
Blog Navigation via Semantic Analysis

Riley Patterson
Caltech

Fred Zhao
Caltech

ABSTRACT
In this paper we describe our approach to bring together
linguistic semantics and the Semantic Web. We briefly ex-
plore the history and applications of the Semantic Web, then
shift our focus to the area of online text — specifically, in
the form of blogs. We describe a plugin we made for the
widely used blogging platform Wordpress that analyzes the
semantic relationships between different blog posts and cre-
ates a graph-based interface to visualize their relationships.
This enables blog readers to access topics by semantic rela-
tions rather than the traditional form of chronological order,
and accomplishes this in an automated fashion rather than
manual tagging.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext / Hypermedia—navigation; I.7.4 [Document and
Text Processing]: Electronic Publishing; H.3.5 [Informa-
tion Storage and Retrieval]: Online Information Services—
web-based services; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—linguistic process-
ing

General Terms
Design, Human Factors

Keywords
Natural language processing, Semantics, Semantic Web, DB-
pedia, WordNet, FreeBase, Tim Berners-Lee, World Wide
Web

1. INTRODUCTION
When Sir Tim Berners-Lee first invented the web, his pri-
mary goal was to help facilitate information sharing and
management among researchers at CERN. [2] Recently, as
the web has broadened to cover all aspects of our daily lives,
Berners-Lee has called for developers to bring out the linked

nature of web data in a new form of web content, coined Se-
mantic Web, to enable information sharing and management
for the whole world [3].

The linguistic semantics of a word describes its meanings
and its relationships with other words; the Semantic Web
explores this idea with respect to online data and models
both how the data relate to each other and what those rela-
tionships mean to human users. The traditional web is com-
prised of webpages and hypertext that link them together,
but the contents must be manually parsed for information;
the Semantic Web builds upon those standards and defines
structured data to directly model the actual ideas and the
relationships between them, and those structured data can
then be aggregated from distinct and separated sources. The
implication is that we can eventually use the web to combine
human knowledge in a meaningful way, rather than just bits
and packets strewn across the internet.

We focus on a specific web application, the blog, as an area
that can stand to benefit from these changing standards. In
§2 we examine the growing importance of natural language
processing in web applications today. In §3, we briefly con-
sider the trend shift currently occurring in web standards,
and describe both limitations and innovations of organiza-
tion features currently available to popular blogging appli-
cations. We also describe some of the existing standards
and APIs designed for Semantic Web applications in gen-
eral, emphasizing those that affect blogs. In §4 we describe
a plugin we created for the popular platform Wordpress. It
combines various modules to process posts in a blog and
produce a form of output that, as of our current knowledge,
has not yet been done. We start with the general workflow
and then go in detail to describe each module’s role. In
particular, we tried many different approaches to establish
relationships between blog posts, so we will explain the func-
tions we coded for this purpose–what worked, what didn’t,
and what we chose to include in our final product. To eval-
uate each approach’s strengths and weaknesses for different
blogging purposes, we look at example entities and relations
extracted in Figures 3- 6. Finally in §5 we conclude with
our view of future work that could be done with semantic
blogs and the semantic web in general.

2. THE STATE OF NATURAL LANGUAGE
PROCESSING

In recent years, it has become increasingly clear that nat-
ural language processing (NLP), in particular compilation,

organization, and curation of semantically-informed data,
has tremendous potential for social benefit and commercial
value. Thus, it has been the focus of a significant body of
work in both research communities and in private companies
with commercial interests.

Semantic resources are effectively a prerequisite for power-
ful natural language processing. Amazingly, some such re-
sources predate the web, and these have arrived at a state
of sufficient maturity to allow their use in larger NLP-based
projects. Consider, for example, Princeton’s WordNet, a
highly-regarded and heavily-utilized semantic project that
boasts origins dating back to 1985. WordNet, in partic-
ular, has been used from everything from Applied Seman-
tics, Inc.’s early projects [8], which would eventually become
Google’s AdSense, to contemporary work that is much closer
to our present project [11, 9]. AdSense helped increase rele-
vance of ads in Google’s search pages by analyzing the con-
tent of the search and matching it up with ads of similar top-
ics; Ponzetto tried to map out a taxonomy for Wikipedia,
also with structure in mind; and Jo graphed evolution of
topics over time. All of these efforts would be way too time
consuming to be done manually, and the data would become
outdated long before the human analysis required to process
them is completed.

Fortunately for our work, useable semantic resources have
both multiplied and matured. We were able to benefit sub-
stantially by simply relying on existing time-tested resources
to do many of our core NLP tasks. This luxury allowed us
to focus more intently on the higher-level problem that we
sought to tackle to begin with.

3. THE STATE OF THE WEB
3.1 Current Blog Features
The modern blog evolved from the fundamental notion of
an individual’s online diary, so it logically follows that the
primary means of blog organization remains chronological.
Also standard are some organizational features like tag clouds
and categories, which help manually compile lists of related
posts, and allow for some amount of “semantic” navigation.
Yet, these interfaces continue to feel clunky and outdated.
A tag cloud, while useful for manual categorization of blog
posts, is limited in that it provides the user with no sense
of how different tags are related ; each tag is a discrete iden-
tifier which has no connection to any other tag. Categories,
while providing for a hierarchical organization, cannot show
multiple relations, or graphs more complicated than trees.

This shortcoming of blogs is the primary motivation for our
work. Our product aims to provide a truly semantically-
based, rather than document-based, mode of navigation that
addresses and accounts for many of the shortcomings of tag
clouds. We will discuss more about our actual implementa-
tion of this in §4.

3.2 The Semantic Web
3.2.1 Resource Development Framework

The Resource Development Framework, or RDF, is a devel-
oping standard. The WWW Consortium (W3C) overlooks
its development, as well as other standards part of the Se-
mantic Web. In brief, it uses a simple model of connected

“triples”–two entities and a relation between them–to allow
differently structured data to be mixed and shared [6]. This
allows database implementations to be wildly different be-
low the surface, while sharing a common interface for the
specific task of how they expose data.

3.2.2 Linked Data
With the Resource Development Framework as a common
ground, many current websites have joined in on the collec-
tive effort to share data. Such data is referred to as Linked
Data, to illustrate the concept that they are all linked by
a common standard of access. Freebase and DBPedia are
two such websites that rely on user efforts to expand, with
their eventual goals being to cover as many topics of human
knowledge as possible; however, there are dozens of other or-
ganizations that are all joining in by providing their linked
data–including the ACM and, potentially, this paper itself.
The result is that we see an impressively broad actual web
of semantics that is being built on top of the traditional web
[5]; most users just don’t realize it yet.

We found great inspiration on how to utilize linked data in
Linked Galaxy 1, an application that combines linked data
from Freebase and DBPedia and the NLP functionality of
Zemanta to produce a graphical output of related keywords.
Linked Galaxy currently exists as just a proof-of-concept ap-
plication; it processes a single chunk of text, and the output
is temporary. However, from here, it was easy to see how
we can use its idea to create a semantic blog.

4. THE SEMANTIC BLOG
In order to bring the benefits of the Semantic Web to the
blog, we devised a navigation system inspired by tag clouds,
but designed in such a way as to clearly represent relation-
ships between “tags.” We use the term “tag graph” to de-
scribe this new approach to blog navigation. More detail
about the appearance and implementation of our tag graphs
will follow in the visualization sub section. A full workflow
of our Semantic Blog is shown in Figure 1.

4.1 Data Model
In the design of our data model, we focused on two main
goals: simplicity and flexibility. We aimed for a very simple
set of relations that could be applied on top of an existing un-
structured data model from a blog, a crawler, or some other
application that might provide data into our corpus collec-
tion (see Future Work in Section 5 for other ideas about
where data might come from). While several important re-
sources in the growing Semantic Web have enjoyed much
of their success due to their insistence on purely structured
data models, we believe that in the particular case of ex-
tending these ideas to the realm of blogs, flexibility is of
utmost importance. Thus, our data model focuses on the
idea of annotating unstructured data with information de-
rived from semantic resources.

The current design involves two tables of information regard-
ing entities, and one for relating these entities to arbitrary
underlying unstructured data. Figure 2 shows our current
data model. The unstructured_table refers to any form

1http://test.infoblow.zemanta.com/infoblow/galaxy/ Open
Galaxy , Zemanta showcase

http://test.infoblow.zemanta.com/infoblow/galaxy/

Figure 1: The Semantic Blog Workflow. This diagram describes the workflow involved when specifically
considering the WordPress plugin.

Figure 2: Generic Data Model. The unstructured
table is simply a generic placeholder for the data
provided from the corpus collection. The other
three tables together make up our data model.

of storing unstructured data; all that is required is that it
have a unique integer identifier for each chunk of text, and a
lack of this could of course be mitigated with an intermedi-
ate relation. This design enables us to change or add to our
data sources with ease. The Freebase and DBPedia columns
are meant to store URL’s for the given entity in those two
resources. As the product grows, URL’s for other resources
could be added to this table.

4.2 Corpus Collection
We developed two methods for our software to gather its
initial, unstructured blog post data: a web crawler and a
WordPress plugin. As described above, our data model is
flexible enough to allow future development of other meth-
ods with ease. For the purposes of this paper, however, we
focus on WordPress.

The web crawler simply crawls and organizes a WordPress
blog using the interface presented in HTML. It implements
a simple parser that seeks common elements found in Word-
Press pages in order to find page text, titles, dates, and
URL’s. This means of gathering data is much more flexible
than direct use of the WordPress API, as it only requires
read access to the HTML presentation of a WordPress blog,
as opposed to administrator privileges to run a plugin. How-
ever, it also has its drawbacks, as the process is error-prone
and WordPress’s output is not as standard as one would like
it to be. One would also like this approach to function across
several different blog software platforms, and this would cer-
tainly be possible, but each one would require quite a bit of
fine-tuning. The crawler is included in the package released
at the time of this paper, but it is not the currently active
means for gathering data.

The preferred data source in our implementation is direct
access to the WordPress database by way of the WordPress
plugin API. This means of access entails two main limita-
tions, first that the blog must be implemented on a Word-
Press platform, and second that the author himself must
install and run our software in order to allow his users to
benefit from its services. However, this approach is not a
huge limitation, as Wordpress is very popular, and the API
opens the software up to quite a few conveniences and op-
timizations, including incremental updates to the tag graph
(as opposed to a full reconstruction) immediately upon pub-
lication of a new blog post, and an elegant way to integrate
the interface with WordPress’s default interface. For the re-
mainder of the paper, the WordPress plugin API will be our
assumed means of access to unstructured blog post data.

4.3 Natural Language Processing and Tagger
As we have already discussed, the existing body of work in
NLP is substantial. Among the projects out there is the
General Architecture for Text Engineering (GATE), which
exists primarily to build a common community and API
layer on top of dozens of specific-purposed open source NLP
solutions 2.

After researching solutions such as GATE, we came to the
conclusion that we would benefit from using web services
for our NLP procedures. This decision has several benefits.
First, it limits the number of dependencies our product has.
It is also the case that the web services providing these solu-
tions tend to have a better sense of the semantic web in gen-
eral; they usually provide linked data to semantic resources
like FreeBase, DBPedia, and WordNet. Finally, it is consis-
tent with the spirit of the Semantic Web which inspired this
project to share in the growing community surrounding its
ideas.

The two main web services that caught our attention for
keyword production were OpenCalais and Zemanta. Both
of these services take as input an unstructured block of text
(i.e. a blog post) and produce a set of keywords. Both
services also use context to link these keywords to entities
in semantic resources, which is highly convenient for our
purposes. In the end, we settled on Zemanta for our product
as its RDF output is a much more powerful and direct format
for our purposes.

4.4 Entity Extraction
Once we produced keywords from the previous tools, the
next step was to link the keywords together. For this we
needed to transform plain string data into linked data, so
we turned to some well-known existing databases that were
designed for this. First we began with WordNet, which has
a history of development older than the web itself. However,
we saw that it was not well-suited for blogs. We then found
inspiration in Open Galaxy, which uses Freebase and DB-
Pedia, which are recent developments that produced much
more satisfactory results.

4.4.1 WordNet
WordNet stores for each word several synsets, or “synonym
sets”, each of which represents a different meaning for the

2http://gate.ac.uk/overview.htmlOverview, GATE

word [10]. Since synonyms are related by meaning, a synset
represents a disambiguated meaning for a word by present-
ing other words that could also have the same meaning. The
chief distinction is in the direction of mapping between string
and meaning: a single word maps to several synsets if it
has several different usages; a single synset maps to several
words if those words all share the same usage. As Miller et.
al mention in their paper on WordNet, the task for a speaker
or writer is to choose a member of a synset to use as a word,
while the task for a listener or reader is to be presented a
word and deduce which synset it came from; therefore, the
entity we wish to extract is the correct disambituated synset,
given the word.

We do this for a keyword depending on other keywords
present in the same text. As an example, the word “net”
may refer to the internet, the goal used in a game of soccer,
or many other meanings. However, if the same text also
uses words such as “web”, “computer”, “cyberspace”, etc., it
would be very reasonable to guess that the word “net” is re-
ferring to the internet; and similarly, if the text uses words
such as“ball”, “referee”, “player”, etc., it would be reasonable
to guess that it refers to the game equipment. To find this
“closeness” in meanings of words, we use a Python package
called nltk that includes many useful functions for working
with synsets. Among them are several “similarity” functions
that operate on pairs of synsets and returns a numerical
value based on their relative structural locations in Word-
Net 3. In the examples above, we would see that the first
group of words relating to the “internet” definition all relate
to the concept of “technology”, while the second group of
words relating to the “game equipment” definition all relate
to the concept of “recreational game”. These broader terms,
or hypernyms, are what the nltk functions use to for their
similarity calcuations, and we will discuss the specifics of
this and other relational terms in the next section. For now
we outline our algorithm for extracting synsets from strings.

Algorithm 1 <Synset Extraction via Pairwise Similarity>

S={unextracted strings}=input
Y ={extracted synsets}={}
while |S|>1 do

for each sα ∈ S do
for each sβ ∈ S, sβ > sα do

(iα∗ , j
β
∗) = maxarg iα,arg jβ sim(yiα , yjβ)

{for yiα ∈ synsets(sα), yjβ ∈ synsets(sβ)}
end for
for each yk ∈ Y do

iα∗ = maxarg iα sim(yiα , yk)
{for yiα ∈ synsets(sα)}

end for
end for
i+ = maxarg iα∗ sim(all (yiα∗ , ?) pairs this iteration)

Remove sα that corresponds to i+ from S
Add yi+ to Y

end while

That is, we compare the ambiguous synsets of each unex-
tracted string with those of other unextracted strings (using
lexicographical ordering to avoid repeats), as well as with

3http://nltk.googlecode.com/svn/trunk/doc/api/index.html
Module wordnet , package nltk

http://gate.ac.uk/overview.html
http://nltk.googlecode.com/svn/trunk/doc/api/index.html

the set of extracted, disambiguated synsets already found
so far. This latter process, seen as the second inner for-loop
above, was added after experimental error; a test of “cat”,
“dog”, “bird”, and “man” kept removing “cat” and “dog” first
(due to their close relation as carnivores), then extracted
the obscure connotation “lady” from “bird” since it was the
closest in meaning with “man”. After we added compar-
isons with the synsets for “cat” and “dog”, the algorithm
pinpointed the correct synset for “bird” easily (via the close
relation of all three as animals). In other words, this extra
check helps us incrementally build up an understanding of
the corpus using the best available information at any given
time, which improves as we extract more synsets.

4.4.2 Freebase and DBPedia
Both Freebase and DBPedia represent entities as collections
of facts, and relations are represented as links to other enti-
ties. An entity can be identified by one or more URLs; addi-
tional URLs are equated using the owl:sameAs relationship,
a standard from the Web Ontology Language [1]. As both
databases have had time to develop, many entities exist in
both of them; and as expected, those corresponding URLs
all reference each other via owl:sameAs. Both databases also
reference equivalent listings in WordNet, though there is no
reverse link back from WordNet to them.

What is interesting is that a URL doesn’t look the same to a
human as it does to a machine. The raw data that contains
these relations is in forms easily accessible to parsers, but it
would look as jumbled and senseless to readers as an XML
file. Both websites perform browser redirects based on the
user agent detected, and the result is that humans navigat-
ing the sites feel like they’re browsing through a redesigned
Wikipedia, while machines crawling through the pages can
easily parse through all the links and relations and produce
graph objects.

Clearly, finding the correct URL is all we need to match
to an entity; therefore the task of finding entities becomes
deducing the correct URL given a large chunk of text. It ap-
pears that we again have the problem seen in working with
WordNet: how do we match up an input string to its cor-
responding entity, if that string may be relevant to multiple
entities? For this, we turn to existing APIs for help. Fortu-
nately, Zemanta’s query function does this for us: it takes
input context into account and returns a list of possible rel-
evant URLs, each with two important numbers: relevance
and confidence, each a fraction between 0 and 1. Our task
of matching entities to strings was therefore significantly fa-
cilitated by the Zemanta API, and all we needed was to
filter the results by a threshold. In our practice, a filter of
confidence× relevance > 0.5 produced tags that were rele-
vant and unique: each “anchor text”, or actual string in the
original input, was matched with exactly one entity. The
above formula can also be easily adjusted by replacing the
filter function with any other boolean function that takes in
the two values, a design intended to help extend our appli-
cation in further development.

4.5 Relation Building
As our entities extracted from the previous section are in
different forms depending on the implementation (Word-
Net vs. Freebase/DBPedia), we divide this section similarly.

Though our final implementation uses the latter, we show
the strengths and weaknesses of both methods, and retain
the now-deprecated WordNet functions in our final project
as modules that could easily be re-integrated.

4.5.1 WordNet
We now return to define some basic terms used by WordNet
in its classification hierarchy of the words in its database. A
hypernym is a superclass of entities that its corresponding
hyponyms belong in. Table 1 lists other classification terms
for nouns (similar terms also exist for other parts of speech,
though we focus on nouns because they are most relevant for
tagging). The table also lists equivalent relational terms in
graph theory, so that our following descriptions using con-
cepts such as “root” and “parent” can have a clear analogy
in the WordNet hierarchy.

We build relations between synsets by reproducing these hi-
erarchies using the nltk function lowest_common_hypernym,
which finds the closest parent synset between any two synsets
[4]. In our case, the two synsets are the pairs we compared
in Algorithm 1. The hypernym would then be used to create
a parental node that points to the children, which helps us
easily produce a hierarchy as defined by WordNet.

Unfortunately, this also introduces the main shortcoming
of this entity-relation building method: the relevance of the
method is restricted by the limitations of what WordNet de-
fines with its hierarchies. As WordNet was developed with a
thesaurus as its model, the hierarchies we observed seem to
be very strict, scientific, and static. While our experiments
with words such as “cat”, “dog”, “bird”, “man”, etc. were
very promising, we were quickly disappointed when we tried
to use actual blog posts. For example, a CS146 paper sum-
mary produced many tags from OpenCalais, but WordNet
failed to recognize all the technical terms; the only entities
it recognized were “California” and “Wyoming”, with “state”
being the hypernym that linked the two. We quickly real-
ized that recent technologies, pop cultural references, etc.,
would all fail to be detected as well. Knowing that many
blogs are about recent news and developments, we aban-
doned the WordNet module, but strongly note here that it
has the unique advantage of a very standardized hierarchy
that will more likely remain through time.

4.5.2 Freebase and DBPedia
It was easy to build relationships using Freebase and DB-
Pedia, since relations are a fundamental part of these two
databases. For both databases, relationships can be queried
via the common RDF query language, SPARQL. This is a
powerful language that operates on relationship triples in
the form subject predicate object [12], with the biggest
difference from standard querying languages being that all
three fields can be variables. We see the importance of
this flexibility when we consider that, aside from standard
relations such as owl:sameAs mentioned previously, each
database following the RDF standard is also allowed to de-
fine its own set of relations. This means the relations are
as dynamic as the entities they connect, so a constant set
of predicates (akin to hypernyms, hyponyms, etc., seen in
WordNet) will quickly become outdated. Therefore we may
write a query of the form of the first line of Algorithm 2,
which translates to any entity, related by any relation, to

Table 1: Semantic Relations in Wordnet Synsets [10]
Relation Graph Relation Example

hypernym parent (classification) tree is a hypernym of maple
hyponym child (classification) maple is a hyponym of tree

coordinated term parallel (classification) dog is a coordinated term of wolf
holonym subset (composition) wheel is a holonym of car
meronym superset (composition) car is a meronym of car

any other entity. But this will also return any (subject,
predicate, object) triple, effectively being a wildcard con-
dition. To filter the relations down, we add the additional
database-specific clauses in the rest of the algorithm, which
help pick out the actual DBPedia or Freebase entities.

Algorithm 2 SPARQL query: relational WHERE clauses

?a ?b ?c {(General)}
?a rdfs:label ?aname {(DBPedia)}
?a rdfs:label ?aname {(Freebase)}

The output is a list of the triples in the subject predicate

object order. We then store these as entries in a lookup
table, with the subject as the key and a list of (predicate,
object) pairs as the value. Finally, each object member
of a list and its corresponding subject are then written to
our blog relations MySQL table, where the relations can
be visualized via JavaScript with the aid of a MySQL-PHP
interface.

4.6 Visualizer
Our primary design goal is the output of a“tag graph,”which
is quite simply a graph of tags, with each tag providing links
to blog posts that pertain to it. Due to the nature of the
product’s interaction with web applications, we also desired
that this graph be a JavaScript-based interface for navigat-
ing the blog from within the browser itself. Fortunately,
there is a significant body of work in the area of graph visu-
alization, and we were able to find several generic JavaScript
graph visualizers.

We ended up settling on the Dracula Graph Library, which
produces very elegant graphs using pure JavaScript and Scal-
able Vector Graphics (SVG) 4. We then modified the library
to allow association of blog posts with nodes, including an
interface for displaying blog post titles upon clicking a node.
We built a php script for querying our MySQL database and
producing the JSON data with which to build the graph. We
integrated the interface into our WordPress plugin to allow
it to be a fluid part of the blog navigation experience. For
a graphical look at our visualization, see Figures 3- 6.

5. FUTURE WORK
As Linked Data and Semantic Web begin to garner buzzword-
level awareness, it is important to note challenges they face.
As with all developing standards, they are still far from ripe,
and are still characterized by bugs and nuances. For exam-
ple, our implementation struggled with a minor detail in the
Freebase standard: some URLs replace underscores in the
terminal portions of URLs with periods, but both sets of

4http://www.graphdracula.net/

URLs are intended to represent the same entity. They will
seem identical to human navigators, who will be redirected
to the same human-readable page from either URL. For di-
rect string comparison in programs, however, they pose a
problem. Our solution simply converted such strings, but
it does seem counterintuitive to require such a process to
standardize the method to express a single entity.

Even more difficult to manage is managing entities across
different services altogether, since the owl:sameAs relation
is often human-made, and thus error-prone. As an example,
consistency between WordNet and DBPedia is checked on
an annual basis, and the results show that it is indeed a
nontrivial problem, and many relations and entities are not
properly mapped across the two [7]. However, this should
improve as the RDF standard matures and developers realize
the importance of adhering to such standards. As more of
the web is turned to linked data, such errors may also be
correctable by machine algorithms.

Also, there are still plenty of semantic resources on the web
that we did not get to take advantage of in our project so
far. We experimented with a heuristic-based approach for
deciding on strength of relationship between two entities,
using contributions from a multitude of resources. In order
to be compatible with our end product of a graph visualiza-
tion, this approach requires a threshold for deciding whether
or not two nodes should be connected by an edge. In order
for such a threshold-based algorithm to reach stability and
reliability in prediction, we would require the use of signifi-
cantly more resources than we are currently able to link to.
However, the resources are out there, and the availability of
linked data is growing, so there is potential for significant
improvement to the quality of the produced tag graph by
taking such an approach.

An additional important future project is the development
of client-side solutions for performing these tasks. Plugins
for the major blog platforms are arguably the ideal imple-
mentation of this work, but they require action on the part
of each blog’s author or administrator in order to allow users
to make use of the tag graphs. A client-side solution would
allow users who enjoy navigation using the tag graph to do
so on top of any blog they choose to browse, regardless of the
author’s knowledge of the tag graph’s existences. The core
functionality can easily be run client side, but the gathering
of blog data and the visualization pose a slight problem. We
believe the best way to implement this on the client side is to
build plugins for the major internet browsers. They all have
built-in HTML parsers which the plugin could make use of to
extract the data it needs, and they also provide the natural
interface for tag graph navigation; the visualization could
simply be overlayed on top of the relevant blog using the

http://www.graphdracula.net/

Figure 3: Entity Extraction. For the author, it’s as easy as publishing in WordPress. The installed plugin
then activates and does all of the work behind the scenes.

Figure 4: Entity Relationships. The plugin deposits the discovered relationships into a database table shown
here. These relationships are to be represented as edges in the tag graph.

Figure 5: JavaScript Interface. When the user requests to navigate using the graph, the plugin draws an
SVG-based graph on top of the current page. Users can then click on the nodes to activate lists of blog links.
These links allow them to navigate to different pages.

Figure 6: Tag Graph. Each node represents an entity found in at least two posts in the blog. The graph is
connected semantically.

browser plugin. A client-side implementation would have
the additional benefit that users could build super graphs
linking similar blogs with the same extracted entities, pro-
viding services similar to RSS aggregation but for semantic
organization rather than chronological.

Finally, assuming the existence of a client-side implementa-
tion, a central server to cut down on redundancy in computa-
tion and in crawling bandwidth would be very useful. The
central server could also provide a social service in which
users could share the topics they like to browse the most
with each other and combine subsets of their generated tag
graphs. This could also potentially pave the way for a busi-
ness model supporting this service in the long term. Such
business models are currently somewhat absent in the grow-
ing Semantic Web. They will be essential if this paradigm
is to move forward.

6. ACKNOWLEDGEMENTS
We would like to acknowledge Professor Steven Low for his
helpful mentorship from planning stages to completion of
this project. Professor Adam Wierman gave us very useful
advice in the planning stages as well. Additionally, Caltech
alumni Rishi Chandy and Julian Panetta were quite helpful
in our development of our approaches to entity extraction
and relation building, and of our understanding of the Se-
mantic Web in general.

7. REFERENCES
[1] S. Bechhofer, F. Van Harmelen, J. Hendler,

I. Horrocks, D. McGuinness, P. Patel-Schneider,
L. Stein, et al. Owl web ontology language reference.
W3C recommendation, 10:2006–01, 2004.

[2] T. Berners-Lee. Information management: A proposal.
1989.

[3] T. Berners-Lee. The next web. TED.com, 2009.

[4] S. Bird, E. Klein, and E. Loper. Natural language
processing with Python. O’Reilly Series. O’Reilly, 2009.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked
data-the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1–22, 2009.

[6] D. Brickley and R. Guha. Resource description
framework (rdf) schema specification 1.0. W3C
Candidate Recommendation, 27:2001–03, 2000.

[7] J. Euzenat, A. Ferrara, L. Hollink, A. Isaac, C. Joslyn,
V. Malaisé, C. Meilicke, A. Nikolov, J. Pane,
M. Sabou, et al. Results of the ontology alignment
evaluation initiative 2009. In Fourth International
Workshop on Ontology Matching, Washington, DC.
Citeseer, 2009.

[8] P. Hane. Beyond keyword searching-oingo and simpli.
com introduce meaning-based searching. Information
Today, 17(1):57–68, 2000.

[9] Y. Jo, J. E. Hopcroft, and C. Lagoze. The web of
topics: discovering the topology of topic evolution in a
corpus. In Proceedings of the 20th international
conference on World wide web, WWW ’11, pages
257–266, New York, NY, USA, 2011. ACM.

[10] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller. Wordnet: An on-line lexical database.
International Journal of Lexicography, 3:235–244,
1990.

[11] S. Ponzetto and R. Navigli. Large-scale taxonomy
mapping for restructuring and integrating wikipedia.
Proc. of IJCAI-09, pages 2083–2088, 2009.

[12] E. PrudâĂŹhommeaux and A. Seaborne. Sparql query
language for rdf. w3c recommendation 15 january
2008. World Wide Web Consortium, 2008.

	Introduction
	The State of Natural Language Processing
	The State of The Web
	Current Blog Features
	The Semantic Web
	Resource Development Framework
	Linked Data

	The Semantic Blog
	Data Model
	Corpus Collection
	Natural Language Processing and Tagger
	Entity Extraction
	WordNet
	Freebase and DBPedia

	Relation Building
	WordNet
	Freebase and DBPedia

	Visualizer

	Future Work
	Acknowledgements
	References

