Robust Networking in Multiplayer Games

Mihail Dumitrescu
California Institute of Technology
1200 E.California Blvd

_ Pasadena, USA
mihaid@caltech.edu

ABSTRACT

This paper documents the development of a robust, scalable
networking infrastructure for a multiplayer game developed
using Pygame [1] and PyOpenGL [2] in the Python pro-
gramming language.

The work undertaken by the authors involves developing a
networking library from the ground up for an open source
multiplayer game called Spacewar [3] aimed at eliminating
any single point of failure vulnerability from the client-server
architecture along with adding various enhancements to the
performance of the game. The problem of single point of
failure vulnerability is tackled by designing the library as
a unification of client and server instances that can choose
to perform the operations of either based on the require-
ments of the game. The performance enhancements in-
clude the incorporation of numerous modern techniques in
networked game programming including client-side predic-
tion algorithms, server-side computational buffers and host-
switch smoothing algorithms.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
architecture and design, Distributed networks

General Terms
Algorithms, Design, Performance

Keywords

Multiplayer games, Distributed networks, Client-server

Nihar Sharma
California Institute of Technology
1200 E.California Blvd

_Pasadena, USA
nihar@caltech.edu

1. BACKGROUND

As internet connectivity ceases to be a limitation, more and
more games are starting to take advantage of the ”social”
experience in gaming by letting users play with their friends
online. It is not hard to see a world where a virtual net-
work between friends would be persistent even past game
sessions [4] [5] [6]. But before this ”virtual presence” can
become a reality, games will remain the most popular social
interaction medium for friends online. To manage games on
this kind of scale, several network architectures have been
experimented with over the years.

Peer-to-Peer (P2P) architectures explored all nodes of a net-
work locally managing the game state [7]. This approach
variably employed fully connected or overlay networks de-
pending on the requirement of the game and other consid-
erations. The advantages here are clear - there is no single
point of failure, so the network is robust in that sense but
also flawed since it is harder to stop cheating as the messages
are not being verified by any one server [8] [9]. Look-ahead
cheating is a method of cheating within a peer-to-peer mul-
tiplayer gaming architecture where the cheating client gains
an unfair advantage by delaying his actions to see what other
players do before announcing its own action. A client can
cheat using this method by acting as if it is suffering from
high latency; the outgoing packet is forged by attaching a
time-stamp that is prior to the actual moment the packet is
sent, thereby fooling other clients into thinking that the ac-
tion was sent at the correct time, but was delayed in arrival.
A partial solution is the Lockstep protocol [10]. Further-
more synchronization of the distributed game state is diffi-
cult. This makes it a requirement to have a lobby for players
to join, from which the game starts and foils many game de-
signers’ attempts at allowing new players to join mid-game.
A good example of game employing a P2P architecture is
Age of Empires.

The client-server architecture was ushered into multiplayer
games with the advent of Quake. One central machine was
designated as the "server” and it was responsible for all the
gameplay decisions. The clients simply sent their actions to
the server, received the game objects that they should render
and displayed them on the screen. The responsibility of this
game evolution being fair, correct and responsive belongs to
the server [11]. This model was both scalable and flexible,
save for the server load bottleneck, since now clients could
connect to a server and join an existing game, which was
not possible in P2P architectures.

The client-server model was further improved when games
started to introduce client-side prediction and simulation
into the mix. The servers now sent some additional informa-
tion about the state and trajectories of game objects so that
clients could simulate some of the game physics on their own,
reducing the bandwidth usage and increasing the amount of
detail that they were able to render at the same time. This
technique is still limited in capability for games that are be-
coming increasingly non-deterministic when considering the
number of variables that client-action outcome depends on.

2. APPROACH

There were many considerations to be made when choosing
the game for which we wanted to develop a networking li-
brary. Although the goal was to produce a generic library
that can easily be reused by game programmers, we needed
to handpick the game we would use to test this library with
carefully. Firstly, the game had to be using a client-server
network topology in its multiplayer setup. Secondly, we
wanted the game to be deterministic in the computations
involved for its game state since that would allow us to see
the advantages of certain techniques like client-side predic-
tion relatively easily. Also, we wanted the game to be writ-
ten using certain techniques like client-side prediction rela-
tively easily. Also, we wanted the game to be written using
a library that was cross-platform, and relatively high-level
so that game programmers could use our code in real-time
game development without knowing the low-level mechan-
ics of a C-like programming language. This is why we chose
Spacewar, which was written in Python using both Pygame
and PyOpenGL libraries. Spacewar is a multiplayer head-to-
head death match (DM) game and there are several reasons
why this is important. DM games as opposed to their mas-
sively multiplayer online (MMO) counterparts like World of
Warcraft, rely on rapid interactions and fast-paced game-
play. These games have short-lived highly variable game
states. Any client can host an instance of the game, which
is a quick session of rapid decision making. These are the
type of games we wanted to direct our networking library
towards since they are better served by the client-server ar-
chitecture. MMO games have long-lasting game sessions in
a persistent game world that involve dynamic social inter-
actions of some kind. These have their own set of robust
networking challenges which we will not explore here.

There are several important design decisions that needed to
be made once the game codebase was examined. It was evi-
dent from the poor documentation and unconventional pro-
gramming style that a lot of game programming was going
to be unavoidable during the course of this project. The first
couple of weeks were spent studying the codebase and clean-
ing it up. It was decided that we would rewrite the game
logic to separate out the graphics rendering code from the
game physics. This was an important step in establishing a
separation-of-concerns guideline in our code so that we could
exploit code reuse in the future. We decided to introduce a
clean action-state model in the code, where chief operations
would involve a get_actions and broadcast_update method
for the server and a get_update and send_actions method
for the client. Quite evidently, this allows the game code to
function in the manner shown in Fig [1].

get_update

broadcast update ﬁ

S

Figure 1: Game Network Design

get actions send_actions

The networking library was also planned to allow a user to
simply indicate a server flag when invoking the game which
would then enable the user to host a game session and dis-
tribute his IP address for other clients to connect to (who,
in turn would use the invocation with only the host’s IP ad-
dress). Internally, the server flag would determine which op-
erations a game instance would perform, which would affect
socket functionality, packet sending/retrieval and ordering
etc.

This brings us to our next design consideration which is the
choice of protocol for implementation [12] [13]. Transmission
control protocol or TCP certainly has desirable features for
networking - guaranteed, reliable and ordered packets, au-
tomatic packet structuring for transmission and good flow
control amongst others. On the other hand, User Datagram
Protocol or UDP has none of these - no reliability or order-
ing of packets i.e packets may be out of order, duplicated or
lost, no packet loss handling, everything needs to be handled
explicitly. The only feature that UDP does promise is that if
your packet arrives at its destination, it will arrive in whole
or not at all. Although after these considerations it may
seem that TCP is the logical choice, it would be a mistake
to assume that. The reason for this lies in the way TCP
implements the features it boasts. Unlike, web browsers or
email etc, multiplayer games have a requirement for real-
time packet delivery i.e most recent data is most valuable.
So if a packet was lost, TCP would wait for that packet to
be resent since it needs to guarantee delivery, but while it’s
waiting, either the client is not getting updates on the game
state sent to it by the server or the server is not receiving
newer client actions. Either way, the entire multiplayer game
will break down and come to a halt till the packet which was
lost arrives and then the packets queued up behind it start
flowing. Even then, the packets being received are old now
and will need to be processed in a single game tick causing
a ”jump” in the game. This is one of the reasons why UDP
is the better choice for multiplayer games and we decided
to implement our own mechanism to ensure ordering and
account for packet loss in the library.

Initially, we also wanted to further develop our library into a
distributed massively multiplayer networking library [14] [15]
within the project timeline but this idea was later abandoned
when several performance considerations that needed to be
addressed in the client server model later proved non-trivial
and time consuming.

2.1 Modularity in the game code

The most important step we took towards our goal is that of
modularizing the game code. In other words, we separated
the game physics code from the networking code and isolated
the OpenGL graphics code from the game state calculations.
This process was time consuming owing to the poor docu-
mentation of the initial codebase. But, once achieved, it
allowed a smoother (as smooth as possible) transition from
the current architecture to the redundant server model.

In order to be able to eliminate the single point of failure in
the network, one important step was to allow clients to con-
nect to a game instance not just directly to the server hosting
the game, but also through any client that is currently play-
ing in that instance. This will facilitate the propagation of
a server address that the client sockets can use to maintain
a redundant server among them.

22 Al

In addition to this, we have setup AI algorithms that can
spawn players in a game and ”"play”. These Al’s are meant
to simulate client behavior and allow us to see breaks in the
game physics as we continue to modify the networking code.

Currently the AD’s constantly shoot at players in the game
and use euclidean distance path finding to move towards
their opponent randomly. There is no further need to en-
hance their strategic algorithms for the purposes of this
project. Although, we have made their targeting very ac-
curate by allowing them to shoot at the precise locations of
their targets to give the game more realism and challenge.

3. THE CLIENT SERVER MODEL

The game code has come a long way in providing us with a
robust foundation to implement the new network architec-
ture features that are our ultimate aim. Our first goal was
to get rid of numerous bugs that made the gameplay experi-
ence extremely unstable. The game was initially not able to
hold 3 players playing on the same local area network (2ms
ping). We spent a great deal of time progressively refac-
toring and building upon a poorly commented/formatted
codebase and were gradually able to structure the game and
make the gameplay stable.

In the next phase, we completely rewrote the game handler
and made it based on an action/state model. In this model,
every client has certain actions that it sends to the server. In
turn, the server handles the game physics using the actions
from all the clients and then broadcasts the authoritative
game state to every client connected to it. The network
flow is of course of that shown in Fig [2].

4. CLIENT-SIDE PREDICTION

The client server model as stated above has limitations. On
a LAN, because of the small 3ms lag, the game is respon-
sive. However, such lags are very uncommon across the
internet [16]. Once we experimented with 100ms or more
artificially added lag, the game quickly became unplayable.
This is due to the fact that every client action must travel to
the server and the result must travel back before the client
can see the results of his input [17]. In other words, there was

Server

CMent

Figure 2: Client-server model

still a noticeable lag in the game response since every client
action first needed to travel to the server and the server
needed to calculate and respond with a new game state be-
fore that game state was displayed to the user. These delays
can be anywhere from tenths of a second to a second over the
internet. In the latter case, they render the game completely
unplayable [18] [19].

To resolve this issue, we introduced the client-prediction
technique mentioned earlier as soon as we receive user in-
put. Now, instead of waiting for the users input to reach
the server and the server to respond with a state, the client
predicts/simulates the game on its own as soon as it receives
some actions from the user. Since our game state can be ap-
proximated deterministically very well, this technique plays
to our advantage. In other words, most of the time the state
predicted by the client when user input in entered will be
correct when compared to the servers simulation. So, when
the client enters an input, it can begin rendering the results
from that input immediately. Although the technique is
conceptually straightforward to implement, the trivial im-
plementation quickly runs into a lot of timing/lag issues.
Since the severs game state is still authoritative, there are
synchronization issues when the client and server disagree
on the new game state. What happens is that the game
starts to snap because the client jumps from its predicted
game state into the servers game state. Figure 2 gives an
example of such an instance if p represents a players position
in a simple 2D map.

Our solution is detailed as follows. The now client keeps a
base state (which is the last state received from the server),
and predicts from it a simulated state which is then ren-
dered. As above, let the client and the server start from
the same state (p = (10, 10)). For the client, the simulated
state (p*) and the base state are initially the same. Once
the client does a few actions, the simulated state changes
immediately to reflect it (p* = (12, 10)). When the server
responds with the result from the first action the base state
is updated (p = (11, 10)). The client now re-runs the whole
simulation, taking into account only the actions which the
server hasn’t responded to yet (so p* = (12, 10), which is
what we want).

Replace with the latest received state.
del players, powerups

players = state[’players’]

powerups = state[’powerups’]

Server

p = (10, 10)

Client

p = (10, 10) f—

Animation
100 ms

p = (11, 10) —
p = (11, 10)

Animation
100 ms

p=(12, 10—
p = (12, 10)
p = (11, 10)

p=(12,10)

Y

Figure 3: Client and server state mismatch

Simulate up to our latest state.
for i in range(state[’action_id’] + 1, action_id - 1):

simulate_actions(prev_actions[i], players[args.name], dt)

move_objects(dt, action_id <= i and args.graphics)
collide_objects(action_id <= i and args.graphics)

Due to lag, packets from the server might arrive re-ordered. For
this example, the response from ’action 20’ could arrive before
the responses to ’action 18’ and ’action 19’. When the client pro-
cesses ’action 20, it disregards both ’action 18’ and ’action 19’
when it does the simulation and from then on, will ignore the
server responses to them. This works due to assumption that the
server will process the actions from the user in the right order and
without gaps. But as we stated earlier UDP doesn’t work that
way, so the following section explains how we (almost) guarantee
that.

S. SERVER-SIDE BUFFERING

The server keeps a (conceptually FIFO) buffer of the messages
(actions) that it receives from the clients. During a game tick, it
pulls a message from the buffer and computes the next game state.
This technique helps us with several protocol issues like packet
reordering, loss and duplication. Since our buffer is indexed by
the action ID, this maintains the ordering of the actions in the
buffer automatically. In order to deal with the other two issues,
we incorporated a redundancy into the message passing technique
used by the clients. Each time clients send an action, they also
send their previous two actions along with it. For instance, action
tuples that might be sent in succession conceptually will be num-
bered as (3,2,1), (4,3,2), (5,4,3) etc. So this way, for the server to
completely not receive action 3, all three of these packets must
be lost in succession - unlikely! When the server does receives
the messages, it puts them in the buffer, indexed based on their
’action id’, overwriting if necessary. Thus, we are able to effec-
tively deal with any packet loss or duplication. A more complete
example would be to have the server buffer containing entries for
action IDs of (10, 11, 12, 15, 16, 17), when the last action ID pro-
cessed was 9. The point of the buffer is to keep rolling actions out
at the same rate as others are added in. To reach this balance, we
let the buffer grow (whenever there are buffer underflows, by 1)
or shrink automatically (on overflows) within a range of approx
200ms, for a really good handling of connections that have up to
+100ms of jitter.

The following code details how we manage buffer overflow, misses
and underflow.

Keep a buffer for each client address. Add to it only
if we’ve not responded for that action id already.
try:

if address not in self.handled or

actions[’id’] > self.handled[address]:
self.buffer[address] [actions[’id’]] = actions

except KeyError:

self.buffer[address] = {actions[’id’]: actions}

Get one action from the buffer for each address.

buffer = self.buffer[address]
ids = buffer.keys()
if len(ids) > O:
ids.sort ()
Buffer overflow. Remove 2 actions from buffer.
if len(ids) > BUFFER_SIZE:
del buffer[ids.pop(0)]
del buffer[ids.pop(0)]
Buffer miss. The action message from the client
did not arrive in time.
elif address in self.handled and
self.handled[address] != buffer[ids[0]][’id’] - 1:
self.handled[address] = buffer[ids[0]][’id’] - 1
continue
data = buffer.pop(ids.pop(0))
all_actions[address] = data

self.changed.add(address)

self.handled[address] = data[’id’]
else:

Buffer underflow.

del self.buffer[address]

In order to reduce the bandwidth usage of the library, there was
an important design alteration that needed to be made [20]. For
instance, let’s say we have 10 players, which includes 9 Als and
1 human player (so the game is extremely active and has a lot of
game objects being managed): we calculate that every state up-
date takes an average of 3013 bytes (length of the string message
since every character takes 1 byte). Similarly all the client actions
that are processed by the server when computing an update take
an average of 220 bytes. If the host sends the same game state to
every user (as in the model detailed until now), the host would
have to have a bandwidth of 3013 * 60 * 10 =~ 1800 KBps for
the server (and 180KBps download for the clients). Clearly, the
library is worthless if it imposes a bandwidth requirement on this
scale. The solution that we came up with for this problem was
that instead of the server computing the next state and spoon-
feeding it to the clients, it could instead tell the clients about the
actions that it used to compute that state. This way the clients
now perform incremental updates based on the actions they re-
ceive from the server. Since the actions are much smaller in size
than the states, this would yield a marked improvement in band-
width usage. As expected, when using actions for incremental
updates, and sending one state update every 3 seconds (to insure
that any de-synchronization due to corruption or temporary loss
of connectivity is handled), the total bandwidth requirement be-
comes: ((221 * 179 + 3013) / 3) * 10 = 141 KBps upload for the
server (and 14.1KBps download for the clients).

Due to the UDP protocol, it is clear that now our design poses
the same in-order, without loss or duplication messaging require-
ments on the client side that the server tackled using the message
buffer that we elaborated upon. So we use a client side buffer that
performs nearly the same operations, but for the actions sent to
it by the server. It is a bit different since the server also sends

the full game state every 3 seconds, and these messaging methods
have to be integrated.

6. CONNECTING THROUGH CLIENTS

Now that a lot of network performance issues were addressed, we
started to work on the socket programming design that would
allow a new client to connect to a game just by knowing the ad-
dress of any other client currently in that game (i.e. the address of
the host is not required). This is achieved by a special "connect”
message identification. When a new client connects, it sends this
”connect” message to the only address it knows is in the game
(could be either another client or the host). If its a client, then it
passes the address of the host to the client trying to connect and
if its the host, then it send its own address for the client to store.
This way every client in the game keeps the host address ready
to be sent out to anyone to sends it a "connect” message.

7. REDUNDANT SERVER MODEL

The architecture for the implementation of the host-switching
mechanism involves keeping a redundant server address in the
state of each player in the game. Currently, a backup server is
being chosen at random by the current server. Once its cho-
sen, the current server sends the address of the backup within
its game state to all players in the game including the backup,
who knows its chosen. Following this, all players realize that the
current server is dead when it disconnects/leaves the game based
on a timeout of death of approximately 0.5s. When this happens,
all the players in the game connect to the backup server and it
begins to perform the operations of the host by broadcasting its
most recent game state. At this point, the new host chooses a
new backup server and the process repeats on every server death.
There are some performance issues with the technique as it is
described above. Since the clients themselves don’t stop when a
server dies (how can they - they don’t even know it happened!),
the game state evolves for them past the last state broadcast by
the server that died. Since the new server starts broadcasting
from this state, the game jumps back to it and then resumes
normal execution. This ”jump” reverts any actions made by
the clients during that transitional period so any developments
since are instantly rolled back to the back up servers (now actual
servers) last known game state.

7.1 Smoothing the switch

Since the state revert-jump described above is naturally very un-
desirable for the players of the game, we keep a buffer with the
backup server that stores the most recent actions of all the players
so that when it is called into action by the death of the current
server, it uses the actions stored in the buffer to "smooth” the
transition into the new game state it broadcasts.

8. TESTING

Game performance has been tested under simulations of widely
varying latencies. Since game responsiveness cannot be quan-
tified, some descriptions of the performance and the conditions
being tested with are given below:

e The biggest advantage to a player is now that at any la-
tency, the player never feels that his game is sluggish at all.
This is a direct result of client-side prediction kicking in and
letting the user see his or her actions rendered immediately
instead of having to wait for the server to respond.

e High jitter conditions now have smooth gameplay. (100 £+
80)ms of latency produce good results. Only the graphic
of the passing missiles is slightly distorted due to frames
getting dropped, but this is hardly noticeable during game-
play.

e High latencies of (500£100)ms are still playable. Although,
due to the increased lag, players are not able to quickly see
the rendering of missiles as they are shot by other players
in the game. What is seen is something like that shown in
Fig [4]

i
.,L|
[

Missile
FIRE!

Missile first
Seen by ->:>”

Figure 4: High latency play

e An integral part of testing was making sure the network-
ing library does not hog bandwidth with the way that it
manages game state. Testing the bandwidth usage with
an increasing number of players in a game gave us results
shown in Figure [5]. We can see that client performance
scales really well with as number of players are increased
but the server’s bandwidth usage scales almost quadrati-
cally, which is expected. Even so, this performance was not
possible under the previous "server-sends-state” design.

180
160
===Client download bandwidth
N 140
u .
==Server upload bandwidth
T 120 R
e /
" 100
o
f 80
b
Y 60
e
S 40 /
0
0

2 3 4 5 6 7 8 9 10 11
Number of Players

Figure 5: Bandwidth Analysis

9. SECURITY

Cheating, or better, cheating prevention plays an important role
in online games. In our case, cheating is prevented only at a ba-
sic level, as a byproduct of our game design. Clients can only
(directly) affect their own ship due to ways user request and are
assigned an unique name. Furthermore, the construction of the
action messages (and of their processing on the server side) al-
lows only for a normal, controlled firing, movement and pause
rate. However, these are the only constraints we can reasonably
put on cheating. We cannot control how the user might abuse
the communication protocol on the client side. This happens in
mainstream games as well, however they use commercial anti-
cheating software (like PunkBuster or Warden) that assures the
game binaries are not modified. Our project is open source so it

is easily modifiable, thus one can always program an Al to control
the game for them. Also, once a user is a server (and any player
might be one) the possibilities for cheating are many. They can
change the source code to continue to respect the communica-
tion protocol but give themselves (or ’allies’) advantages like a
longer life or teleportation. However, in our case, this is easily
noticeable.

10. CONCLUSIONS

Multiplayer games have started to receive an increasing amount
of attention from the academic community in recent years. Tack-
ling several requirements posed by such games has become a task
much research is devoted to. For instance, several techniques have
been proposed for the synchronization of game nodes (clients) in
a distributed game network [21] [22] as this task of equal complex-
ity with synchronization in classic real-time distributed systems.
Many attempts have also been made to come up with optimal
solutions to balance latency and fairness [11].

We have been able to encounter some of these issues at a smaller
scale through the development of our networking library and hope
that it will help game programmers everywhere easily incorporate
robust multiplayer game play into their code.

11. REFERENCES

[1] Pygame, “Python api for game programming.”

[2] PyOpenGL, “Python binding to opengl and related apis.”

[3] 1. Mallett, “Spacewar - a multiplayer space shooter.”

[4] J. Smed, T. Kaukoranta, and H. Hakonen, “A review on
networking and multiplayer computer games,” in IN
MULTIPLAYER COMPUTER GAMES, PROC. INT.
CONF. ON APPLICATION AND DEVELOPMENT OF
COMPUTER GAMES IN THE 21ST CENTURY, pp. 1-5,
2002.

[5] E. Castronova, “Network technology, markets, and the
growth of synthetic worlds,” in Proceedings of the 2nd
workshop on Network and system support for games,
NetGames ’03, (New York, NY, USA), pp. 121-134, ACM,
2003.

[6] T. Manninen, “Virtual team interactions in networked
multimedia games — case: “counter-strike” — multi-player . .
.7 in IN PROCEEDINGS OF THE 4TH ANNUAL
INTERNATIONAL WORKSHOP ON PRESENCE
(PRESENCE 2001), PHILADEPHIA, 2001.

[7] C. Neumann, N. Prigent, M. Varvello, and K. Suh,
“Challenges in peer-to-peer gaming,” SIGCOMM Comput.
Commun. Rewv., vol. 37, pp. 79-82, January 2007.

[8] S. D. Webb and S. Soh, “Cheating in networked computer
games: a review,” in Proceedings of the 2nd international
conference on Digital interactive media in entertainment
and arts, DIMEA 07, (New York, NY, USA), pp. 105-112,
ACM, 2007.

[9] J. Yan and B. Randell, “A systematic classification of
cheating in online games,” in Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for
games, NetGames ’05, (New York, NY, USA), pp. 1-9,
ACM, 2005.

[10] H. Lee, E. Kozlowski, S. Lenker, and S. Jamin,
“Multiplayer game cheating prevention with pipelined
lockstep protocol.,” in IWEC’02, pp. 31-39, 2002.

[11] J. Brun, F. Safaei, and P. Boustead, “Managing latency and
fairness in networked games,” Commun. ACM, vol. 49,
pp. 46-51, November 2006.

[12] C.-M. Chen, T.-Y. Huang, K.-T. Chen, and P. Huang,
“Quantifying the effect of content-based transport
strategies for online role playing games,” in Proceedings of
ACM NetGames 2008 (Poster), 2008.

[13] G. on Games, “Networking for physics programmers.”

[14] A. Bharambe, “Colyseus: A distributed architecture for
online multiplayer games,” in In Proc. Symposium on

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

Networked Systems Design and Implementation (NSDI,
pp. 3-06, 2006.

D. Bauer, S. Rooney, and P. Scotton, “Network
infrastructure for massively distributed games,” in
Proceedings of the 1st workshop on Network and system
support for games, NetGames '02, (New York, NY, USA),
pp. 36-43, ACM, 2002.

K. Claypool and L. Determines, “Latency and player
actions in online games,” Commun. ACM, vol. 49, p. 2006,
2006.

D. Liang and P. Boustead, “Using local lag and timewarp
to improve performance for real life multi-player online
games,” in Proceedings of 5th ACM SIGCOMM workshop
on Network and system support for games, NetGames ’06,
(New York, NY, USA), ACM, 2006.

S. Harcsik, A. Petlund, C. Griwodz, and P. Halvorsen,
“Latency evaluation of networking mechanisms for game
traffic,” in Proceedings of the 6th ACM SIGCOMM
workshop on Network and system support for games,
NetGames ’07, (New York, NY, USA), pp. 129-134, ACM,
2007.

T. Henderson, “Latency and user behaviour on a
multiplayer game server,” in Proceedings of the Third
International COST264 Workshop on Networked Group
Communication, NGC 01, (London, UK, UK), pp. 1-13,
Springer-Verlag, 2001.

J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement
and state consistency in three multiplayer game
architectures,” in in Proc. NetGames ’03, pp. 52-59, ACM
Press, 2003.

M. Roccetti, S. Ferretti, and C. Palazzi, “The brave new
world of multiplayer online games: Synchronization issues
with smart solutions,” in Object Oriented Real-Time
Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, pp. 587 —592, may 2008.

J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of
networking in multiplayer computer games,” 2001.

