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Tendencies of individuals to behave like those around them leads to cascading 
phenomenon, in which an idea or behavior spreads quickly throughout a social network, 
being adopted by nearly all individuals in an area. We crawl the Twitter social graph and 
monitor users' posts, or 'tweets,' for several weeks, monitoring the spread of keywords, 
or 'hashtags,' along the graph structure. We simulate cascades on the Twitter graph 
using previous models and compare the results to the real cascade data. Additionally, 
we perform sentiment analysis on the tweets, determining whether a user has a positive 
or negative position on a hashtag.  Finally, we isolate clusters in the network, examining 
the variance in sentiment within a cluster, observing the distribution of group sentiment 
divisions.
 

 



Introduction   
 
As social creatures, human beings base their decisions not only on their personal 

goals and motives, but also largely take into account the decisions of those around 
them. The tendency of individuals to base their decisions on the decisions of others 
in a group leads to a cascading phenomenon [Bikchandani 1998], in which an idea 
or preference spreads more quickly based on the number of people who have been 
exposed to the idea, known as active nodes. A cascade occurs when nearly all of the 
nodes in a particular area become active in a relatively brief period of time. Cascading 
behavior is observed in things such as politics, economics, and even crime [Golub 
2010; Moretti 2011]. This has led to much investigation into the behavior and modeling 
of information cascades. Most of this investigation has limited itself to simulated 
cascades in real networks [Kempe 2003], simulated cascades in random networks 
[Payne 2009], or laboratory testing of cascade behavior in experimental setups [Alevy 
2005], as large social networks are difficult to observe in real-time.

This cascading behavior often occurs in various social networks — the graph of 
relationships and interactions within a group of individuals. The importance of social 
network as a medium for the spread of information, ideas, and influence among its 
members has increased drastically in the past few years. Thus, to understand the 
extent to which ideas and preferences are adopted in a social network, it is important to 
understand how the dynamics of adoption are likely to unfold within the underlying 
social network: the extent to which people are likely to be affected by decisions of their 
friends and colleagues, or the extent to which “word-of-mouth” effects takes hold. 
Recent popularity in large internet social networks has intensified interest in 
understanding cascades [Gonzalez-Bailon 2010]. Cascades in these systems often 
occur quickly, due to instant notifications of the changing states of others and the high 
connectivity of the graph. These social networks are interesting in the sense that they 
provide large, active data sets with information both about the structure of the social 
graph and the states of individuals in the network in real time. 

We use data mined from the Twitter social network, specifically 'hashtags,' which 
are keywords identified in a users post, or 'tweet.' These hashtags allow us to easily 
track the spread of a subject across the network. We then use this data to test the 
accuracy of previous cascade models [Kempe 2003] and better understand cascading 
effects over large, real-world networks. 

Additionally, through various natural language processing techniques and 
machine learning algorithms, we perform sentiment analysis on the tweets [Go 2009; 
Chen 2010], allowing us to label a tweet as positive or negative in regard to a hashtag. 
By identifying and isolating clusters in the network, we analyze the tendency for 
members of a group to conform to a common opinion by finding the percentage of the 
cluster with common sentiment towards a hashtag. 

 



Twitter serves as an ideal social network for this analysis because unlike 
other social networks, Twitter is expressly devoted to disseminating information in 
that users “follow” other users to subscribe to broadcasts from other users.  The 140 
character limit to the tweet lengths simplifies the  analization of cascading effects for 
hashtags and the performance sentiment analysis. 
 
 
 
Methods
 
Data Gathering
 

We generate two large data sets for this project using Python. The first set is the 
the Twitter structure set. Beginning with a list of all users for which we gathered tweets, 
we then scan through a data file of the entire Twitter graph, stored as an edge list, 
writing only edges connecting two monitored users to the output file.  The resulting data 
file represents the structure of only the subset of users which we monitored, containing 
10 467 nodes and 487 948 directed edges.

The second large data set is the tweet data. To produce this data, we monitored 
RSS feeds of about four million Twitter users, organizing the tweets by both user and 
hashtag in seperate tables of a mySQL database, storing user ID, tweet content, tweet 
hashtags, and the post time in seconds since epoch. Figure 1 illustrates the entity-
relationship model used for the database. The user IDs to monitor are gathered from 
the structure data. A daemon that iteratively visited each user’s RSS feed was run for 
6 weeks to populate the database with tweets. Twitter reports that the average user 
tweets around five times per day, so we used a database for the tweet data instead of 
text files to handle the massive size of this data set.

 



Figure 1. The entity relationship model for the database
 

For sentiment analysis, we used the training set as collected by Go et al 2009; a 
collection of 1.6 million tweets, each labeled as either positive or negative in sentiment. 
These tweets have been classified on the basis of emoticons that appear in the tweet - 
happy faces are labeled as positive, and sad faces as negative. The labels obtained in 
this fashion were somewhat noisy, but can provide a relatively high degree of accuracy. 
In the training set, tweets have been stripped of their emoticons.
 
 
Simulation and Cascade Tracking
 

We constructed a cascade simulator using Python capable of simulating two 
cascade models. It begins by reading a structure data file and creating a set of nodes, 
each corresponding to a user ID. Follower lists are stored in nodes. At each time step, 
all active nodes are iterated over, and their weighted contributions passed to follower 
nodes based on the cascade model. Each node sums the input passed to it by nodes it 
is following, and decides its state based on the model. The simulator outputs a list of 
user IDs paired with the timesteps in which they became active, stored as an ASCII text 
file. The simulator was implemented in Python.

We also constructed a data harvester capable of reading cascades in the tweet 
database. This harvester searches for a particular hashtag, returning a list of all tweets 
containing this hashtag in the database. The program then scans this list, noting the 
earliest appearance of the hashtag from each user, rounding to the minute. Then, these 
times are converted to minutes since the first appearance of the hasgtag, and can now 

 



be considered as timesteps. These user, active timestep pairs are written to a data file 
in the same style as the simulator data.
 
Plotter

We used python with Matlab (matplotlib and numpy) to generate line plots 
displaying cascade sizes over time for real and simulated cascades, and histograms 
displaying the distribution of cluster sentiment divisions. Further development could 
generate a spatial network plot which shows the real-time cascading over a network 
structure. Plots with different cluster sizes for different hastags or a set of hashtags can 
be obtained.
 
Models
 
We used two models in our cascade simulation [Kempe 2003].
 
1. Linear Threshold
 
Consider a network with nodes 1,...,n, s.t. node i has friends Fi, and size(Fi) = d (i). Let 
each node be in state 0 or 1, with most nodes starting in state 0. At the beginning of 
the simulation, each node i is given some threshold q (i) in [0, 1], chosen uniformly at 
random. Define the weight of the connection from node j to node i to be 1/d(i). If the 
weighted sum of the states of all connected nodes exceeds node i's threshold value 
q(i), then the node will change to the 1 state. Similarly, if the weighted sum is below q(i), 
then the node is in state 0. If there is no change between successive generations, the 
cascade is complete.
 
 
2. Independent Cascade
 
Consider a network with nodes 1,...,n, s.t. node i has friends Fi, and size(Fi) = d (i). At 
the beginning of the simulation, each node is given some small activation probability p(i) 
> 0. Let each node be in state 0 or 1, with most nodes starting in state 0. When a node 
is activated it is considered newly activated,(for the first generation, all active nodes are 
assigned as newly activated), and only during the next generation will possibly activate 
others. The probability of node j activating node i is p(i). When there are no newly 
activated nodes left, the cascade is complete.
 
 
Sentiment Analysis
 

 



Feature Extraction and Reduction
          In the unigram model, each distinct word in a tweet is treated as a unique feature. 
A “word” in this context refers to a continuous string of alphanumerical characters not 
containing a space, with contractions such as “I’m” or “we’ve” counting as one word. 
For example, “I’m a computer scientist” contains the unigrams “I’m”, “a”, “computer”, 
and “scientist”. In the n-gram (for n >= 2) model, features are extracted from a tweet 
with a sliding window containing n words. E.g. the example sentence above has the 
bigrams “I’m a”, “a computer”, “computer scientist”. 

In this paper, we considered each feature to be binary--a feature is either present 
or absent in a tweet--instead of counting the frequency of a feature in a tweet. Pang et 
al have obtained better results by using a term presence rather than its frequency [Pang 
et al., 2002].

A large challenge in sentiment analysis is feature reduction, and this problem 
is heightened since Twitter is a casual platform where users may not use standard 
English. Along with the large number of legitimate words, there exist tokens in the 
text that are not necessarily distinct. For example, words with many repeated letters 
(e.g. “yaaaaaay” vs. “yay”) and misspellings of other words (e.g. “great” vs graet”) can 
result in unnecessary features being checked.

We provided rudimentary feature reduction in replacing hyperlinks with the 
word “URL” and user names (prefixed by “@”) with “@”, as well as removing any words 
of length 2 or less from the list of words. Most punctuations are removed from the tweet 
with the exception of apostrophes in contractions as mentioned above. Hashtags 
prefixed by “#” are demoted to regular work status by removing the “#” prefix. This 
brings the number of features down to less than 50% of the original number [Go et al, 
2009]. Stopwords such as “the” and “all” were also filtered out, as they should not 
impact the sentiment of a tweet [Chen et al, 2010].

We introduced certain bigrams that could change the sentiment of a sentence; 
namely, “no/not _”, “more _”, “less _”. Each of these bigrams were considered as a 
single feature. 
 
Training Algorithm
 

We trained 3 algorithms - Naive Bayes, Maximum Entropy and SVM - on the 
data, and the most successful (SVM) was used to classify the tweets in the database. 
With each algorithm, the 15000 most common features (unigrams) in the data set was 
first found, and their occurrence in 80% of the tweets was used to determine the impact 
of these words on the overall sentiment classification. 

We used the Python NLTK toolkit for the Naive Bayes and Maximum Entropy 
classifiers, and SVM-Light for the SVM classifier.
 

 



 
 
Naive Bayes
 

The Naive Bayes classifier finds the probability for a label given the features 
present using Bayes’ rule, then makes the 'naive' assumption that all features are 
independent, in order to reduce the dimensionality of the data. The calculation hence 
takes the form of:
 

P(label | features) = (P(label) * P(f1|label) * … * P(fn|label)) / P(features)
 

Since P(features) is invariant across labels, the denominator is calculated for 
each label, and normalized to sum to one.
 
 
Clustering Behavior
 

In a network, clusters are defined as subsets of nodes that are more tightly 
connected to each other than to the rest of the graph at large. It is intuitive that 
cascades would happen more rapidly in clusters due to increased influence, however, 
clusters tend to prevent large cascades, as information is less likely to spread between 
clusters [Payne 2009]

We used a variation on the netclust clustering algorithm, along with a similarity 
measurement, in order to isolate clusters.  The similarity measurement is based on 
mutal friendships [Huang 2010].  For users A and B, let I be the intersection of the 
followers of A and B.  The similarity between A and B is given as the the fraction of the 
followers of A that are in I multiplied by the fraction of the followers of B that are in I.  In 
this way, not only mutual followers are considered, but follower importance as well.  
Given some cutoff value, netclust then scans the structure, eliminating edges with 
similarities under the cutoff, then using the remaining edges to find spanning trees 
uniting the nodes.  In this way, we isolate clusters in the graph structure.

 Once we isolated these clusters, we observed the distribution of sentiments 
about various hashtags, grouping the clusters by size. We used these ratios to create 
a histogram of percent positive sentiments over many clusters and hashtags. This plot 
demonstrates the tendencies of individuals in a cluster to carry similar sentiments as 
others in the cluster.
 

   
Results
 

 



We found hashtag cascades of various sizes in our tweet data, and by altering 
threshold and probability parameters, were able to produce similarly sized simulated 
cascades using both the linear threshold and independent cascade models (Figure 2). 

Using clusters isolated by MCL, we were able to analyze the tendencies of 
individuals in a group to have similar sentiments to others in the group. For several 
clusters and hashtags, the percentage of cluster members that had a positive sentiment 
was calculated. The clusters were grouped by size, producing a distribution of cluster 
sentiments (Figure 3).

 
We also found that the cluster sentiment analysis generally gave us a ‘W’ graph which 
basically indicates that the clusters were either mostly positive, mostly negative or else 
were equally negative and positive. The graphs were generally positively skewed which 
implies that people generally tend to be more positive.

 
 

 
Discussion
 

Using the vast data set of Twitter, we have shown the behavior of cascades in 
large, real-world social networks. Additionally, we used sentiment analysis to study not 
only subject cascades, but cascades of opinion on those subjects. Our models, 
previously studied on co-authorship networks [Kempe 2003], produced similar results 
the original studies in the sense that they produced convex arcs on a log plot in small 
scale. However, in the total cascade, we see a plateau in the middle of the cascade. By 
fitting these models to actual cascade data, we see plateaus present in the real data 
plots, even in small scale.  We were unable, however, to observe real cascades of any 
greater than a few hundred users, so it is unclear whether

 



Figure 2. Cascades size over time for cascades of approximately 400, 100, 45, 30, and 
10 000.  Colored lines represent simulated cascades, black lines represent cascades 

observed in the real data.  No 10 000 node cascades were observed in the real data, so 
only the simulation results are plotted for this size

 



Figure 3. Distribution of group sentiment for small (left) and large (right) clusters.  The 
distribution takes a W shape.

  
this plateau is present in the real data at large scale as well.

We also used Netclust to isolate clusters in the Twitter graph. By isolating a large 
number of clusters and observing them over several hashtag cascades, we produced a 
distribution of percent positive sentiments in a cluster for different sized clusters, and 
found that the distribution takes a W shape, with peaks at zero, fifty, and one hundred 
percent. Previous work by
Friedkin et al. 2010 suggests such a structure, where the middle peak results from 
Reasoned Actions, and the sides from Attitude and Behavioral links in the social 
network.  This demonstrates that groups tend to either agree or be evenly divided on a 
subject.  Small, dissenting subgroups within a group are rarely observed.  Additionally, 
it was observed, though not shown here, that the relative size of the peaks varied based 
on hashtag, with some having larger middle peaks and others having only side peaks.  
All hashtags, however, demonstrated a bias towards the positive end. 

In conclusion, by studying cascade behavior in large networks such as Twitter, 
we can better understand the trending behavior of humans. Being able to understand 
cascades of opinion, as well as subject, can have important ramifications for areas such 
as politics and advertising. Future study on other social networks, both online and real 
world, is necessary to determine how accurately Twitter cascades reflect cascade 
behavior in other networks. Longer, more comprehensive study of Twitter and other 
networks needs to be done in order to observe the cascade behavior of super-massive 
cascades, which encompass a large percentage of the Twitter graph and were not seen 
in out study.  Also, the sentiment distribution of various categories of hashtags may 
differ greatly, but were not examined here.  Further examination of such cascading 
behavior helps us not only to predict it in future events, but helps us better understand 
the interconnected nature of human society.
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