
Web of Tabs:
Browsing Internet Information Intuitively

Luke Moryl
California Institute of

Technology
elmoryl@caltech.edu

Daniel Obenshain
California Institue of

Technology
dobensha@caltech.edu

Walter Mostowy
California Institute of

Technology
mostowy@caltech.edu

ABSTRACT
The introduction of tabbing for Internet browsing has caused
a change in the way people use view information on the
internet. To improve the ease to use, we developed a tree-
style tabbed browsing extension for Google Chrome.

General Terms
Internet

Keywords
tabbed browsing, Chrome extension

1. GOALS AND MOTIVATION
Browsers represent the tool with which a user accesses the
information of the internet. As such, it represents the point
at which the user’s sense of personal organization meets this
rich exterior world of information. Moreover, the tools that
we use to interact with the world (or, in this case, the vir-
tual world) about us are integrated with our implicit motoric
sense of self. This notion, first postulated by the philoso-
pher Martin Heidegger and named “ready-to-hand”[3], has
recently been found to extend to our use of electronic tool-
sŮin particular, the interfaces with which we use electronic
devices [1]. Thus it is reasonable (in fact, it should seem
intuitively evident to the reader) to state that the browser
represents not only the tool with which we access the inter-
net but the outermost realm of personal organization that
we possess in accessing this external repository of informa-
tion.

Our work was motivated by the vast gap that exists between
certain aspects of web design (e.g. the optimization of net-
work design to minimize page load times) and the design
of browser interfaces. As the power of computers and the
speed of connections increase, users are capable of opening
more pages, more quickly, than ever before. Yet the organi-
zational framework that we possess for personally managing
these pages has changed little in the past five years. While

the remarkably recent introduction of tabbed browsing was
certainly an improvement over the previous mode of inter-
acting with the web (in which a user had to open a new
window for every web site that he or she wished to visit
concurrently), it still provides a very limited interface. This
poorly designed interface represents a substantial limiting
factor in our ability to efficiently browse the web. A signifi-
cant amount of human time and mental effort is required to
keep track of the context within which individual tabs were
opened; this problem is greatly exacerbated when browsing
sessions stretch across multiple sittings, or when a browser
or computer is restarted and an old session restored.

The guiding philosophy with which we undertook to improve
on this situation is that we should design a browser inter-
face that works as much as possible to alleviate the human
burden of organizing (or remembering the organization of)
individual tabs as they relate to a greater browsing session.
Browsing, or the opening of new tabs from old ones, is un-
dertaken as a stream of thought. The user is often led from
one topic to the next in a manner that increases in both
breadth and depth as the session grows longer; the contin-
ual management of this stream of thought is not an intuitive
task to humans, but it is a task that can easily be achieved
through proper interface design.

Thus our goal in this project was to create an interface for
a web browser that achieved this end in an intuitive and
simple manner. In particular, we undertook to create an
extension for Google’s Chrome web browser that provided a
visual user interface; we felt that this interface should dis-
play the lineage of tabs opened. That is, if a tab is opened
from within another tab, then that new tab should be rep-
resented as the child of the tab from which it was opened.
This should fundamentally free a user from the obligation
of remembering the entire stream of consciousness that had
led the user to the tab that he or she currently read; instead,
a simple glance at the tree created by their browsing would
instantaneously reorient the user with respect to the pages
that had led him or her to that point.

In addition, such a hierarchical organization could, if cus-
tomizable, allow users to keep tabs that they found germane
to a topic of interest and arrange them in a way that that
they felt suitably represented a map of concepts relating to
that topic. This would have the benefit of greatly facilitat-
ing a user’s ability to organize data in a way that makes
sense to him or her and that could be extended across mul-



tiple sessions. If such structures could be annotated, saved
and shared, users could then assemble resources relating to a
given subject and share them with others as a more efficient
means of disseminating information that would otherwise
have to be reworked into a tutorial or referenced as a collec-
tion of links that would either be less organized, less easily
organized, or both.

2. TECHNICAL APPROACH
There have been a handful of previous efforts by others to
implement similar ideas as browser extensions. However,
none has surpassed mere basic improvements to organiza-
tional intuitiveness, and worse, most have been abandoned.

For example, “Tab Groups” is a Firefox extension aiming to
organize a user’s tabs into categories, providing a basic level
of structure more relevant to a user’s browsing habits. Tab
Groups is simply described as “a [F]irefox extension that lets
a user organize tabs into groups” [6]. While there is no in-
ternal improvement to the structure of tabs within a given
group, the organization into groups by itself is still better
than the linear, unordered default placement of tabs. The
author, in fact, fingered this poor organization as his moti-
vation for the project: default “tab placement is ... less than
ideal when the number of tabs”grows large[6]. The project’s
scope began small (“basic functionality is in place but there
[is] a lack of UI niceness”) but quickly grew, with its planned
features covering covering the simple, such as session man-
agement, to the advanced, such as speed optimizations and
an overhaul (!). The project remains at version 0.02 and has
not been updated since 2007.

“Tab Kit” is another Firefox extension offering many minor
improvements, but not much in terms of major organiza-
tional structure or more intuitive usability; “Tab Kit makes
tabs more efficient for power users, allowing a wide variety of
tweaks[.]”[5] It offers an ability to color tabs based on their
domains or referers, functionality more limited than that of
Tab Groups, and a tree-style organization sorted by history,
much like that offered in “Tree Style Tab” (see below). The
project is no longer fully compatible with the most recent
version of Firefox and has not been updated since 2009.

“Tree Style Tab”[9] is a Firefox extension that simply pro-
vides a tree organization of tabs by history. It supports
moving child tabs and collapsing subtrees, and it can re-
member its state across sessions with the help of additional
extensions. While not rich in features, at least it has man-
aged to remain up-to-date with regard to versions of Firefox,
perhaps because of its limited scope.

Unfortunately, these three Firefox extensions constitute the
status of improvements to the intuitiveness of tab organiza-
tion. (Moreover, note that Google’s Chrome browser does
not have any counterparts to its name; this is not due to
lack of demand[7][10].) The features mitigate somewhat the
utter lack of organization by default, but even collectively,
they do not approach a complete remedy.

We proposed to create a Chrome extension offering hier-
archial or customizable organization, multiple presentation
formats, and recommendations based on the current tab. We
chose to write an extension for Chrome rather than Firefox

because, though Chrome’s extension support may be imma-
ture and more limiting, we thought that it would be easier
for us to work with Chrome when beginning work.

3. DESIGN
3.1 Chrome Extension Structure
Since we decided to build a Chrome Extension[2], we had to
follow their structure. Chrome Extensions typically have a
background page to save state, a popup page for user inter-
facing, and an icon to access the extension. In addition, an
extension needs a manifest declaring its permissions.

Both the background page and the popup page are HTML
pages. The background page remains open the entire time
the browser is open and the extension is running, which
makes it ideal for saving state. The popup page is created
and destroyed as needed.

3.2 Data Structure
We decided to store the data about open tabs in a tree struc-
ture, created in JavaScript. This allows us to store the data
within the background HTML page.

Each tree object is associated with a parent tree object and
a list of children tree objects, as well as a tab object (these
may be null). This allows any level of branching that we
need, though large trees may result in slow performance.

The current information is associated with a root node in
the background page. The popup page can access that root
node and from there access all the information in the tree.

We identify unique tabs by a tab id number. This number is
provided by Chrome and remains the same for one browser
session. In order to update existing tabs, we use a recur-
sive search through the tree to locate the node with that id
number.

In addition to the tree, we also store the two most recently
selected tabs. Sometimes tabs open in a way that makes it
hard to determine from which tab they were opened. This
allows us to assume that the most recently selected tab is
the one from which the user opened the new tab.

3.3 Event Listeners
In order to get information from the browser, we used the
Chrome tabs API[8]. This allowed us to set event listeners,
which would be called every time a tab event occured.

When a new tab was created, we added it to our tree. Since
sometimes tabs are opened in a way that does not make it
easy to determine the tab which opened them (for example,
pop-up advertisements that open in new tabs), we assume
that the most recently selected tab is the parent tab. Also,
if the user opens up an entirely new tab, we assume that he
or she is still thinking about the most recent topic and is
going to browse on that topic, so we make that tab a child
of the most recently selected tab, too.

Sometimes, a user will choose to close a tab on a topic they
are no longer interested in. To deal with that situation, we
have an event listener for destroyed tags. When a tag is



destroyed, we remove that element from the tree structure
and promote all its children to the level it previously had.
So, its children become the siblings of its siblings and the
children of its parent. Unfortunately, there is currently a bug
that causes this process to lose information about the order
in which tabs were created, but it still retains the correct
ancestry relationships.

As users browse the Internet, the information on each tab
changes. Since we display the title of the webpage (or the
URL if no title is available), we need to update as informa-
tion changes. To handle this, we have an event listener that
listens for changes in existing tabs. When there is a change
in an existing tab, if the title or url changed we update the
appropriate entry in our tree. This is especially important,
since when we create a new tab, we only know the url since
the html hasn’t loaded yet. Once the html loads and we
know the title, we then automatically update our informa-
tion.

There is a known bug in the event listeners. If the user
does too many actions too quickly, some of the events are
dropped. This results in tabs becoming uncoupled from their
id numbers, which results in trash nodes in our tree struc-
ture. We theorize that this is because we only have one html
page with one javascript script, so we only get one thread.
Thus, if too many events happen too fast, some of them get
dropped.

3.4 User Interface
The user interface is the html popup page. When the user
clicks on the icon for the extension, a popup page is cre-
ated. It is populated from the tree structure stored on the
background page.

The tabs are listed in text, with children appearing below
parents and indented by two spaces. So, a tabs parent is
the lowest tab above it that is two more spaces to the left, a
tabs grandparent is the lowest tab above it that is indented
four more spaces to the left, etc.

For each tab, we display the tab’s title. If no title is known,
we use the url. So, as a page loads it will switch from url to
title as the html for that page loads.

4. USAGE
4.1 Installing
Since our implemenation is a Chrome Extension[2], the user
must already have Chrome installed on his or her machine.
To install the Web of Tabs extension, the user needs to first
open a Chrome window (see Figure 1).

Then, in order to add an extension to his or her Chrome
enviroment, the user must open the Extension tab . This
is found via the “Customize and Control” drop-down menu
(see Figure 2), accessed by clicking on the wrench icon in
the upper right of the Chrome window.

The Extensions Tab is now open (see Figure 3). From this
tab, the user can install new extensions, pack extensions,
get extension updates, reload extensions, disable extensions,
uninstall extensions, and debug extensions. We will only
concern ourselves with installing extensions.

Figure 1: A newly opened window of Google

Chrome, an Internet Browser.

Figure 2: Opening the Extensions tab from the tools

drop-down menu.

Figure 3: The Extensions Tab. Currently, we have

no extensions installed.



Figure 4: We can load our unpacked Web of Tabs

extension from its folder in the file system.

Figure 5: The Web of Tabs extension is now work-

ing. A small icon appears in the upper right of the

Chrome window, labeled “Web of Tabs”. Clicking

that brings down a tree of the currently open tabs.

The user can click on the“Load Unpacked Extension”button
to load the Web of Tabs extension. Then, the user must
navigate to the appropriate folder in the file system (see
Figure 4) and select “Ok.” From there, the extension will
load automatically.

Once the extension has been loaded, a small icon labeled
“Web of Tabs”appears in the upper right of the Chrome win-
dow (see Figure 5). Clicking on this icon brings up the Web
of Tabs popup, which shows the open tabs in a tree-style
format. Tabs that were already open when the extension
started running (such as the Extensions tab from Figure 3,
by necessity) do not appear; only tabs that were created
after the extension started running will appear.

The extension will now update its internal data to reflect
changes made in the browser. The user is free to surf the
Internet, with the added ability to peruse to his or her tabs
in a tree structure.

4.2 Browsing

Figure 6: Wikipeida as an example page. As you

can see, it appears in the Web of Tabs popup tree

structure.

Figure 7: Finland as an example page. The link to

Russia is indicated.

As the user goes about his or her browsing, the tree structure
of the Web of Tabs will stay updated with the current open
tabs. This allows the user to see which tabs were opened
from which, creating an ancestry of tabs. A good place to
observe this is on Wikipedia (see Figure 6), where each web
page has many links to other, relevant web pages.

We can then begin browsing. First, we start by navigating
to the page on Finland, which updates the information in
the tree (see Figure 7).

Then, we can open the page on Russia as a new tab from
the page on Russia (see Figure 8). Since we opened the
page on Russia from the page on Finland, the tab contain-
ing the Russia web page is the parent of the tab containing
the Finland web page. This is indicated to the user by the
indentation: the Russia web page is below the Finland web-
page and indented further.

After opening many tabs from one starting tab (in this case,
all the webpages of countries boardering Russia, see Fig-
ure 9), the starting tab has many children. They are all



Figure 8: After navigating from the Wikipedia main

page to the Finland page and then opening the Rus-

sia page in a new tab, the Web of Tabs popup tree

structure correctly displays the Russia tab as a child

of the Finland tab.

listed below the parent tab in the order in which they were
opened. This allows the user to see the titles of all of the
tabs, which is not possible at the top of the Chrome window
due to space contraints.

If the user opens many tabs, each from the next, he or she
can get quite far from the original topic. It is useful for
the user, then, to be able to see what path led to the cur-
rent page. For example, (see Figure 10) casually browsing
Wikipedia can lead a user from Finland to Caltech. Being
able to trace back one’s thought process is very helpful in
this kind of situation.

After a brief period of simulated normal browsing, we have
some eleven tabs open (see Figure 11). The Web of Tabs
allows the user to easily see which tabs are open and which
tabs were opened from which. In this example, we the Brown
Bear page from the Russia tab, the Cave Bear page from
the Brown Bear tab, the Cave Hyena page from the Cave
Bear tab, and the Wolly Rhinosaurus page from the Cave
Hyena tab, as well as the Exploration, Warrior, Merchant,
and Piracy pages from the Viking tab, which was opened
from the Russia tab.

The children tabs are kept in the order in which they were
opened. In this example (see Figure 12), the tabs 1, 2, 3,
and 4 were opened, with 1 first, then 2 second, then 3 third,
and 4 last. This is reflected in the order in which they are
displayed in the tree.

Users will often close tabs which are no longer useful when
other, more useful tabs are still open. If the closing tab
has children, they are promoted to the level of the closed
tab. In other words, they become siblings of their parent
tab’s siblings and children of their parent tab’s parent (see
Figure 13).

When this promotion happens, the newly promoted children
are given the same position in the order of siblings that their
parent previously occupied. This is to try to preserve infor-

Figure 9: We have opened all of the pages of coun-

tries boardering Russia as new tabs. In other words,

we have done a partial breadth-first traversal of

Wikipedia. All the new tabs are displayed as chil-

dren of the Russia tab.

Figure 10: We have opened a series of pages,

each from the previously opened page. In other

words, we have done a partial depth-first traversal

of Wikipedia. Each of the tabs is displayed as the

child of the tab from which it was opened.



Figure 11: We have opened many tabs in the course

of normal browsing, and can easily see which ones

were opened from which.

Figure 12: The extension displays the children tabs

in the order they were created. In this case, the

pages for 1, 2, 3, and 4 were opened in that order,

so they are displayed in that same order.

Figure 13: If a tab is closed which has children, all

its children are then promoted to the level of the

closed tab.

Figure 14: Before a tab is closed and its children are

promoted.

Figure 15: After a tab is closed and its children are

promoted. Notice that the children are promoted to

the same space in the sibling order that the closed

tab formerly occupied. Due to a bug, the order of

the promoted children is reversed.

mation about the order in which topics were viewed by the
user. For example, in figures 14 and 15, the branch starting
with Stephen Crane was opened before the branch starting
with War Correspondent. So, presumably, the information
in the Stephen Crane brach came before the information in
the War Correspondent branch, from the user’s perspective.
It makes sense, then, to keep the information in the Stephen
Crane branch before that of the War Correspondent brach
when the tree is reorganized. Unfortunately, due to a bug,
the order of the newly promoted children is reversed.

As we browse from page to page, the tree keeps the informa-
tion for each tab updated with its current page’s title (see
Figure 16). This can cause some confusion, as a parent tab
can end up having little to nothing to do with its children
tabs, but it is much more useful information that outdated
information about pages that are no longer open.

5. FUTURE DEVELOPMENT



Figure 16: When we browse from website to web-

site within a tab, the tree stays updated. Here, we

navigated from the“2”page to the page on numbers.

Development of this project will continue into the summer.
As we move forwards, there are an increasing number of pos-
sible directions in which we may wish to go; while some con-
flicting approaches could be reconciled by allowing them to
be alternate schemas selectable through options, customiza-
tion is something of a double-edged sword. Raskin observed
that adding customizability inherently makes a user inter-
face more complicated and more difficult to learn in some
concrete manner [4]. However, there are of course some
options that are simply time-saving conveniences for some
users (such as the ability to select a directory for local stor-
age), or that otherwise cater to the tastes of a significant but
not overwhelming portion of users. Thus there may be times
when we find that options are indeed necessary or beneficial,
but we must be prudent so that these options do not in any
way convolute the user experience.

The use of multiple windows is a concept that we have not
yet attempted to integrate with this project. With our initial
goals, it seemed sensible that this application should treat
individual windows as entirely separate entities. This may
indeed be the proper case for many users; however, there
may be others who would prefer to view individual windows
as distinct trees that can all be accessed in the same view
from the Web of Tabs. As there is likely to be some variation
among different users’ approaches to distinct windows and
to user preferences regarding how those windows should be
treated by the application, it would likely be ideal to even-
tually allow either approach through the customization of
user options.

One primary goal is to introduce a simple method for saving
and loading browsing sessions and all of the Web of Tabs’
information for said sessions. Tradition bookmarks do not
allow the addition of third-party information to the data in
the bookmark; thus, that avenue seems to be of little value
to us now. A second possibility that was investigated, which
enables saving and restoring session data locally, would be to
store all necessary information in cookies which could then
be saved to some specified folder on the user’s machine. The
major drawback that is presented by this possibility is that
cookies are limited to 4 kilobytes in size; thus, one may not

have sufficient space to hold all the details that we would
need to preserve if the session that is being saved was a
reasonably large one.

A third, more promising possibility that we are currently
investigating is the use of HTML5’s web storage capabilities.
This interface would allow us to easily define properties to
index; moreover, it allows the storage of megabytes of data
on the client side. Although it also enables the user to save
data from multiple windows at once, our project’s initial aim
is such that it would likely be ideal to save the data from each
browser window individually. As discussed above, however,
it may be preferable to eventually allow either approach and
enable users to set their preferences.

The ability to store Web of Tabs data for a browsing session
would be useful for a multitude of reasons. The user would
be capable of continuing a browsing session without losing
the context of the old session (this is an immense problem
when tabs are reloaded but there is no organizational struc-
ture to help the user to recall the order or significance that
he or she ascribed to each page individually). In addition,
users would be able to create and share hierarchically or-
ganized trees of tabs with one another; this could greatly
facilitate the sharing of information that is not contained
on one web page but is instead spread across many pages.
The advantages of sharing trees of tabs are expanded upon
below.

A further goal that we believe to be as conceptually impor-
tant as the aforementioned ability to save and restore tree
structures from previous (or other users’) sessions is the abil-
ity to interact with and manipulate the tree structure of the
Web of Tabs. Fundamentally, this would entail changing
the representation of a tab from plain text to an object that
contains the tab’s title (and, if available, its logo). Double-
clicking on this object would bring the user to the page that
it represents; clicking and dragging the mouse would en-
able the user to change the tab’s position in the greater tree
structure. The former action would require a simple event
listener; we already have backend functions in place that are
capable of implementing tree customization, but the event
listeners (for clicking, dragging, handling relative mouse po-
sition, etc.) will likely prove substantially more complicated.

There are a variety of other less significant but still notewor-
thy features to include with the Web of Tabs applications.
Among them are the ability to determine whether the inter-
face appears to the user as a popup or as a new tab (this is
comparatively trivial to implement, but we focused on more
immediate concerns this term),

As a further direction of future development, it may prove
worthwhile to investigate different visual layouts for the tree-
like structure of our tab objects. The current representation,
in which indentation is used to differentiate between gener-
ations, achieves its purpose; however, one of the initial goals
of this undertaking was to use a visual layout to make an
organizational structure as intuitively apparent as possible
to the user. This end is integral to the more abstract ob-
jective of using the capabilities of the machine to remove as
much as possible any burden of organization from the user.
In addition, some alternative representations of the tabs’ hi-



erarchy would enable the implementation of other features,
such as the use of color-coded lines to conceptually link tabs
that are not directly joined by ascendency. This would also
enable the tree-style hierarchy to more closely approach a
general graph structure.

One final possibility, discussed early in the project’s develop-
ment, would be the extension of this application to suggest
recommended tabs from the tab that is currently selected.
This would entail a truncated list (perhaps no more than
three or four) of web sites, likely the results of a Google
search, that we would try to match as closely as possible not
only to the topic of the current tab but to the topics of the
greater tree of tabs. This would be an intensely interesting
problem, but one that may be difficult to solve: inherently,
we would seek to give extensions (rather than just repeti-
tions of the current tab’s information) that would fit in with
the tree as a whole. Whether this could be achieved by some
amount of intelligent data-collection from the other available
tabs, or whether other methods (such as the mining of data
from publically available Web of Tabs files on the internet)
would be necessary, is an open question.

6. ACKNOWLEDGMENTS
Thanks to Dr. Steven Low and Minghong Lin for mentoring
us on this project.

Many, many thanks to Ryan Witt for suggesting some ex-
cellent Javascript tutorials.

7. REFERENCES
[1] D. Dotov, L. Nie, A. Chemero, and V. Brezina. A

Demonstration of the Transition from Ready-to-Hand
to Unready-to-Hand. PLoS ONE, 5(3):e9433, 2010.

[2] Google Chrome Extensions,
“http://code.google.com/chrome/extensions/”

[3] M. Heidegger. Being and time. Wiley-Blackwell
Hoboken, NJ, USA, 1978.

[4] J. Raskin. The humane interface: new directions for

designing interactive systems. ACM
Press/Addison-Wesley Publishing Co. New York, NY,
USA, 2000.

[5] TabKit,
“http://code.google.com/p/tabkit/wiki/About”

[6] Tab Groups: Firefox Tab Grouping Extension,
“http://paranoid-androids.com/tabgroups/”

[7] Tab Groups and Tab Grouping Please?,
“http://www.google.com/support/forum/p/Chrome/
thread?tid=5a8d6002d0e3520e&hl=en”

[8] Tabs - Google Chrome Extensions, “http:
//code.google.com/chrome/extensions/tabs.html”

[9] Tree Style Tab, “http:
//piro.sakura.ne.jp/xul/_treestyletab.html.en”

[10] Tree-Style Tabbing,
“http://www.google.com/support/forum/p/Chrome/
thread?tid=46072ea13a7726d4&hl=en”


