
CourseFinder
Final Report

Wen-Hao Lee
California Institute of

Technology
wllee@caltech.edu

Jamie Jackson
California Institute of

Technology
jackson@caltech.edu

Isaac Sheff
California Institute of

Technology
isheff@caltech.edu

ABSTRACT
Collaborative filtering is a tried and true technique to pro-
vide useful recommendations based upon a user’s past rat-
ings as compared to those of others. In reality, however,
people often rely on their friends’ advice, and this can be
reflected in their preferences.

At the same time, unified and easy to use course feedback
and rating systems are woefully lacking or underutilized at
a variety of Universities, including the California Institute
of Technology (Caltech).

To this end, we present CourseFinder, a facebook app for
rating courses taken at Caltech. Through this, various so-
cial network / collaborative filtering recommendation algo-
rithms can be tested. We found that a metric of pure so-
cial weight (number of mutual friends over average number
of friends on facebook) as a similarity coefficient between
pairs of users provided better course recommendations than
equal weightings (just, in effect, highest average rating rec-
ommendations), but the tried-and-true Pearson Weighting
for traditional collaborative filtering remains superior. An
attempted blend of the two yielded mediocre results.

Keywords
Collaborative Filtering, Social Network, facebook, Course
Review, Caltech

1. MOTIVATION
Many businesses consider it a huge boon to be able to accu-
rately predict which products a customer may want. They
have worked so hard at this that they’ve actually gener-
ated hidden networks of users sorted and linked by their
mutual interests. Traditionally, such networks are formed
using learning algorithms that attempt to establish similar-
ities between the preferences of sets of users.

Consider, however, that the actual likes and dislikes of cus-
tomers are highly affiliated with that user’s social network.
A product enjoyed by a user’s friends is probably more
likely to be enjoyed by that user. Traditionally, people
seek out advice in such decisions from those closest to them
on a social network. In fact, a study by Rashimi Sinha
and Kirsten Swearingen at UC Berkely found that amongst
books and movies, recommendations by friends were 30-40%
more likely to be “Good” or “Usefull” than traditional net-
work recommendation systems [1].

Enter course recommendations. In a collegiate environment,
especially at large institutions with extensive catalogues,
students often rely on friends’ recommendations to make
important, periodic decisions: which courses to take. Stu-
dents consider themselves more likely to enjoy courses their
friends have enjoyed, with professors their friends have found
effective.

This provides an excellent testing ground for such a hybrid
recommendation system, which would use traditional learn-
ing algorithms to suggest courses based on a student’s past
experience, compared with that of similar students, weighted
accordingly for the distance of other students in the social
network.

2. PRIOR RELATED WORK
Many traditional recommendation systems, such as Netflix,
make use of Collaborative Filtering, in which a database of
users’ ratings of items is used to predict what a given user
will rate an item based upon their past ratings [2]. A tradi-
tional, “Memory-Based CF” system calculates a correlation
factor between all users, and possibly all items, based on
users existing rankings, and predicts rankings of a user’s un-
ranked items using the correlation weighted average of other
users’ rankings. It then recommends the top-ranked ones.
There are a wide variety of alterations and improvements
upon this simple idea for specific circumstances, computa-
tional constraints, and applications.



One such subset is the neighbor-based collaborative filtering
model, in which a weighted average of rankings is taken only
from a limited number of users most similar to the user
in question. This is in some ways analogous to a limited
“friend” group on a social network, but the “neighborhood”
is made by the algorithm, not the user.

Recommendation networks, however, do not take into ac-
count other factors in a user’s life that can drive decision-
making besides prior experience in the narrow field of whichever
item type is being recommended. While many recommenda-
tion systems seek to account for such factors, generalization
is extremely difficult. However, users seeking recommen-
dations from friends receive an advantage over anonymous
systems: trust. A test done at the Department of Com-
puter Science and Engineering, Indian Institute of Technol-
ogy, Delhi, found that users are more likely to receive better
recommendations from other users they trust more, and that
to a large extent, friendship on social networks (they used
Orkut), mimics trust [3].

The idea of social-network based recommendations is not
new. For example, the experimental service FilmTrust at-
tempts to utilize Memory-Based CF calculating the simi-
larity weighting between users as the trust between those
users using the FOAF trust model [4]. Synclab Consult-
ing’s Hooks App for facebook recommends music found in
the libraries of users’ friends with many mutual songs in
their playlists [5]. A study at the University of Illinois
Champaign-Urbana found 95 % of users on an experimen-
tal social network-based news recommendation system to be
“somewhat to very useful” [6].

As of yet, however, there appears to be a lack of course rec-
ommendation services making use of social networks, and a
lack overall of social network ranking combined with collab-
orative filtering weighting users by both similarity and social
distance.

3. COURSEFINDER
3.1 Facebook App
CourseFinder a facebook app wherein users can quickly sort
through and rate Caltech courses. For each course and in-
structor users can rate quality as well as provide brief com-
ments. There are also separate fields to recored Grading
ratings, grades riecieved, and hours per week spend on the
class. Comments are visible only to their friends, but can
be made anonymously public. The overall course ratings
are used in a CF recommendation system to predict what
courses each user would also find to be of high quality, tak-
ing into account their past ratings compared with those of
other users, as well as their social relations to those other
users. This recommendation system is as yet pure exper-
iment, and the algorithmic estimates on the app itself are
merely averages.

3.2 Recommendation Algorithm Validation
To evaluate the effectiveness of a particular recommenda-
tion algorithm over the course of this project (since there is
insufficient time for users to take new classes, and respond
with how well prediction matched reality), an assessment
was made of the average correlation between predicted rat-
ings and actual ratings (average of “how would this have

been predicted to have been rated had I not rated it over how
I did in fact rate it”). This procedure is referred to as “leave
one out” validation. These correlations can be compared to
pure, traditional, Pearson Correlation [2] predicitons, as well
as random predictions, and average ratings.

3.3 Data Source
Data was acquired from 168 Caltech students who volun-
teered to rate courses via CourseFinder after publicity emails
were sent out to the Undergraduate and Graduate commu-
nities. These emails offended the Academics and Research
Council, who felt CourseFinder would detract from tradi-
tional TQFR review responses. No further publicity was
sought after their opinions were made clear.

4. BACK END
To host a Facebook application, a web server must provide
reliable access for all users of that application to a web page.
This web page is displayed inside Facebook’s frame, but the
actual access is directly from the user’s browser to the host’s
web server. The web server itself as well as the javascript in
the web page are granted access to Facebook’s Graph API,
with which they can access user information and send out
wall posts, messages, and the like. Google’s App Engine
cloud service hosts CourseFinder.

4.1 Google App Engine
Google’s App Engine service was selected as CourseFinder’s
host because of its reliability, flexibility, and budget con-
straints.

App Engine is a cloud service, meaning it is maintained
as a distributed system across several large data centers
owned and operated by Google. As such, the probability
of any “App” it runs becoming unavailable at any one time
is extremely small. Additionally, the large number of avail-
able servers means that while intense average use may be
equally costly, there is little danger of usage spikes over-
loading the server system, as opposed to a single server just
for CourseFinder, which would likely have great difficulty
if a large number of users decided to use the app at once.
The combination of extremely low downtime and high spike
tolerance make App Engine much more reliable than alter-
native, more traditional hosts, such as Caltech’s notoriously
poorly maintained UGCS, or a dedicated server.

Several aspects of App Engine make it extremely flexible.
For example, App Engine allows services written for the
Java Runtime Environment and Python. CourseFinder is
written in Python because, as a pure scripting language,
and an incredibly flexible one, it allows great ease of ma-
nipulation and modularization of services. App Engine’s
support for Python made it a strong candidate. Addition-
ally, because App Engine uses a noSQL hash table based
database structure, data storage of any size is equally fast.
In fact, aside from financial concerns over larger server us-
age, CourseFinder should be able to expand to an arbitrarily
large set of institutions and users without speed or algorith-
mic problems. Furthermore, App Engine allows simultane-
ous deployment of different versions, allowing multiple tests
to be run on the production server without interfering with
regular service. This is extremely useful when, for example,



different developers are simultaneously testing various new
features and need to do so with real or large simulated data.

As a small endeavor, CourseFinder has few resources with
which to acquire, set up, run, and maintain a dedicated
server facility. In effect, it requires a free service to run.
While several are available, including Caltech’s own UGCS,
App Engine’s free service offers more than CourseFinder is
likely to require in the near future, and this on top of its
other advantages made it the host of choice.

There are some penalties for this. For example, while even-
tual consistency of data is assured, it is possible that reads
from the database that take place shortly after writes to it
will not pick up the new data. In the case of CourseFinder,
this is not terribly troublesome, as it is not particulary im-
portant that data portrayed by “up to the second.” A more
vexing problem is the noSQL database structure, which makes
some forms of data relationships more difficult. Most no-
tably, queries to the database cannot be nearly as complex,
with serious problems concerning logical “OR” operations.
Again, these are usually minor problems for a system with
fairly straightforward data storage and retrieval.

CourseFinder is hosted at
http://courserecommendation.appspot.com.

4.2 Django
Django is a popular web development framework based in
Python and built to run atop a variety of server setups.
Django-nonrel, built for noSQL databases such as App En-
gine, was selected as a framework for CourseFinder because
of its portability and modularity.

Django is built to be extremely portable. A running in-
stance of Django, called a “project,” need only change a
few settings variables to switch servers, databases, and even
database structures. As a python framework, it is in no
way platform specific, and it is entirely open source. Even
within a project, the actual services offered, or “apps,” can
be moved between projects with relative ease. One fortunate
side effect is that it is extremely easy to run an instance of
Django exactly as it would be run on App Engine on a local
machine for testing purposes. It is equally easy to deploy
to the production server. App Engine in particular has a
number of features built in that are borrowed from Django,
such as models and templates (and their associated syntax).
Because of these, Django is an especially attractive option
when developing on App Engine, but CourseFinder could
relatively easily be modified to run on most any other server
capable of running Django, should it at any time become a
superior option to do so.

Django is also extremely modular, which is useful when de-
veloping along separate tracks or as a team. It allows easier
division of tasks, and overall more efficient rapid develop-
ment. For example, rather than a traditional url to file
hierarchy structure, Django replies to each HTTP request
with the output of a function called a view, which is any
function that takes in the HTTP request data and returns
a web page. Which view is determined by a regular expres-
sion table. This means that it is very easy to add, subtract,
and manipulate the “structure” of urls independently from

the construction of actual pages. It allows, for instance, the
extremely simple “/course/<course number here>/” urls, as
opposed to some more complicated PHP scheme with GET
url inputs. As another example, django’s template system
allows a well-designed seperation between content and for-
matting on the server side by allowing a view to fetch con-
tent, and pass it to a template, where the python content
is easily inserted into the html template using “ ” tags, in-
cluding basic flow control such as loops. This type of system
allows, for instance, one developer to focus on content fetch-
ing and generation, while another focuses on formatting and
presentation.

4.3 Data Structure
The data for Corusefinder is stored in the form of Django
Models, for which a similar system is implemented natively
for App Engine. Models, rather than the traditional way
of thinking of data in tables, are simply objects of spe-
cific classes for which certain attributes, called fields, can be
saved to the database and searched for in order to retrieve
the object again. The types of fields used are CharField
(string), DataTimeField, IntegerField, FloatField, URLField,
ForeignKey (a link to another object stored in the database),
and ListField, a field type specific to App Engine, which
stores a list of any other kind of field. Notably, App Engine,
as a noSQL database, cannot hand Many-to-Many fields,
which store multiple other objects in the database. List-
Fields of ids, such as the ids of teachers for a course, are
used instead.

Django Models also support abstract inheritance. This al-
lows abstract classes controlling common model features to
be easily built upon or modified as may be needed. For
example, there is an abstract Rating model, which allows
the three different kinds of ratings (Teacher, Grading, and
Overall), to only specify what differentiates them, and any
common aspects of ratings to be changed easily. All mod-
els used in CourseFinder inherit the abstract model DateS-
tamped, which ensures they all have a created DateTime
storing the creation time of that object, and an updated
DateTime, storing the last updated time of that object.

CouseFinder uses the fandjango django app, by Johannes
Gorset, to store and update facebook user data.

5. FRONT END
A facebook app such as CourseFinder is a website displayed
inside of an iFrame on the facebook app page. In this case,
the iframe at http://apps.facebook.com/coursefinder dis-
plays the CourseFinder web page, located at
http://courserecommendation.appspot.com/.

5.1 Main Page
5.1.1 Recommendation List

Top recommendation courses are calculated from overall rat-
ing averages. Candidates are selected from the same depart-
ment that user has rated. We use 3D tag cloud by JQuery
to present the recommend list. First, setup the mouse event
and figure out how far the mouse is away from the center and
assign it to a variable controlling the speed of the scrolling
list. Then step through each element in the list and give
each one a spot on 3D circle. For loop walks through each



Figure 1: Data Structure

User

id AutoField
facebook_id BigIntegerField
facebook_username CharField
first_name CharField
last_name CharField
profile_url CharField
gender CharField
hometown CharField
location CharField
bio TextField
relationship_status CharField
political_views CharField
email CharField
website CharField
locale CharField
verified NullBooleanField
birthday DateField
authorized BooleanField
oauth_token OneToOneField
created_at DateTimeField
last_seen_at DateTimeField

OAuthToken

id AutoField
token CharField
issued_at DateTimeField
expires_at DateTimeField

oauth_token

Friendship
<DateStamped>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
friends_facebook_ids ListField

user

Institution
<DateStamped>

id AutoField
created DateTimeField
updated DateTimeField
name CharField
description CharField
url URLField
facebook_id CharField

Course
<DateStamped>

id AutoField
created DateTimeField
updated DateTimeField
name CharField
description CharField
institution ForeignKey
url URLField
department ListField
teacher ListField
teacher_lastname ListField
teacher_ids ListField
overall_avg FloatField
grading_avg FloatField
teaching_avg FloatField
idxf_name_l_icontains CharField
idxf_name_l_contains ListField

institution

Course_Comment
<Comment>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
content CharField
privacy IntegerField

user course

Teacher_Comment
<Comment>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
content CharField
privacy IntegerField
teacher ForeignKey

userteacher course

Interest
<User_Course_Interaction>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
value IntegerField

user course

Overall_Rating
<Rating>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
value FloatField

user course

Grading_Rating
<Rating>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
value FloatField

user course

Teaching_Rating
<Rating>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
value FloatField
teacher ForeignKey

user teacher course

Hours
<User_Course_Interaction>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
hours IntegerField

user course

Grade
<User_Course_Interaction>

id AutoField
created DateTimeField
updated DateTimeField
user ForeignKey
course ForeignKey
date DateField
grade IntegerField

user course

Data structure UML for CourseFinder. Note that department is a list of string department abbreviations, and teacher ids is a list of

valid ids of User objects. Also please note that User and OAuthToken are from fandjango, but Johannes Gorset, and that the

hideousness of UML is not my fault.

Figure 2: Site Map

one, and assigns an angle to each element. Finally, call the
render function repeatedly.

5.1.2 Search Course
Search courses from the database by filtering given specific
input. Input can be department only, last name of the pro-
fessor only, part of the course name only or department with
course number. Search results will be displayed right after
this section. Search results lists include each courseÕs esti-

mated rating and provide rating bars for user to click.

5.1.3 Course Map
From courses user has rated, we present userÕs personal
course map by Flash chart. Open flash chart project here
provides following advantages:

1. Tooltips encourage user interactivity and data explo-
ration

2. We can save the chart as an image

3. Quick and easy to plot radar chart

First, we gather the userÕs rating from the data base. Cal-
culate number of courses in each department. Select top
numbered departments and write the data to the json file
for each user. Open flash chart reads the json file and gen-
erate the radar Flash chart as course map.

5.2 Course Page
http://courserecommendation.appspot.com/course/<courseid>

5.2.1 Algorithmic Estimated Rating
Currently, we use the averaging rating as predicted rating.
The rating values are stored between 0 and 1. Convert the
value to percent in total to tell how many golden stars are
displayed. The result shows the rating bar by CSS with gray
star background images.

5.2.2 Rating Items
For user submitting ratings for each item, we use Mootools
to deal with it asynchronously. The Javascript generates



Figure 3: Layout



forms on the course page with userÕs previous rating value
given. Every time the user clicks on rating items, it sends
the value to the server asynchronously.

5.2.3 Search, Next, and Previous Buttons
ItÕs import to have users return to the search page easily.
Two access buttons to the main page are on the top and
bottom of the course page. Furthermore, Next and Previous
buttons have been added to allow users to easily rate several
courses in a sequence.

5.2.4 Visual Effects
As a Facebook App, we choose themes that similar to Face-
book for consistency. Colors of buttons and characters are
the same with Facebook color. We use golden star rating
bars for ease of use and universal understanding. For esti-
mated ratings, red star bar can strongly attract attentions.
We make pages clean and neat to let users seeking specific in-
formation easily. More importantly, it can make users think
it is easy to rate courses.

5.3 Data
5.3.1 Course Rating Data
http://courserecommendation.appspot.com/course/<id>

/submit

For javascript submission only.

5.3.2 User Dourse Map Data
http://courserecommendation.appspot.com/data/<userid>

For JSON retrieval only.

6. FACEBOOK INTEGRATION
As a registered facebook app, CourseFinder receives OAuth
2.0 tokens for each user which, while the user is using the
app, allow it to made requests to facebook’s Graph API.

6.1 Graph API
The Graph API is FacebookÕs framework for accessing and
interacting with user information. The social graph is made
of objects that have fields and are related to other objects by
connections [8]. Information is fetched by HTTPS requests
referring to objects, followed by access tokens if needed, in
this form:
https://graph.facebook.com/objectid?access_token=token

6.2 Objects
The different types of objects are as follows: Album, Ap-
plication, Checkin, Comment, Domain, Event, FriendList,
Group, Insights, Link, Message, Note, Page, Photo, Post,
Review, Status message, Subscription, Thread, User, and
Video.

Each of these has fields and connections, some of which are
accessible to anyone, to anyone on Facebook, or under cer-
tain permissions. The primary objects we are interacting
with are User objects. The main fields of User objects we
are interacting with are name, id, and education. The main
permission that we need (to access education) is user edu-
cation history. The User object connection we are using is
picture, that is, the userÕs profile picture.

6.3 OAuth 2.0: Authentication and Authoriza-
tion

Facebook uses the OAuth 2.0 protocol for authentication
and authorization, that is, for making sure entities that re-
quest information are who they say they are and have the
proper permissions to access the information they request.
The main places this comes into play in CourseFinder is
when the user logs in, and when CourseFinder requests user
information.

Details are available at http://developers.facebook.com/
docs/authentication/

6.3.1 Access Tokens
Access tokens are strings of alphanumeric characters that
permit the access of particular objects, object fields, or ob-
ject connections. If a user authorizes the app to access their
information, with any particular permissions that app may
additionally be requesting, then the app can get access to-
kens for that information.

7. RESULTS
7.1 Data
Of the 168 students persuaded to visit the CourseFinder
app, 94 rated courses. They recorded 1507 Overall Ratings,
291 Teaching Ratings, and 258 Grading Ratings. All 443
courses that received a rating in any category received an
Overall Rating.

Figure 4: Stars vs. Number of Overall Ratings

As Figure 4 demonstrates, users had a tendency, at least in
Overall Ratings, to rate courses rather highly. Either users
simply have low standards, or Caltech Courses are very high
quality. We hope for, but cannot verify, the latter.

Figures 5 and 6 demonstrate the decrease in number of users
willing to provide an increasing number ratings. This is
likely because many users become bored or feel less moti-
vated after a few ratings, and because fewer people have
taken larger number of classes, due to, for example, fresh-
men only having taken about fifteen classes at the time of
the study.

7.2 Analysis
Because our objective is to test the validity of social net-
working as a factor in predicting course preferences, and
social networking is a user correlation metric, we elected to



Figure 5: Number of Users With at Least N Ratings

Figure 6: Number of Ratings vs. Number of Users

user a Memory-Based Collaborative Filtering system using
User correlations. This means that a correlation factor wu,v

was calculated for each pair of users (u, v), and from these
predicted ratings for a user concerning an item were calcu-
lated based on the mean rating of the user plus the average
deviation from the mean of other users’s ratings concerning
that item, each weighted by the correlation factor with that
user. We elected to predict only Overall Ratings, since these
are the most generic and most numerous.

a = a user

wa,u = correlation coefficient between users u and a

i = an item (in this case, a course

ru,i = u’s rating of i (normalized to the 0-1 range)

r̄u = u’s average rating

Pa,i = the prediction for ra,i

= r̄a +

∑
u∈Users (ru,i − r̄u)× wa,u∑

u∈Users |wa,u|

Three different algorithms for the user correlation coeffi-
cients were tested: the popular Pearson Correlation Coef-
ficient, a Social Weight Coefficient, and a combination of
the two.

7.3 Pearson Coefficient
The Pearson Coefficient is a popular user-user correlation
metric, possibly because of its ease of calculation [2] (it can
be done by multiplying a matrix, with rows for each users,

columns for each item, and entries consisting of the devia-
tion of that user’s rating of that item from that user’s mean
normalized for that users’ standard deviation, by its trans-
pose).

One can think of Pearson Correlation like a kind of normal-
ized covariance.

wu,v =

∑
i∈Items (ru,i − r̄u) (rv,i − r̄v)√∑

i∈Items (ru,i − r̄u)2
√∑

i∈Items (rv,i − r̄v)2

7.4 Social Weight
In an attempt to make a socially based weighting system
that would neither over-correlate two users nor anti-correlate
them (which is nigh impossible to do based on how well peo-
ple know each other), we elected to make social weight scale
with the number of mutual friends. This is normalized over
the average number of friends of the two users, in order to
ensure that wu,v = wv,u, and that the correlation coefficients
are normalized to the same approximate range for all pairs
of users.

wu,v =
Number of Mutual Friends

Average Number of Friends of u and v

7.5 Combination
As a simple model that scales both with Social Weight and
with Pearson Weight, we used the product of the two. Fu-
ture studies may want to consider additional, more complex,
algorithms.

7.6 Leave One Out Validation
Because there was insufficient time to gather user data, pre-
dict next year’s ratings, and compare the results, and insuf-
ficient data for a proper test set and training set, we elected
to use leave-one-out validation, in which the error of a pre-
diction algorithm is approximated as the error in predicting
each rating, had that rating not been made. Since we de-
cided to predict using only Overall Ratings (as they are the
most generic and most numerous), this is simply the error in
the 1507 cases in which each of the overall ratings had not
been made. We elected to use mean absolute error (MAE),
as in this case, it is most important to get as many ratings as
possible close to correct, and there are not increasing penal-
ties for increasing error. This, as opposed to root mean
squared error, is a common metric for collaborative filtering
evaluation [2].

MAE =

∑
{i,j} (Pi,j − ri,j)

Number of Ratings Made

For reference, Monte Carlo tests on random rating predic-
tions yield about .37 mean absolute error.

The Mean Absolute Error of each weighting system is as
follows:



wu,v MAE
All Equal Weight (1) 0.2211
Pearson 0.2133
Social Weight 0.2208
Combination 0.2166

7.7 Conclusions
It is clear that while the social weight predictions were marginally
(although there is no good calculation for standard deviation
of error for a system like this, this is a really small margin)
better than all equal weighting, the Pearson Correlation is
still the best predictor. The mix of the two was, of course,
between Pearson and Social Weight in MAE. Unfortunately,
a beneficial hybrid weighting system has not yet been iden-
tified.

8. FUTURE WORK
CourseFinder itself, due to the objections of the Academics
and Research Council, will likely no longer be popularized
as a distinct entity in the future, as it will likely detract
form standard TQFR course review responses. Many useful
aspects of CourseFinder, such as the ability to quickly rate
courses without going into detail, public and private com-
ments, and search functions by teacher, department, and
course name, may be implemented in future standard course
rating system revisions. This is ultimately up to the ARC.
The prediction algorithms, unless further honed, are unlikely
to become standard fare in the future, as they are not yet
particularly more useful than average ratings.

Using the anonymized CourseFinder data (available soon at
the http://CourseRecommendation.appspot.com), or other
social network / rating data, future studies may want to
consider our social weight metric as a known “better than
average” metric, as well as probe future possibilities of using
both standard and social correlations. Possible avenues of
exploration include item based memory Collaborative Filter-
ing, and a more model-based system (in which the algorithm
attempts to fit users to a predictive model of some kind) [2].

9. REFERENCES
1. Rashmi R. Sinha and Kirsten Swearingen. Comparing

recommendations made by online systems and friends.
In DELOS Workshop: Personalisation and Recom- mender
Systems in Digital Libraries, 2001.

2. Xiaoyuan Su and Taghi M. Khoshgoftaar, “A Survey of
Collaborative Filtering Techniques,” Advances in Ar-
tificial Intelligence, vol. 2009, Article ID 421425, 19
pages, 2009.

3. K. Sarda, P. Gupta, D. Mukherjee, S. Padhy, and
H. Saran, “A distributed trust-based recommendation
system on social networks,” in HotWeb Õ08: Proc. of
the 2nd IEEE Workshop on Hot Topics in Web Sys-
tems and Technologies, 2008.

4. Goldbeck, J. and Hendler, J. 2006. FilmTrust: Movie
recommendations using trust in Web-based social net-
works. In Proceedings of the IEEE Consumer Com-
munications and Networking Conference. Las Vegas,
NV.

5. Synclab Consulting, ”Hooks for Facebook.”synclab con-
sulting 11 Mar. 2011, <http://www.synclab.com/hooks-
for-facebook/>.

6. M. Agrawal, M. Karimzadehgan, and C. Zhai. An
online news recommender system for social networks.
SIGIR-SSM, 2009.

7. Gorset, Johannes. “Fandjango.”
<https://github.com/jgorset/fandjango>.

8. Facebook Developers, “Graph API.”
<http://developers.facebook.com/docs/reference/api/>.


