improbable phrases to quantify relatedness be-
tween pages. We test the framework with a dataset drawn from
Wikipedia, and propose potential applications.

Categories and Subject Descriptors I.2.7 [Natural Language
Processing]: Text Analysis; H.2.8 [Database Applications]: Data
Mining

General Terms Algorithms, Human Factors, Measurement

General Terms Statistically Improbable Phrases, Term Frequency,
Inverse Document Frequency, Heavy-Tailed Distributions, tf-idf,
SIPs

1. Introduction
Statistically Improbable Phrases (SIPs) were first developed by
Amazon.com for their “Search Inside!” program. Amazon scans
the text of all books in a particular category and determines the
phrases that occur with high frequency in a particular book relative
to all books in the category. These phrases are denoted SIPs. They
identify interesting, distinctive, or unlikely phrases that occur in the
document (with respect to a corpus) – a search ranking technique
for Amazon to generate tags for a book. In a more general sense,
SIPs are a set of keywords that are likely to be more relevant for
search engines in generating desirable results. An example of the
inverse is a “Googlewhack” in which users combine two dictionary
words together to form a new phrase that returns exactly one hit on
Google.

In order to determine SIPs, we can use a weighting system sim-
ilar to term frequency – inverse document frequency (tf-idf). This
provides a statistical measure to evaluate the relevance of a par-
ticular “word”1 in a given document relative to all documents in

1 By word, we also imply a bigram or trigram (a phrase of two or three
words respectively)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

the collection. The actual ranking of a word can be determined by
multiplying the two independent rankings: term frequency and in-
verse document frequency. For example, suppose a set of papers
on Networks talk about centrality and closeness. We can determine
the term frequency of the phrase “degree of centrality” in a particu-
lar document by counting the number of times that phrase appears
in the document and normalize it using the number of trigrams in
that document. Then, we find the inverse document frequency by
taking the number of documents in our collection and dividing by
the number of documents in our collection of research papers that
use this same phrase (excluding the current document we’re analyz-
ing). This ranking favors phrases found abundantly in the document
(term frequency) but not the corpus (document frequency). It also
has the added benefit of filtering out common words (stop words)
due to their high document frequency.

1.1 Related Work [3]
Amazon, LLC pioneered most of the work in this field. Due to the
commercial liabilities with their marketplace book search - Ama-
zon.com does not appear to elaborate on their methodology for de-
termining and generating SIPs, however S. Anand has created a
similar project in Python. The source of 100 e-books were parsed
to get 100,000 words. These words were hard-coded into his script
for comparison against a web page submitted for analysis. Anand
considered using a regular expression to get all the words extracted
out of the web page, but this posed issues because his definition
of word required keeping in the punctuation marks. We will im-
prove on this with consistency with respect to filtering and parsing.
Consistent rules will give us the same results with or without punc-
tuation marks (don’t converts to dont). Our goal is to determine
page-relatedness based on these shared phrases.

Anand uses an algorithm for tf-idfs which will produces a
heavy-tailed distribution divided by a heavy-tailed distribution,
which will not necessarily be heavy-tailed. We improve on this
by modifying the IDF formula to produce the heavy-tailed tf-idfs
that [6] predicts.

Next - he appears to have no clear idea of setting the threshold
for which words are SIPs, but simply choosing “words occuring 10
times as often as in normal text”. We will use boxplots to analyze
the overall distribution of tf-idfs for our Wikipedia articles and find
that threshold using an average of multiple datasets.

Finally, the biggest issue with the Python script is the scalability.
Anand relies on calling a url and an external service to parse out
the HTML (this also includes text not shown on the page) and
fetch the words. Large HTML files and slow HTTP connections
will slow down this script significantly that it is not applicable
for numerous projects involving large data sets on the order of
megabytes to gigabytes! A secondary goal with this project is to

be able to compute and compile SIPs for large data sets with a
compact script with no dependencies.

2. Data Gathering
Our data was acquired from http://dumps.wikimedia.org/
and parsed with custom-made scripts to filter out the WikiML and
extract the phrases.

2.1 What is a Phrase?
Before we could start analyzing the phrases within the articles – we
needed a definition of “phrase” as a single word, bigram, trigram,
etc that was both meaningful and practical. In an ideal n-gram
model, the nthword depends only on the n− 1 words before it. We
also treated punctuation marks as delimiters so our phrases do not
span sentences. Our preliminary results determined that all non-
redirect, content-filled pages gave us over 1.5 billion bigrams —
which are not useful for sorting short articles. Instead, we opted
for single word phrases since Wikipedia articles are very short
on average compared to books and novels. This would be more
practical for our purposes in the long-run.

2.2 Is our Data Set Large Enough?
Wikipedia has 5.4 million articles that are non-redirects (13.2 mil-
lion articles total). Of these, only 2.3 million articles (roughly 50%)
had at least 100 words in their content. Given physical limitations
on the computers in which we ran the scripts, we could only com-
pute a subset of 100,000 articles at a time. We chose a random
100,000 articles which gave greater than 4.1 million links only on
those articles. This accounted for 1.6% of the edges total and for
5% of the total articles.

3. Finding Statistically Improbable Phrases
(SIPs)

In order to determine statistically improbable phrases, we assign a
ranking to every phrase in our corpus – a tf-idf weight. In the first
iteration of the project – our goal is to use the most simplified form
of the tf-idf so we can generate rough results to see how viable our
endgame is. Mathematically,

tfij =
nij∑
k nkj

=
nij

|dj |
(1)

Our term frequency is the number of times a given term appears
in the document divided by the number of terms in the particular
document. In equation 1, nij is defined to be the number of oc-
currences of term ti in document dj . The total number of terms in
document j is |dj | =

∑
k nkj . On its own – the term-frequency

will provide us with a heavy-tailed distribution[6].

idfi =
∑

k dk

|{j : ti ∈ dj}|
=

|D|
|{j : ti ∈ dj}|

(2)

The inverse document frequency is the total number of documents
in our corpus divided by the number of documents containing the
term ti. Our IDF happens to be “inverse” heavy-tailed so the naive
approach of combining equations (1) and (2) would compute our tf-
idf and cancel each other out – giving us meaningless data. Instead,
we use a function that diminishes the heavy-tails of the idf without
making it meaningless – the logarithm function.

idfi = log

(
|D|

|{j : ti ∈ dj}|

)
(3)

Finally, by computing the tf-idf — the distribution retains mean-
ing of heavy-tailed (see Figure 1).

Figure 1.
Heavy-Tailed Property of tf-idf

4. Applying SIPs
4.1 SIPs as a Representation of Content
In existing systems such as [2], SIPs are used to assign keywords
to documents. This demonstrates that the SIPs associated with a
document are a summary of the document’s content and the tf-idf
can be viewed as the weight assigned to each word in a document.
That the SIPs represent content implies that we should be able
to obtain an objective measure of the relatedness between two
documents by using the SIPs associated with each document.

Since the English Wikipedia has more than five million articles,
there are over 25 trillion ordered pairs of articles (for some interpre-
tations of relatedness, the comparison might be directed), making
storage and calculation of a relatedness index for each pair infea-
sible. In addition, it is unclear why storage of such a dataset might
be necessary.

4.2 Links between Wikipedia Articles
Wikipedia makes it very simple to add links between articles, and
there are people who abuse this system. There are both vandals
who abuse the system intentionally and inject spam links into pop-
ular pages, and those who add extraneous links without malicious
intent. The latter is very common with new Wikipedia editors who
think that every word on a page should link to the corresponding
page. Unfortunately, this can quickly lead to pages containing so
many links that it is unclear which are worth clicking. Some ex-
amples include the link from “Ford City, California” to “Pentland,
California” (the two cities are not related beyond being located in
the same state) and the link from “Soy milk” to “Bai ye” (the rela-
tionship responsible for the link is that bai ye is derived from tofu,
which in turn is made from soy as is soy milk). The prominence of
such links is evidenced by the popularity of the “Wikipedia game”
wherein players pick two unrelated articles and attempt to find a
link path from one to the other.

A common use case for Wikipedia is to look up articles related
to a specific subject, and a common method is to find a single article
related to this subject and follow links from that article. Links to
unrelated articles make it difficult to navigate within a cluster of
articles related to the target subject. This suggests that relatedness
could be used to cluster related articles and connect them with
links. Other links might be removed to avoid “link pollution” where
the relevant links are obscured by irrelevant links.

4.3 SIP-wise Relatedness Index
We will first propose a general framework for using SIPs to deter-
mine relatedness of articles. Then we will present concrete imple-
mentations of the framework and analyze their performance on a
large subset of Wikipedia.

4.3.1 Requirements
The framework must:

1. Rely only on the SIPs (and associated tf-idfs) of the two articles
it is comparing. It must not use any additional information,
since that might lead to complexity that scales with the size of
the dataset, which is unacceptable since it would prevent its use
for Wikipedia (which is already large and is growing) and for
larger data sets such as the World Wide Web.

2. Not penalize articles for growing. As an invalid example, a
framework that compares two articles based on the fraction of
SIPs they share would penalize the articles if any one of them
grows to include more SIPs (even if it is not at the expense of
the existing SIPs). This is undesirable because if a fraction of an
article has some content, the entire article contains that content
as well.

3. Be able to handle articles of varying length. Wikipedia articles
range from “stubs” that are a few words long to articles (mainly
lists) that can reach hundreds of printed pages in length.

The first requirement is easy to satisfy. We will consider the second
requirement later. The third requirement, however, requires some
thought. A naïve solution might look at, say, the top 10 SIPs for
each article and count how many they have in common. This seems
reasonable at first since one might expect the top SIPs to provide
a summary of each article’s content. However, this would handle
articles of different length differently. An article with only 10 words
would have all of those words be SIPs (including stop words such
as “the”) and would have little chance of being related to any other
article. On the other hand, large articles such as “Dictionary of
chemical formulas” might contain so much content that it cannot be
summarized in 10 words. One might argue that if an article cannot
be summarized in 10 words that it is too broad to be strongly related
to any of its content, but it should be noted that our use of the tf-idf
already takes this into account in the tf factor, and we do not want
to penalize an article twice for the same reason. This means that in
order to satisfy the third requirement we should examine all of the
SIPs in an article, rather than some fixed number. tf-idfs

4.3.2 A Two-Parameter Solution: RI(f, g)

Since we will examine all of the SIPs in each article, along
with associated tf-idfs, the input to the algorithm will be a tuple
(d1, d2, tf-idf1, tf-idf2), where tf-idfj : dj → R is a function that
takes a term i ∈ dj and returns tf-idfidj . Since we cannot use SIPs
that the articles do not share in a constructive way and the second
requirement prevents us from using them against the relatedness in-
dex, we will only look at the SIPs the articles share, namely those
contained in d1

⋂
d2. Our proposed framework will not examine

the interactions between SIPs as it is unclear how to usefully do
this by using only the word to tf-idf mapping we are given (and the
first requirement prevents us from using this).

This suggests that we can decouple an algorithm into two parts:
a function f : R2 → D that combines tf-idf1(i) and tf-idf2(i) into
an intermediate representation and a function g : D∗ → R that
combines the results of f for eachi ∈ d1

⋂
d2 into a single relat-

edness index. In fact, this decoupling is not restrictive since f can
be the identity map with D = R2, and g would do the bulk of
the computation. We call such an algorithm for computing the re-
latedness index RI(f, g), with RI(f, g)(d1, d2, tf�idf1, tf�idf2) =
g(f(tf-idf1(i), tf-idf2(i)) : i ∈ d1

⋂
d2) It satisfies framework re-

quirements 1 and 3, for reasonable parameters (ones that use all of
their arguments and where g satisfies requirement 2). It is left up to
g to satisfy requirement 2.

4.3.3 Values for f

We will only examine D = R in this paper due to the fact that any
intermediate results we can envision producing can be represented
as real numbers. It is clear the f should be nondecreasing in both
of its arguments (assuming the same is true of g, see section 4.3.4),
and increasing in at least one, since otherwise more improbable
phrases, phrases that are more representative of an article’s content,
would be less significant to the overall weight. Specific values we
tried were:

• Add: f(x, y) = x + y. Add encompasses the notion that
increasing any one of the two tf-idfs should increase the result
correspondingly. It can also encompass the notion of arithmetic
mean, which can be obtained by a constant scaling factor of 1

2
.

• Mul: f(x, y) = x × y. Mul encompasses a similar notion to
that of Add, but more extreme, with highly improbable phrases
being granted a high weight even if the corresponding phrase in
the second article is not as improbable.

• Max: f(x, y) = max (x, y). Max is never larger than either x
or y and represents that the relatedness of two articles should
be bounded by some notion of the content in their union.

• Rms: f(x, y) =
√

x2 + y2. Rms is again a representation of
average.

4.3.4 Values for g

Here we again want a function nondecreasing in all of its arguments
to satisfy requirement 2. The ones we tried were:

• Sum: g(S) =
∑

v∈S v. Sum encompasses the notion that each
shared SIP should contribute to the result accordingly.

• Logsum: g(S) = log
(∑

v∈Sv
)
. Logsum is similar to Sum,

but viewed on a logarithmic scale.

• Sqrtavg: g(S) =
∑

v∈S v√
|S|

. Sqrtavg attempts to penalize arti-

cles for excessive breadth, but not so much as to prevent expan-
sion, since the added terms will increase the numerator faster
than they will the denominator. This will, however, violate re-
quirement 2 in some edge cases where an added term is much
smaller than the already existing terms.

5. Results
We tested all pairwise combinations of f and g, denoted as fg
(e.g., AddSum) in the plots on a subset of Wikipedia. There was
little difference between values used for f , and there was little
difference between g = Sum and g = Sqrtavg, so we will include
two representative samples, AddSum (Figure 2) and AddLogsum
(Figure 3), here. Please see Appendix D for the rest of the images.

Figure 2.
Box-and-whiskers plots of the RI algorithm run on the edges within
a random subset of Wikipedia and pairs of articles not connected by
links — using AddSum method

Figure 3.
Box-and-whiskers plots of the RI algorithm run on the edges within
a random subset of Wikipedia and pairs of articles not connected by
links — using AddLogSum method

It should be noted that g = Logsum provides the same informa-
tion as g = Sum, but on a different scale that make some features
easier to see in each one. In Figure 2, we can see that the 75th per-
centile of unlinked pages (“non-edges”) has AddSum scores way
below the 50th percentile of linked pages (“edges”). However, it is
unclear from the plot how the non-edges compare to the lower per-
centiles of the edges. This is clearer from the AddLogSum scores,
where we see that there is indeed some overlap between the edges
and nonedges. However, there are nonetheless scores that occur
more frequently among the non-edges or among the edges. Specif-
ically, estimating from the AddLogSum graph, more non-edges
occur below 3 than edges, and more edges occur above 5.

6. Analysis
There are several interpretations for the regions of overlap. The
first is that the methods used do not offer the resolution necessary
to separate the edges from the non-edges. We have tried different
methods which produce similar results, so we don’t believe this
to be the case. It might also be that it is impossible to measure
relatedness using SIPs, but we don’t believe this to be the case since
SIPs have previously been shown to have a good representation of
content and content is responsible for relatedness.

To estimate how well the relatedness index corresponds to ac-
tual relatedness, we looked at pages connected by links with the
lowest relatedness indices and those with the highest relatedness
indices. The results are summarized in Appendix E.

The first thing we noticed was that the highest relatedness was
for a long article that linked to itself. Of course, we would expect
an article to be strongly related to itself, although it is unclear why
there is a link there. The next few pairs of articles were also long
and about highly related subjects. The lowest RIs corresponded to
articles that did not appear related.

To test in-between areas, we picked a random edge with an
AddSum RI greater than 100. This was “Resource Base of Com-
munist Czechoslovakia” to “Czechoslovakia”, which exhibit a
strong degree of relatedness, as the RI would suggest. As we were
looking through the “Resource base of Communist Czechoslo-
vakia” article, we noticed there was a link to “Salt” (the extent of
the relatedness was that salt was a minor resource in Slovakia).
We expected this link to have a much lower RI than the link to
Czechoslovakia, and it was in fact 0.

Now, we are left to examine the final and most promising inter-
pretation of the region of edge/non-edge overlap, that relatedness
is not currently directly correlated with presence of a link. As we
argued in section 4.2, we believe that this is a problem, and the
data appears to suggest that this problem is present. We propose
two ways to use the methods presented in this paper to make the

Wikipedia link ecosystem cleaner. These ways are described with
more detail in Section 7.3.

7. Future Work
7.1 Increasing the Subset
We’ve shown in section 2.2 that having 100,000 random articles
was a good representation of the Wikipedia data set. However, we
can improve our data analysis by increasing the number of articles
up to the full set with the revised procedure:

• Read through the Wikipedia article text dump
• Go through the first 100,000 articles — making word frequency

and inverse document frequency dictionaries
• Output these counts into a randomly-named, timestamped file.
• Continue with the next 100,000 articles until you reach the end

of the file.

After processing all the articles, we’ll have around 23 files, each
filled with about 45 million phrases and their document & corpus
frequency. We’ll combine all of these files and compute tf-idfs using
the total absolute counts. From here, we can make boxplots to
determine the threshold for SIPs and be able to generate SIPs for
every single document in the Wikipedia corpus.

7.2 Increasing the Number of Words in a “Phrase”
In section 2.1, the discussion of single-word phrases was prompted
by the average length of a Wikipedia article. The script that has
been developed to parse and weed out the phrases can handle
general n-word phrases and this would be a project with interesting
results. One of the expected outcomes is to generate a smaller range
of tf-idfs and hence less SIPs — a much more manageable result
with regards to marketing and searching applications.

7.3 Improving the Quality of Wikipedia Articles
There are many potential applications with having SIPs for an
article and calculating their relatedness index. In this section, we
describe methods in which the computer makes a decision about
changes to Wikipedia articles to preserve their clarity and reduce
the amount of “spammy” links. Although it is unclear whether the
algorithms we present are the best that we can do, it is clear that
they are a step in the right direction, and could help create a more
semantic web with semantic links automatically generated from
content. Below, we describe two measures that could be undertaken
to facilitate users and editors alike.

7.3.1 Preventative
We can remove or prevent addition of links between pages that do
not meet a minimum relatedness threshold. This only requires a
single precomputed SIP database of size similar to that of the full
article text dump to be stored, since the relatedness index can be
computed on the fly for each request (AddSum requires only simple
addition, and is I/O-bound, as are all of the other algorithms cov-
ered here). However, the SIP database requires global knowledge
(to compute the idf term) and cannot be quickly computed on the
fly. As far as user impact, incorrect deletion of links may be unde-
sirable, but having a minimum requirement on relatedness for new
links would be significantly more acceptable, since users would see
exactly why their request is being denied, and might even rethink
their decision. If they decide to continue placing a link, they would
be able to add to the articles in question to increase their related-
ness, in the process adding content.

7.3.2 Automative
We can go through each pair of articles that are not connected
by a link (or start with an article and compare it to the articles
that correspond to its highest SIPs) and if they are related above a
threshold, add a link. From the graphs it appears that this would be
more reliable, since the areas covered by only edges are larger than
those covered by only non-edges. However, it does not fight the
problem of link spamming. Instead, it increases the connectedness
of Wikipedia with quality links.

—————–
References
[1] alias I. Significant phrases tutorial. 2003-2010.

[2] LLC Amazon. Amazon.com: What are statistically improbable
phrases?

[3] S. Anand. Statistically improbable phrases | s-anand.net. August 2006.

[4] Ted Dunning. Accurate methods for the statistic of surprise and coinci-
dence. 1993.

[5] Angela C. George Tara C. Long Michael A. Skinner Jonathan D. Wren
Mounir Errami, Zhaohui Sun and Harold R. Garner. Identifying dupli-
cate content using statistically improbable phrases. June 2010.

[6] Jason Rennie. The log-log term frequency distribution. July 2005.

—————–
A. Generate Unweighted Wikipedia Page Link

Graph
First, we attempted to extract the structure of the Wikipedia graph
from the readily available Wikipedia database dumps: a mapping
from page ID to page title, a redirect list, and a link list. Wikipedia
is structured such that each redirect or link entry has a page ID on
the source side, but a page title on the destination side. The dump-
ing process is not atomic so there are often inconsistencies between
or even within these dumps resulting in artifacts like broken links
and redirection cycles. In addition, the full-text dumps are usually
incomplete. To deal with these unavoidable issues, we isolated a
consistent subset of pages that appeared in all dumps. Once this set
was isolated, we created an edge list representation of the directed
page-link graph with each node representing a class of pages con-
nected only by redirects, and each edge representing a link from
the source node to the destination node. We chose this structure be-
cause it most closely represents what a typical Wikipedia user will
see since redirect pages contain no content, and are not seen during
regular browsing.

B. Extract phrases from article
Wikipedia has a set of principles – one of which is that the plain text
you type should, in general, be text that gets rendered. The Wiki
Markup Language (WML) will tend to be derived from standard,
strict HTML and XHTML – this has limitations. By focusing less
on the presentation and arrangement of text and more on the content
– we lose syntax meaning and language consistency over a wide va-
riety of pages on Wikipedia (and Mediawiki) that use WML. This
causes difficulties in creating an efficient parser that will strip out
all formatting, images, links, and tables; and leave behind the con-
text on those pages. The parser within Wikipedia and built into the
Mediawiki framework is not efficient for “just-in-time” computing
as it preprocesses WML to create a static image of the page to be
fetched by server calls. This preprocessing takes considerably more
time. What follows is an example of the difficulties in parsing a few
basic formatting rules defined for WML.

Basic formatting consists of bolding, italicizing, underlining,
font type, and changing the size. Both bolding and italicizing
involve placing a large amount of single-quotes around the text
(�italic� or �'bold�') but underlining uses standard HTML
(<u>underline</u>). Displaying information also involves a lax
standard of WML since there is no end to the level of nesting in-
volved with tables2, ordered lists, unordered lists, definition lists,
and images3. This code could also be improperly written so the
wikimedia parser implementation may differ from the standard.
We also have difficulties determining what part of the text of a
page is context of the idea it represents when we use

• internal anchor links, redirects, piped links4

[[#See also]]
#REDIRECT[[Main Page]]
[[Main page|different text]]

• images5

[[File:example.jpg|caption]]
[[File:example.jpg|border|caption]]
[[File:example.jpg|alignment|border|caption]]

or many other combinations on the page. To parse correctly – we
have created a translation-replacement table, available in python by
invoking the C-implementation:

text.translate(string.maketrans("",""), '"\'\\')

which allows us to rapidly remove basic formatting, lists, and
single character-entities [the example shown removes single quotes
and double quotes from our text which would be useful for not
having to escape later]. Then, we created some regular expres-
sions which are compiled at runtime to fix up links by translating
[[Link|Text]] and [[Text]] to Text and also strip out all images
leaving their captions behind.

r"\[\[(?:(?:[^|](?!\]\]))*\|)?(?:[a-z]+\:)?(.*?)\]\]"

Our definition of intended content on a Wikipedia article is the
page itself, completely void of formatting, images, links, and other
wml entities. We also need to handle tables that could nest improp-
erly but parsing efficiently happens to be an unsolved programming
problem because regular expressions are either greedy (they match
as much as possible) or not-greedy (they match as little as possible).

Whenever we had code of the form {{...}} or {{...{{...}}...}},
regular expressions that try to match {{...}} will either be greedy
and could match {{...{{...}} randomly or it could be not-greedy
and only match {{...}} exactly. In the case of a greedy expression,
we’re left two curly braces and content after which we can’t parse
correctly. In the case of a not-greedy expression, we need to run
through the string again to catch any nested elements. The efficient
solution here is to create a non-greedy regular expression that first
matches {{...{{...}} exactly and then continues with less-nested
forms. Once we’ve parsed throughout the whole text leaving the
punctuation and stripping out all other non-alphabet characters, we
map that text into a list of n-word phrases by:

1. Splitting it into a list of sentences delimited by punctuation
marks

2. Mapping a function onto each list to generate a list of phrases,

3. Flattening the list, and

4. Pushing it to a database or similar storage mechanism

map(lambda x: makePhrases(findall(r'\w+',x)),text)

2 http://www.mediawiki.org/wiki/Help:Tables
3 http://www.mediawiki.org/wiki/Help:Formatting
4 http://www.mediawiki.org/wiki/Help:Links
5 http://www.mediawiki.org/wiki/Help:Images

This produces a list of phrases from a single Wikipedia article.
We’re able to map 100,000 articles into about 30 million phrases
in approximately 3 minutes. The overall time from reading the file,
computing the phrases, and saving to a file is about 30 – 45 minutes,
largely depending on the total length of all the 100,000 articles we
read.

C. Example Output of tf-idfs
Below is a table excerpt of the output generated by our script
for analyzing and determining SIPs. Please note that the output
is normally tab-separated and we chose the first 30 (which are
alphabetized by default).

Article ID Word tf-idfs
5322 a 0.000000
5322 abbreviated 5.393628
5322 about 3.583519
5322 abrogated 8.047190
5322 absence 4.477337
5322 accepted 3.637586
5322 accused 4.356709
5322 acreage 7.901748
5322 action 3.044522
5322 activities 3.583519
5322 acts 3.688879
5322 adam 8.496990
5322 advanced 3.761200
5322 advantage 4.094345
5322 adverse 5.713733
5322 advocate 4.976734
5322 after 11.090355
5322 aftsjeggo 11.512935
5322 against 4.394449
5322 agrarian 6.469250
5322 agreement 7.613325
5322 agricultural 4.204693
5322 agriculture 8.439015
5322 aircraft 3.850148
5322 airplane 5.789960
5322 alexander 3.737670
5322 all 1.386294
5322 allies 4.624973
5322 allocated 5.476464

D. Box-and-Whiskers Plots

Figure 4.
AddSum

E. Table of Analysis Results

Figure 5.
MulSum

Figure 6.
MaxSum

Figure 7.
RmsSum

Figure 8.
AddLogSum

Figure 9.
MulLogSum

Figure 10.
MaxLogSum

Figure 11.
RmsLogSum

Figure 12.
AddSqrtAvg

Figure 13.
MulSqrtAvg

Figure 14.
MaxSqrtAvg

Figure 15.
RmsSqrtAvg

Table 1.

