Simulating Smart Grid Cascade Failure Mitigation

Claudia Whitten
Department of Computer Science
California Institute of Technology

Pasadena, CA 91126
whitten@caltech.edu

ABSTRACT

Smart grid power systems have the potential to reduce en-
ergy usage by modernizing current electrical grids. These
systems work by allowing real-time monitoring and adjust-
ment of power flow using communication between net me-
tering systems located at the sites of both the suppliers and
consumers. Smart grids must mitigate the effects of disrup-
tions within the network by appropriately adjusting power
flow routes and preventing cascading failure propagation.
The need for strict network security is one of the reasons
that widespread implementation of smart grids has yet to
occur. In order to better understand the manner in which
such issues can be resolved, I am working to design an ap-
plication that allows users to implement and test cascade
failure mitigation algorithms.

1. INTRODUCTION

Modern power plants rely on a variety of resources to gen-
erate electricity. These include non-renewable resources like
fossil fuels which contribute to environmental issues such as
global warming when they release carbon dioxide as a result
of being burned. The recent initiative to become more en-
vironmentally aware and energy independent has led to the
development of smart grid technology [1]. These smart grid
systems are a modernization of current electrical grids, uti-
lizing a similar physical infrastructure and monitoring sys-
tem as their predecessors, but responding more intelligently
to changes within the network [2]. An ideal smart grid sys-
tem would increase the security, reliability, and efficiency of
electricity networks and be able to perform tasks such as
scheduling different household appliances to run at off-peak
demand hours and track the energy usage of each appliance
in order to lower total energy consumption.

However, the design and implementation of smart grid sys-
tems has proven to be difficult. There are many unresolved
issues that have limited the implementation of these im-
proved networks, not the least of which is the need for better
cyber security. In order to safely transition from the current

power grid to a smart grid system, current cyber security
protocols need to be updated and improved [3]. One such
security vulnerability is the effect of disruptions within the
network that cause cascading failures, which have the po-
tential to bring down entire electrical grids if they are not
effectively mitigated [4} [5]. That is, a blackout that occurs
at one power station has the potential to shift additional
load to other nearby power plants, causing further blackouts
due to the increased load exceeding the permitted capacity.
These incidents can be caused by a variety of factors (see
figure 1), but each outage has the potential to propagate
regardless of the cause (though this can be used to predict
the characteristics and magnitude of the outage). By re-
solving such security issues, smart grid systems will be able
to be safely implemented, resulting in a more reliable, cost
effective, and environmentally friendly electricity network.

2. SMART GRID GUI

In order to help the user design and simulate different smart
grid network configurations, I have designed a graphical
user interface (henceforth known as the Smart Grid GUI).
If properly implemented, the Smart Grid GUI would allow
users to perform the following tasks:

e Specify the network topology along with points of fail-
ure in one of two ways.

1. Describing the network topology and disruptions
in a file formatted for interpretation by the Smart
Grid GUI.

2. Selecting options from the Smart Grid GUI menus
and toolbars.

e See the network topology.

Select a cascading failure mitigation algorithm.

e Run simulations to determine the effectiveness of dif-
ferent algorithms.

Aggregate and compare statistics from simulations.

I have begun the task of implementing the Smart Grid GUI
and have included several figures (described later in the pa-
per) to demonstrate how it could possibly look when nearer
to completion. After initially attempting to design the GUI
using Java Swing without the help of an integrated develop-
ment environment (IDE), I chose to use the NetBeans IDE
7.0 Swing GUI Builder to aid in the design of the user in-
terface.

United States Canada
Cause Code Frequency | Percent | Frequency | Percent
Capacity shortage C 15 3.7 1 1.0
Crime Crime 9 22 5 5.1
Demand reduction | D 5 1.2 39 39.8
Equipment failure | E 111 275 15 15.3
Fire F 12 3.0 1 1.0
Human error H 21 5.2 2 2.0
Operational error 0 5 1.2 1 1.0
Natural disaster N 6 1.5 2 2.0
System protection | S 6 1.5 31 316
Third party T 6 1.5 1 1.0
Unknown U 10 25 5 5.1
Weather w 193 47.9 39 39.8
TOTAL 403 100.0 98 100.0

Figure 1: Distribution of primary causes of outages
in the U.S. and Canada between 1990 and 2004. [5]

2.1 Design

The Smart Grid GUI is designed to be easily extensible with
respect to future implementation of other algorithms that
mitigate cascade failure or perform other operations on given
network topologies. This application includes classes that
represent power stations (nodes) and voltage lines (links).
These classes have the potential to be extended and sub-
classed in the event that a user has more specific needs,
such as representing a particular type of power station. Any
cascading failure mitigation algorithm implemented either
by myself or another user can be contained within another
class or set of classes. These classes can take as arguments
the network topology and points of failure within the net-
work, and can return the means by which the cascading fail-
ure is addressed. For example, the class which implements
the selective node removal algorithm can return the set of
nodes that should be removed from the network in order to
limit the propagation of the failure, along with the timing
of the removals.

2.2 Implementation

This application is written in Java. The object-oriented na-
ture of the language lends itself to this project, and I have
taken care to ensure that separate components are appro-
priately encapsulated. I have made extensive use of Swing,
which is Java’s primary widget toolkit. Initially, I imple-
mented separate classes to represent power stations, voltage
lines, and potential mitigation algorithms; however, upon
my discovery of JGraphT, a free Java graph-theory library
created by Barak Naveh and other contributors, I attempted
to redesign the application around this library. FEase of use
is a particularly important component of this project, since
I feel that it is important to be able to customize and visu-
alize the simulated power grid network. For that reason, I
would continue to use the NetBeans GUI Builder for further
work on this project, and would suggest that anyone else
working on the project to do the same.

2.3 Current Progress

Currently, the project is incomplete with respect to what I
had hoped to accomplish over the course of the term. I have
included several figures later in this report that show what
I have already designed and implemented, along with de-
scribing what future work on the project would likely yield

in terms of application design and structure. In the next
section, I will go into extensive detail about a selective node
removal algorithm that I have not yet completely imple-
mented; however, this detail with respect to potential class
structures should allow future completion of this work to
progress rapidly.

3. DISRUPTION MITIGATION ALGORITHMS

There are three disruption mitigation algorithms that I ini-
tially intended to implement as part of the Smart Grid GUIL
These include a weighted least squares algorithm, a mixed-
integer optimization algorithm [7], and a selective node re-
moval algorithm [6]. I have made substantial progress to-
ward completing the implementation of the selective node
removal algorithm. However, time did not permit me to
complete the implementation of the weighted least squares
algorithm and mixed-integer optimization algorithm. For
the sake of completeness, I will briefly describe them here
before going into detail concerning the selective node re-
moval algorithm.

3.1 Weighted Least Squares Algorithm

My first attempt at implementing a cascading failure miti-
gation algorithm was designing of a weighted least squares
algorithm; however, I remain unconvinced that my attempts
were correct. Thus, I will give some background related to
the theory behind this algorithm, then will later discuss the
selective node removal algorithm with which I have had more
success. The least squares method attempts to find an ap-
proximate solution to a set of equations where there are more
equations than unknowns. This solution minimizes the sum
of squared residuals. The weighted least squares method
assigns a weight to each observation that indicates the un-
certainty of the measurement, and is generally a function
of the variance of the data. These systems of equations are
often solved using iterative methods, linearly approximating
then subsequently refining the approximation.

Attackers who feed bad information into a power grid system
can overload a particular power plant and cause a black-
out that could propagate throughout the system. Thus a
weighted least squares approach that quickly determines the
actual power flow through the network and shifts load ac-
cordingly could mitigate this situation. Once an application
has determined, based on measurements taken at different
points in the system, what the current load is on different
nodes, it could recalculate the best way to redistribute the
load so as to not exceed the nodes’ capacity.

3.2 Mixed-Integer Optimization Algorithm

I have not yet implemented this algorithm in the Smart Grid
GUI; however, for the sake of completeness, I will give a de-
scription here. This algorithm is motivated by the need to
take into account the many steps involved in a cascading fail-
ure when determining an optimal algorithm to control the
damage done to the network. It is formulated as a multi-
stage mixed-integer programming problem that is designed
to terminate the propagation of the cascade after a certain
number of cycles while satisfying as much demand as possi-
ble. The result is an optimal schedule for demand shedding
when given a deterministic set of power line outages.

This algorithm was the most difficult to understand of the
three I examined, due in part to the length of the paper
which described it. It is defined as an affine, adaptive, dis-
tributive control algorithm that is computed when the initial
failure occurs, and then is subsequently deployed. One po-
tential problem with such an approach is that this requires a
large amount of time to compute immediately after the fail-
ure, which might not work well in practice depending on how
quickly the blackout propagates. However, once this calcu-
lation at time zero is complete, no further computation is
needed; the algorithm is simply applied to the network. The
author describes a general cascade control template given
that there is a time R after which no power lines can have
load exceeding their capacity, described below:

Input: a power grid with graph G. Set G! = G.
Step 0. Compute control algorithm.
Forr=1,2,.., R—1,do

1. Set f" = vector of power flows in G".
Observe state of grid (from state estimation).

Apply control.

Set g" = vector of resulting power flows in G".

ARl

Set O" = set of lines of G" that become outaged in
round 7.

6. Set G""1 = G" — O". Adjust loads and generation in
G".

Termination (round R). If any island of G¥ has line over-
loads, proportionally shed demand in that island until all
line overloads are eliminated.

The author of the paper also describes an affine control pol-
icy where round R is again the time at which the cascade
must terminate. I include this policy, below, noting that the
term bus is simply another word for node:

Input: a power grid with graph G (post-initiating event).
Set G =G.

0. Compute triples (¢}, by, sy) for each r < R and v.

Forr=1,2,..,R—1,do
(comment: controlled round r of the cascade)

1. Set f" = vector of power flows in G", and d, = the
demand of any bus v.

2. For any demand bus v, let k;, be its data observation.
Apply control: if k;, > ¢}, reset the demand of v to

min{1, ¥, + s5(c” — k3] 1. (1)
3. Adjust generator outputs in each component of G" so

as to match demand.

4. Set O" = set of lines of G" that become outaged as a
result of the flows instantiated in Step 4.

5. Set G"t! = G" — O". Adjust demands and supplies in
G".

Round R. For any component K of GF, set
Ui = min{1, mazjer{| £ /u;}}. (2)

If & > 1, then any bus v of K resets its demand to
A

The author then presents experimental results that used
data from the U.S. Eastern Interconnect system, which con-
tains approximately 15, 000 buses, 23, 000 lines, 2,000 gener-
ators, and 6, 000 load buses. The optimal control, henceforth
referred to as ¢20 was computed where

1. ¢, = by, =1 for all v and r.
2. s, =0 for all v and 10 < r.

3. For each 1 < r < 10, either s, = 0.005 for all v or
S, = 0 for all v.

The case was considered where two lines were removed (K =
2) and R = 20 rounds. Figure 2 describes the differences in
results between c20 and no control for this case for each
round 7 < 20. k is the maximum line overload at the begin-
ning of the round, O is the number of lines that are outaged
during the round, I is the number of islands at the end of
the round, and Y is the percentage of demand satisfied at
the end of the round. We can see that the cascade of failures
stabilizes in ¢c20 well before r = 20.

No control c20
r K O I Y K O I Y
1 4096 86 1 100 | 4096 86 1 100
2 8.60 187 8 99 8.60 165 8 96
3 55.61 3656 20 98 61.74 303 17 96
4 67.14 481 70 95| 66.63 408 44 94
5 0461 692 149 93 [131.08 492 94 93
6 | 11553 403 220 91 | 112,58 416 146 90
7 66.12 336 333 89 99.62 326 191 78
8 47.83 247 414 87 | 60.95 227 248 77
9 7.16 160 457 85| 3250 T2 279 76
10 7.06 245 542 84 950 43 202 76
11| 3755 195 606 83| 4528 35 303 76
12| 13.04 98 646 82 11.60 10 306 76
13 | 2261 128 688 82 3.88 6 310 75
14| 1064 107 715 81 1.46 4 312 75
15 5.03 64 721 81 1.34 1 312 75
16 | 8467 72 743 80 1.13 1 312 75
17| 3215 52 756 80 1.38 2 312 75
18 6.50 43 763 80 1.26 1 312 75
19 997 8 812 &0 0.99 0 312 75
20 3234 39 812 2 0.99 0 312 75

Figure 2: Cascade Evolutions

Additionally, the author provides first-order methods to max-
imize the amount of demand satisfied at the end of the cas-
cade, along with an algorithm that accounts for stochastic
processes. For the sake of brevity, I will not describe them
here.

3.3 Selective Node Removal Algorithm

Much of the research into attacks on complex networks is
motivated by the observation that some nodes in a given
network are more important than others with respect to load
handling. The removal of these nodes has the capacity to
cause the fragmentation of the network. Previous research
has found that networks such as power grids or computer
networks can easily fail due to the removal of one or several
nodes since these removals can cause global cascades of over-
load failures. One strategy to reduce the likelihood of such a
cascade is to intentionally remove nodes with small load and
edges with large excess of load from the network. Though
such intentional removals affect the network’s ability to func-
tion as intended, the size of the cascade is reduced. Using
the problem formulation described in [6], I will describe this
selective node removal strategy.

3.3.1 Definition of the Network

We assume a network W where at each time step one packet
is sent from node i to node j along the shortest path possible
when ¢ and j are in the same connected component. This
packet may be divided into equal parts if there is more than
one shortest path between ¢ and j.

The load Li on a given node k is defined as the total number
of packets per unit of time that pass through k. If Sy is the

connected component of k and L;j’j) is the contribution of
the ordered pair of nodes (¢, j) to L, then

Le=)_ L. (3)

)

Additionally, we define the capacity C of k to be

Crh = ALi(0) k=1,2,N, (4)

where N is the initial number of nodes in W and A > 1 is
the tolerance parameter which guarantees that no node in
the initial network configuration W (0) is overloaded.

If D;; is the shortest path length between nodes i and j and
D; is the average shortest path length from i to all other
nodes in W, then the total load generated by a given node
i is
L{=> (Di+1) = (D; +1)(N - 1). (5)
J
3.3.2 Strategies

There are four strategies that are part of the selective node
removal algorithm, summarized as follows:

1. Remove the nodes with the smallest A; = L; fLig first.

2. Remove the nodes with the smallest closeness central-
ity D' first.

3. Remove the nodes with the smallest load L; first.

4. Remove the nodes with the smallest degree «; first.

I describe these strategies in more detail below, along with
justifying their usefulness in mitigating cascading failures.

Strategy 1: A;=L; — LY
One strategy suggested in [6] as part of a selective node re-
moval algorithm is to remove nodes with the smallest values
for L; — LY first. We define

A, =L, — L‘g (6)

to be the difference between the load on node ¢ and the total
load generated by node i. The most important nodes needed
in order for the network to function are those which have a
load L; much greater than LY, and so we do not want to
remove these nodes in order to mitigate cascading failures.
Likewise, nodes which have a load L; much smaller than Lf
generate more load than they handle, and so they are can-
didates for being removed first.

Strategy 2: Closeness Centrality
Another strategy suggested by [6] is to remove nodes with
the smallest closeness centrality first. We define

D;! (7)
to be the measure of closeness centrality for a given node 1,
recalling that

D:ZD1/N (8)

is the average shortest path length between any two nodes
and D; is the average shortest path length from node 7 to all
other nodes in W. Closeness can be considered as a means
of determining how long it will take for load to spread from
a node to other reachable nodes.

Strategy 3: Load

Yet another strategy suggested by [6] is to remove nodes
with the smallest load L; first. We have already defined
load on a given node i to be the total number of packets
passing through ¢ per unit of time.

Strategy 4: Degree

The final strategy suggested by [6] is to remove nodes with
the smallest degree k; first. Recall that the degree of a node
is defined to be the number of links incident to it.

3.3.3 Algorithm Justification

In [6], only the first strategy that I have previously described
is justified in detail. This is due to the fact that in random
scale-free networks (SFNs), LY and L; are negatively corre-
lated, and A;, D;l, L;, and k; are positively correlated. A
scale-free network has a degree distribution that asymptot-
ically follows a power law. Defining P(k) to be the fraction
of nodes in the network with k& connections to other nodes,
we have

P(k) ~ ck™ 9)

08
06 Y
(&) e L + (b)
. Eak* b
g B E:)
G |2 7 .
0.4 " 0.3
0.0 . 0.0
1.1 15 4 1.8 0.0 05 10

Figure 3: (a) Ratio G as a function of the tolerance
parameter \. Stars correspond to attacks without
defense, while open circles, squares, triangles, and
diamonds correspond to the intentional removals of
nodes according to the strategies of defense (1) - (4),
respectively.

(b) Ratio G as a function of the fraction f of
nodes intentionally removed according to each of the
strategies (1) - (4), for A = 1.5. [6]

where ¢ is a normalization constant and « is a parameter
with a value that is usually between 2 and 3. Power grids are
generally considered to be SFNs, where power lines are edges
and substations, generators, and transformers are nodes. So,
the justification of one of the aforementioned strategies ef-
fectively justifies all four of them. I will not provide the
proof described in [6]; however, figure 3 gives the ratio G as
a function of the tolerance parameter A and as a function of
the fraction of the nodes intentionally removed. G is defined
as G = N'/N, where N is the initial number of nodes in the
largest connected component and N’ is the final number of
nodes in the largest connected component. As we can see
from figure 3, selective node removal strategies can increase
G by a factor of 6, potentially drastically reducing cascade
propagation throughout a network.

4. FUTURE DIRECTIONS

4.1 Further Work on the Smart Grid GUI
The overall goal of the Smart Grid GUI is to help users vi-
sualize the network topology and cascade failure mitigation
algorithms, along with making it easily extensible. As pre-
viously stated, I have made substantial progress toward cre-
ating the GUI itself, along with implementing the selective
node removal algorithm. Figure 4 is a screenshot of what the
application currently looks like with no network defined or
algorithm selected. The application allows the user to add
nodes, which the user can name and potentially add to a
list of nodes that act as points of failure within the network
(figure 5). I also include a screenshot (figure 6) without the
node creation frame blocking the view of the main window.
Finally, figure 7 is a screenshot of the edge creation frame
that allows the user to name an edge, specify its endpoints,
and select whether or not the edge will initially fail.

4.1.1 Refining the GUI

The Smart Grid GUI has the potential to be more than an
environment to test cascade failure mitigation algorithms.
In fact, by making the application more generalized, it could
be used for a variety of networking simulations. However,
in order to do this, I would need to better utilize JGraphT,
which is a free Java class library that provides mathematical

[Add Node |
| Delete Node |
[Add Edge)

[Delete Edge)

Points of Failure

A

Figure 4: Smart Grid GUI without a network de-
fined or algorithm selected.

Node Name: Node)

Is this node a point of failure in the network?
) Yes

eNo

[Add) Cancel)

]
rUIIILS Ul ranuie

Node A

Figure 5: Smart Grid GUI with node creation frame.

graph-theory objects and algorithms. I initially began the
implementation of node and link classes on my own; how-
ever, | decided to make subclasses for previously written
graph classes in JGraphT. While these previously written
graph, vertex, and edge classes do not describe all the at-
tributes of a power grid, substation or line, they do provide
an acceptable framework from which to derive more detailed
classes. Additionally, JGraphT provides several well-known
algorithms that are often needed by algorithms a user might
wish to implement. For example, JGraphT provides classes
that will find shortest paths, vertex covers, and cycle detec-
tors.

In addition to better integrating the JGraphT library, future
work on the Smart Grid GUI would provide more features
for users. These features could include a statistics display, a
tabbed environment to view different networks in the same
window, and the ability to specify different link loads and
failure times, among other things.

4.1.2 Further Algorithm Implementation

A more refined version of the Smart Grid GUI would have
the ability to perform and visualize network simulations,
along with aggregating data and providing valuable feedback
for its users. The reason I chose to use Java was because
concepts related to graph theory lend themselves easily to

[Add Node
| Delete Node |
[Add Edge |

[Delete Edge

Points of Failure

A

Figure 6: Smart Grid GUI with a network defined.

Edge Name: Edge AB
Left Mode: Right Node:
Node A Node A
Node B Node B
Node C Node C
Node D Node D
MNode E Node E

Is this edge a point of failure in the network?
C, Yes

@No

i 4k b
| Add | [Cancel |
2

Figure 7: Edge creation frame.

object-oriented programming. By creating a separate class
for each algorithm implemented and having the user simply
pass a network object to an instance of the class, one would
ensure that everything remains cleanly organized and encap-
sulated. This would translate well to the GUI, which would
allow the user to create a network and select procedures to
perform using the provided buttons and menus.

S. CONCLUSIONS

Smart grid electricity systems have the potential to increase
overall energy efficiency and reliability while decreasing costs
for consumers. However, these systems can only be effec-
tively implemented if the security vulnerabilities associated
with them are eliminated. Modern power grid systems are
especially prone to cascading failures, and in order for the
smart grid system to be considered an improvement over the
current power grid, this weakness needs to be fixed. By uti-
lizing the data available at both the supplier and consumer
ends of the grid, researchers can determine the best means
possible to mitigate these types of failures.

However, there are many other security vulnerabilities that
power grids face. By expanding the functionality of the
Smart Grid GUI, users would be able to implement algo-

rithms that handle different kinds of security issues, as op-
posed to just cascading failures. This would require some
changes to the application I have designed. However, by
maintaining a general framework that represents all the fea-
tures of a power grid system, users would only need to add
classes to specify cyber security and other algorithms.

6. ACKNOWLEDGMENTS
I would like to thank Steven Low, Kymie Tan, and Adam
Wierman for their assistance and support.

7. REFERENCES

[1] Khurana, H., et al., Smart-Grid Security Issues. IEEE
Security and Privacy, 2010. 8(1): p. 81-85.

[2] Prasanna, Srinivasa, et al., Data Communication over
the Smart Grid. IEEE International Symposium on
Power Line Communications and Its Applications,
2009.

[3] Zhenhua, J., et al., A Vision of Smart Transmission
Grids. IEEE Power and Energy Society General
Meeting, 2009.

[4] U.S. Department of Energy Office of Electricity
Delivery and Energy Reliability, National Energy
Technology Laboratory, A Vision for the Modern
Grid, 2007.

[5] J.S. Simonoff, C.E. Restrepo, R. Zimmerman, Risk
Management and Risk Analysis-Based Decision Tools
for Attacks on Electric Power, Risk Analysis, Vol. 27,
No. 3, 2007, pp. 547-570.

[6] A.E. Motter, Cascade Control and Defense in
Complex Networks, Phys. Rev. Lett, 2004. 93(9).

[7] D. Bienstock, Optimal Adaptive Control of Cascading
Power Grid Failures, 2010.

	Introduction
	Smart Grid GUI
	Design
	Implementation
	Current Progress

	Disruption Mitigation Algorithms
	Weighted Least Squares Algorithm
	Mixed-Integer Optimization Algorithm
	Selective Node Removal Algorithm
	Definition of the Network
	Strategies
	Algorithm Justification

	Future Directions
	Further Work on the Smart Grid GUI
	Refining the GUI
	Further Algorithm Implementation

	Conclusions
	Acknowledgments
	References
	References

