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ABSTRACT
Google Buzz is a novel online service that presents new op-
portunities for social network analysis. By initializing the
Buzz network with existing Gmail contacts, Google provides
a unique dataset that may reflect a different aspect of online
communication from those found in existing networks such
as Facebook and Twitter. In this paper we design heuristic
metrics for ranking and recommending influential members
of the Buzz social network. We leverage these metrics to de-
velop an application allowing individual Buzz users to iden-
tify influential users near their existing “friend” subgraph.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Si-
cences—Sociology, Economics; H.2.8 [Database Applica-
tions]: Data mining; H.3.3 [Information Search and Re-
trieval]: Text Mining

General Terms
Economics, Measurement, Human Factors, Experimentation

Keywords
social influence, social networks, google buzz

1. INTRODUCTION
Social networks, i.e. graphs of the relationships between a
group of individuals, provide a fundamental tool in under-
standing how ideas propagate among people. Such graphs
have been used to analyze various topics from how the Medici
family gained power in Renaissance Florence [24] to the dy-
namics of friendships and romances in high school students
[2]. Common in the sociologist’s treatment of social net-
works are the metrics of node centrality. In particular, mea-
suring in-degree, betweenness, and eigenvector centrality are
common practice [4]. Determining which of these metrics to
use on a particular dataset are generally based on heuristics.

Online social networks have evolved into a rich setting for

social network analysis. Various authors have discussed the
degree of influence and privacy in networks like Facebook,
MySpace, and Twitter [21, 23, 9]. However, the network
research applied to Google Buzz1 remains limited.

In February 2010, Google deployed Buzz, its social net-
working and messaging tool, with user profiles linked to all
existing Gmail accounts [12]. This provides a substantive
framework for social network analysis, since Buzz may reflect
existing relationships found in email communication. Fur-
thermore, the multidimensional nature of the data available
on Buzz provides an interesting dataset for analysis: Users
“follow” one another, creating a follower-followee graph (a
type of “friend graph”). Additionally, they may indicate
that they “like” another user’s post, and comment on posts
they find interesting, presenting unique challenges in choos-
ing and blending the best influence metrics for each compo-
nent to arrive at an overall influence score for every user.
Our research aims to extend existing methods, implement
new metrics for social influence, and evaluate performance.

1.1 Previous Literature
Prior research focuses on the influence maximization prob-
lem in social networks[27, 26]. In order to characterize the
dynamics of viral marketing, Kempe, Kleinberg, and Tar-
dos[13] attempt to determine social influence by asking: If
we can try to convince a subset of individuals to adopt a
new product or innovation, and the goal is to trigger a large
cascade of further adoptions, which set of individuals should
we target? They model network influence through diffusion
models (namely the Linear Threshold and Independent Cas-
cade Models) on social networks. By applying a Domingos-
Richardson [6] style of optimization, Kempe, et al. were able
to create an algorithm that significantly outperforms tradi-
tional node-selection heuristics based on distance and degree
centrality in identifying influential agents in the physics co-
authorship graph on arXiv. However, the gradient ascent
(greedy hill climbing) method they utilize requires the use
of the n-dimensional gradient, which involves intensive com-
putation.

A different treatment of influence maximization problems
considers the similarity to disease outbreak problems. Kimura,
Saito, and Nakano [15] introduced a more efficient technique
to evaluate these models based on graph theoretic optimiza-
tions. These models have been experimentally evaluated on

1http://www.google.com/buzz



a large sample of blog “trackback” data and on a maximal
connected component of people mentioned on Wikipedia.

Building on the idea of peer influence, Tang, et al. [27] ana-
lyzed the topical influence of individuals in social networks.
They propose Topical Affinity Propagation (TAP) to model
the importance of topic-level influence propagation. In par-
ticular, they seek to determine the representative nodes on
a topic and how to determine social influence of neighbor-
ing nodes of a particular node. TAP is based off of the
theory of a factor graph [8] in which observational data is
coupled with local attributes and connections. By leverag-
ing affinity propagation in this setting, Tang, et al. are able
to create a model for influence identification through two
different methods: Topical Factor Graph (TFG) and TAP
Learning (and distributed TAP learning). Experiment re-
sults confirm the success of TAP in identifying topic-based
influence in real-life large data sets. Additionally, the dis-
tributed learning model proves to be scalable with reason-
able performance.

On a related topic, Bharathi, et al.[26] discuss the effect
of social networks on the diffusion of ideas and innovation.
Similar to Kempe, et al., Bharathi, et al. provide an ap-
proximation algorithm to computing the best response to
an opponent’s strategy in the “game of innovation”. Specif-
ically, we again consider the idea of activated nodes. In
the influence maximization game, players wish to maximize
their individual influence given a randomized propagation
scheme. It can be shown that mixed Nash Equilibria exist
for this game (but no pure Nash Equilibrium). From here,
Bharathi, et al. show that best-response strategies exist for
this game that are both monotone and submodular. This,
coupled with discussion of “first mover” strategies provides
a framework for the behavioral basis of influence maximiza-
tion in social networks.

An interesting phenomenon of influence is an “information
cascade”, in which individuals adopt a new idea based on
the influence of others. Leskovec, Singh, and Kleinberg [20]
provide an analysis of this concept on social networks by
looking at the cascading effect of recommendations. Ex-
tending the previous work of sociologists who looked at the
“diffusion of innovation” [25] to an online setting, they seek
to characterize the nature and scope of these cascades. By
conducting their analysis on a peer-to-peer recommendation
network consisting of 4,000,000 users and 16,000,000 recom-
mendations on 500,000 products, they found that the dis-
tribution of cascade sizes is heavy-tailed. Cascade patterns
were found to be generally shallow and tree-like subgraphs,
with patterns not directly related to size or intensity, which
suggests that cascading behaviour is dominated by underly-
ing network properties.

1.2 Google Buzz
At the most basic level, Google Buzz allows users to post
messages to their activity streams. They can also interact
with others’ posts by commenting on them or “liking” them,
which adds their name to a list of “likers.” Unlike Twitter,
there is no limit to the length or type of content that a post
may contain.

1.2.1 Follower-Followee Model

Followee

Follower Follower

Figure 1: Follower-Followee Graph Model

The dynamics of the Buzz social graph are very similar to
those present in Twitter. In the follower-followee model
(Figure 1), if user A is following user B, then there is a
directed edge from user node A to user node B. By count-
ing the number of times user A“likes”posts by user B, along
with other metadata counts, we can compute weights for the
edges in this graph. Social influence travels along reverse
edge direction, with the exception of “likes” and comments.

2. APPROACH
In this section we present the details of our approach to data
collection and social influence analysis.

2.1 Data Collection
The graph structure of the Google Buzz network is so vast
that it is infeasible to analyze in its entirety. Thus, a sub-
graph from the network was sampled in order to get a rep-
resentative view on the general structure. The sampling
method chosen is similar to a breadth-first search, but in-
corporates randomness by choosing the order of expanding
nodes regardless of distance from the seed node. The pseu-
docode for the sampling method is shown in Algorithm 1.

Algorithm 1 POOL-SAMPLE

POOL = V0 {V0 is the seed node}
while POOL 6= ∅ do

V = Uniform random selection from V0
POOL = POOL \ {V}
Sample data for V
POOL = POOL ∪ neighbors of V

end while

2.1.1 Buzz Dataset
According to Google, there are “millions” of Buzz users,
each with multiple follower-followee relationships with other
users. In order to test our methods and develop a proto-
type, we created a sample dataset by crawling 41,858 user
profiles involving 204,289 relationships with 3,394,137 Buzz
posts. We also crawled all comments and “likes” among the
users in the sample dataset. Figure 2 shows that most Buzz
posts actually originate from Twitter. Still, the extra func-
tionality that Buzz provides over Twitter, including direct
commenting on posts and “liking,” could be valuable.
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Figure 2: Pie chart of the source of Google Buzz
posts (from sample dataset)

2.2 Sampling Bias
Because of the large size of the online social networks we are
studying, practical considerations prevent us from crawling
the entire graph. Instead, we utilize the common approach
of collecting and analyzing a smaller, representative sample
of the network. Collecting a relatively small sample of a
vast network necessitates analyses of biases introduced by
the sampling method.

Empirical observations[22][18][3] suggest that Breadth First
Search systematically favors higher degree nodes, while ran-
dom walks perform well in choosing representative subgraphs[19].
POOL-SAMPLE combines the best of both methods, and,
to our knowledge, has not been analyzed to much extent.
We intend to characterize the bias of our sampling method
and offer suitable corrections. Fairly little analysis has been
done on the sampling bias of searches on online social net-
works. The most notable results are from Kurant et al[17],
which we consider here.

For a given degree distribution pk we can generate a ran-
dom graph RG(pk) from which to sample. In this setting,
Breadth First Search is equivalent to other graph traversal
techniques such as Depth First Search, Snowball Sampling,
and Forest Fire. Furthermore, the bias from Breadth First
Search is identical to the bias from Random Walk. This
bias is monotonically decreasing with an increasing fraction
of sampled nodes f . However, even given a biased sample,
we can give an unbiased estimator of the original degree
distribution:

p̂k =
q̂k

1− (1− tf)l
·

(∑
l

q̂l
1− (1− tf)l

)−1

Here, qk is the distribution observed (biased towards high-
degree nodes), at time t.

2.3 Influence Metrics
Influence is difficult to describe, much less quantify into nu-
merical values for each node. We chose several metrics for
analysis, with the criteria that they capture some intuitive
notion of influence. Each of these metrics map a node i to

a value Ii ∈ R.

• In-Degree (ID) The size of the set of nodes that have
an edge leading to i. It is natural to believe that a
person with a large amount followers is influential.

• In-Web< k > (IW) A generalization of Indegree.
This counts the number of nodes that have a directed
path to i of length at most k.

• H-Index (HI) The H-Index was proposed by Hirsch
[11] as a means to quantify an individual’s scientific
output based on the structure of the citation graph.
The integer score is a count of the number n of papers
written by an individual which have each been cited
at least n times. It requires that an individual have
a large number of highly cited papers in order to im-
prove his or her index rating, and lessens the impact
of a single highly-cited paper. However, the H-Index
has several drawbacks which we do not discuss here
because they are more relevant for the validity of mea-
suring a scientist’s impact than its validity as a graph
metric. Nonetheless, it has seen wide implementation
as a metric of an individual’s scientific output.

We have adapted the H-Index for use in social net-
works with directed graphs. An individual’s followers
are seen as a parallel to publications, and the respec-
tive followers of those followers are seen as a parallel
to citations. Hence, if an individual has 50 followers
who each have at least 50 followers themselves, he or
she would have an H-Index of 50.

This seems to be a valid metric of the capability to
influence others because it corresponds to high con-
nectedness. It also conveys more information than In-
Degree because it contains the notion of being able to
influence highly influential people. As an added bene-
fit, it can also be computed efficiently using only local
data.

• Random Walk (RW) This metric measures the time-
average probability of being on node i during a random
walk. Random walk models have been used in PageR-
ank to measure authority of Internet pages.

Our implementation of Random Walk is as follows:
For some specified number of iterations, pick a ran-
dom node to start from. Then, proceed with a random
walk by random choosing amongst the out-edges of the
current node and continuing the random walk at that
node. In each iteration, with a specified probability,
restart the random walk.

Alternatively, one can get the matrix for a Markov
chain determined by this random walk and solve for
the eigenvalues of the matrix to determine metric val-
ues, but when there are tens of thousands of nodes, this
computation is too slow. This formulation is equiv-
alent to the explicit random walking as the Markov
chain determined by the graph structure imposed is
ergodic.



• Independent Cascade Diffusion (IC) Diffusion mod-
els have been used to analyze the ability of a node to
infect the network, particularly for targeted viral mar-
keting. The independent cascade model probabilisti-
cally activates edges to propagate infection, and Monte
Carlo samples are used to measure the expected size
of the infected set.

2.3.1 Personalization With Local Influence
Thus far, we have concentrated on the task of measuring the
influence of users in a global context. However, for the task
of recommendation targeted for specific users, the concept of
global influence becomes less important. Users may be more
concerned with influential nodes relative to themselves, thus
a measure of local influence must be devised.

A natural way of localizing metrics is to restrict the mea-
surement process to a local subgraph. This restriction can
be done in several ways: measure the global influence of all
nodes and only recommend the highest nodes in the local
subgraph, or use only the local subgraph to measure the in-
fluence of local nodes. However, restricting decisions to an
arbitrary local subgraph in this manner is sub-optimal as
much of the information in the graph is unused. Also, many
of the metrics used are local in nature (In-Degree, InWeb,
H-Index), thus restricting recommendations to a large local
subgraph will still be similar to picking globally influential
nodes regardless of target user.

The method of recommendation we have used measures a
non-local metric (Random Walk) on a slightly modified graph
to target a particular user. The modification to the graph
involves adding extra edges that are implicitly present in a
random walk to ensure that the underlying Markov chain is
ergodic. Many applications have these extra edges connect-
ing every pair of nodes with equal weights such that the sum
of the weights from any node to any of these edges is α. For
personalization, these edges are allowed only to go into the
local subgraph centered around the target node. This no
longer ensures ergodicity of the Markov chain of the whole
graph as the graph may be unconnected. However, the chain
consisting only of nodes reachable from the local subgraph
is ergodic, so random walks restricted to this chain will give
a convergent solution.

This method enables the use of information present in the
whole graph while localizing the measure of influence for a
target user. This method also captures an intuitive mean-
ing of localized influence: if information tends to pass from
followee to follower, what are the nodes that can pass the
most information to nodes around the target? In practice,
this method seems to be acceptable: many recommendations
are not in the global top leaderboards, often recommended
before those that are. However, without a way to validate
the results, we cannot completely justify the validity of this
method for recommendation purposes.

3. RANK AGGREGATION
Our aim was to create a single metric which could be ap-
plied to a social network to give consistent friend recom-
mendations containing the most influential users in the net-
work. In order to aggregate the multidimensional features
that contribute to the notion of influence, we have selected

several metrics which capture different aspects of social in-
fluence. We utilize a method of aggregating various ranking
metrics in order to succinctly represent the collective body
of information contained in these metrics. Additionally, we
sought to produce a ranking system resistant to attack from
users seeking to artificially inflate their rankings, and also
easily computable, thus allowing the ranking to be queried
on-demand in a dynamic social network.

Dwork et al [7] propose a method for aggregating web search
engine results in a robust manner which protects users from
various shortcoming and biases in the various search results.
We use their method for rank aggregation which benefits
from having the criteria that we sought to establish. We
also evaluate the shortcomings of the method and discuss
some possible enhancements.

There are two broad steps we implement to arrive at a rank
aggregation which has the benefits described above. The
first step is rank aggregation via Borda’s method. The sec-
ond step is rank refinement by adjacency swaps on the ag-
gregate.

3.1 Borda’s Method
The Borda count is an election method in which voters rank
candidates in order of preference. In terms of rank aggrega-
tion each ranking system used is seen as a voter and each
member of the set is a candidate. Scores are assigned to
each rank and each member’s final score is the sum of their
scores from the various ranking metrics.

Formally, given full lists τ1, τ2, ..., τk for each candidate c ∈ S
and list τi, Borda’s method assigns a score

Bi(c) = |{x ∈ τi : x ranked worse than c in τi}|

and then the total Borda score for the candidate is

B(c) =

k∑
i=1

Bi(c)

The candidates are then sorted in decreasing order of total
Borda score.

3.2 Rank Refinement
One widely accepted metric for concordance amongst vari-
ous rankings is the Kendall distance. Kemeny optimal ag-
gregations, i.e. those that optimize Kendall distance, have
been shown to be unique aggregates which are neutral, con-
sistent, and which satisfy the Condorcet criterion. Comput-
ing the Kemeny optimal aggregation has been shown to be
NP-Hard [7].

In order to arrive at a tractable result, we follow the method
for local Kemenization proposed by Dwork et al [7]. Given
the ranked lists τ1, τ2, ..., τk and the aggregate σ, we attempt
to swap adjacent entries in σ which will lower the Kendall
distance on the whole collection of rankings:

K(σ, τ1, τ2, ..., τk) < K(σ′, τ1, τ2, ..., τk)

3.3 Benefits and Consequences of Aggregation
The method described above produces a ranking which sat-
isfies the extended Condorcet criterion, i.e. if a majority of



rankings position x above y, then x is ranked above y in the
final ranking. In such a procedure it is more difficult for one
member to try to artificially inflate his or her ranking via
spam or automated action. Thus the ranking is useful for
users because it establishes a level of trust.

Additionally, the above method can be computed efficiently
once the ranking lists have been computed. This allows for
the ranking to be utilized on social networks whose structure
and activity changes frequently while still conveying useful
information.

The rank refinement acquired by arriving at a locally Kem-
enized list is limited by the original aggregation. It is in a
sense maximally consistent with the original aggregate, and
so cannot arrive at a final ranking which will convey useful
information if the original ranking was poorly determined.

Borda’s method gives equal amount of importance to every
ranking system. This may not be desirable in a social net-
work, and could allow some members to be misrepresented
in the final standings. However, connectivity and activity in
a social network are both major factors in determining in-
fluence and hence our aggregate captures that notion well.
It remains to be seen whether some linear combination of
the points assigned in Borda’s method (a weighting) would
give results which are more consistent with intuitive expec-
tations.

4. METRIC COMPARISONS
4.1 Kendall’s Tau
Comparing different influence metrics is equivalent to com-
paring the rankings that they impose on our social network.
To that end, we compared metrics using the Kendall’s tau
coefficient [14]. The Kendall’s tau coefficient is defined as

τ =

∑
(i,j)[(i, j) in same order]−

∑
(i,j)[(i, j) in different order]

n(n− 1)

where n is the total number of nodes and the sums are being
taken over all pairs of nodes. Note that τ ∈ [−1, 1], with τ =
1 corresponding to complete ranking agreement between the
metrics, τ = −1 corresponding to complete disagreement,
and τ ≈ 0 corresponding to no relation whatsoever.

We performed metric comparisons using both the Google
Buzz and StackOverflow datasets in order ensure that our
comparisons are valid. The results are in Figures 1 and
2. For these results, Random Walk was done with 1 billion
walks and probability 0.2 of starting a new walk at any given
step, and Independent Cascade was done with 100 trials per
node, with an activation probability of 0.1. Additionally, for
the StackOverflow dataset we included an additional met-
ric, User Reputation (abbreviated REP), which simply uses
a user’s public reputation score on StackOverflow, which
should capture the notion of influence in that network.

Looking at the tables, all of the numbers in Table 1 and
Table 2 are positive, which indicates that the metrics are
roughly measuring similar things, a good sanity check. Look-
ing at the Google Buzz data in particular, some items stand
out. Hirsch Index is very similar to In-Degree, which is
expected due to the definition of the Hirsch Index. Indepen-
dent Cascade is similar to the In-Web metrics, which is valid

Table 1: Kendall’s Tau Coefficients for Buzz Dataset
HI IC ID IW(2) IW(3) RW

HI 1.000 .2665 .8122 .2689 .2125 .0868
IC .2665 1.000 .3645 .7823 .8140 .1382
ID .8122 .3645 1.000 .3645 .3090 .2411
IW(2) .2689 .7823 .3645 1.000 .8349 .1056
IW(3) .2125 .8140 .3090 .8349 1.000 .1021
RW .0868 .1382 .2411 .1056 .1021 1.000

Table 3: Difference in Kendall’s Tau
HI IC ID IW(2) IW(3) RW

HI 0.000 .1256 -.1370 .1265 .1647 .1337
IC .1256 0. .2319 .0896 .0602 .3576
ID -.1370 .2319 0. .2331 .2706 .2264
IW(2) .1265 .0896 .2331 0. .0950 .3812
IW(3) .1647 .0602 .2706 .0950 0. .3822
RW .1337 .3576 .2264 .3812 .3802 0.

as In-Web is basically Independent Cascade with probability
of activation 1 and limited view a certain distance away from
the node under consideration. Both of the In-Web metrics
are also similar to each other, which is completely expected.
However, nothing is very similar to Random Walk. Note
that this does not necessarily mean that Random Walk is a
bad metric; it just means that it is different from the other
metrics presented.

Now focusing on the StackOverflow dataset, we notice sim-
ilar patterns. More explicitly, we can take the difference in
Kendall’s tau coefficients, as in Table 3. From this, we can
see that the Kendall’s tau coefficients for the StackOverflow
dataset are on average approximately 0.2010 different in ab-
solute value and 0.1828 higher on average. Very significantly,
the StackOverflow coefficients are almost uniformly higher
than the Google Buzz coefficients, with the only exception
being H-Index against In-Degree. Also, more of the met-
rics are similar to Random Walk as compared to the Buzz
dataset, although the correlation with Random Walk is still
not as high as the other correlations.

However, the User Reputation metric is very different from
all of the other metrics. If User Reputation were the defini-
tive and ultimate social influence metric on StackOverflow,
then this would indicate that none of our presented met-
rics are a good measure of influence, assuming that the
graph structure we imposed on the StackOverflow dataset
was valid.

4.2 CCDFs
Now we present some complementary cumulative distribu-
tion functions (CCDFs) on a log-log scale, noting that many
real-life distributions are heavy-tailed and thus have linear
CCDFS when plotted on a log-log scale. There is no partic-
ular reason to believe that some of these metrics are linear,
though, but it is worth investigating. For reasons of space,
though, not all CCDFs have been included.

In Figure 3, we can see that In-Degree on the Google Buzz
set is somewhat linear, which is more or less expected. In
Figure 4, the same general trend can be observed for Stack-



Table 2: Kendall’s Tau Coefficients for StackOverflow Dataset
HI IC ID IW(2) IW(3) RW REP

HI 1.000 .3921 .6752 .3954 .3772 .2205 .0863
IC .3921 1.000 .5964 .8719 .8742 .4958 .2749
ID .6752 .5964 1.000 .5976 .5796 .4675 .2118
IW(2) .3954 .8719 .5976 1.000 .9299 .4868 .2616
IW(3) .3772 .8742 .5796 .9299 1.000 .4843 .2597
RW .2205 .4958 .4675 .4868 .4823 1.000 .2597
REP .0863 .2749 .2118 .2616 .2597 .2597 1.000
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Figure 3: CCDF of In-Degree on Google Buzz
dataset.
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Figure 4: CCDF of In-Degree on StackOverflow
dataset.

Overflow, indicating that our crawling techniques are not
terribly biased. To illustrate a metric that is not linear,
observe the CCDF for In-Web(3) on the Google Buzz set
(Figure 5). StackOverflow Reputation (Figure 6) is also non-
linear on a log-log scale.

In addition to the above observations, although the plots
are not presented, the CCDF curves for all of the metrics
are fairly similar between Google Buzz and StackOverflow.
This furthermore indicates that these datasets are not very
different and validates our imposition of graph structure on
the Stack Overflow dataset.

However, it is also important to note that merely having
similar shapes does not make metrics similar. For exam-
ple the CCDF of In-Web(2) on StackOverflow looks quite
similar to the CCDF of StackOverflow Reputation, yet the
Kendall’s tau coefficient for these two metrics is only .2616.
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Figure 5: CCDF of In-Web(3) on Google Buzz
dataset.
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Figure 6: CCDF of StackOverflow Reputation.

5. EVALUATION
Previous literature in social influence analysis focuses on an-
alyzing new or existing metrics, while ignoring the problem
of evaluating their effectiveness. This is due to the diffi-
culty in finding an appropriate test dataset labelled with
pre-determined social influence scores. We decided to evalu-
ate our methods using a relatively new dataset [16] derived
from the StackOverflow online question and answer website.

5.1 StackOverflow Dataset
StackOverflow provides a dataset containing 227,691 users,
2,488,534 posts, and 6,444,449 individual votes. We im-
ported this into a MySQL database using a custom PHP
script. Users of StackOverflow can vote on or“favorite”ques-
tions posted by other users. To preserve user privacy, votes
are omitted from the public dataset. Based on various crite-
ria, each user has a public “reputation score” which we use
as labels for users’ relative influence. In order to derive a
graph analogous to the follower-followee model, we created



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10000  20000  30000  40000  50000  60000

H
irs

ch
 In

de
x

Stack Overflow Reputation

Stack Overflow Reputation vs. Hirsch Index

Figure 7: Scatterplot of StackOverflow Reputation
Score vs H-index

a directed edge from user A to user B if user A marks a
question posted by user B as one of their favorites. This
graph contains 377,780 directed relationships.

5.2 Evaluation Results
Analysis of the relationship between H-index scores and“rep-
utation score” labels shows that there is no significant corre-
lation between these two metrics (Figure 7). There are many
reasons for this, the most intuitive being that StackOverflow
is not a social service in the same way that Buzz or Twit-
ter are inherently social services. StackOverflow is primarily
meant for answering questions posed by users, and thus any
social aspects are merely secondary effects. The notion of
“following” in actual social networks is stronger than in the
graph we derived from the StackOverflow dataset.

6. FUTURE WORK
Chen, et al. [5] point out the infeasibility of running the
greedy algorithm proposed by Kempe, et al. [13] on very
large datasets and puts forward degree discount heuristics
which provide comparable results with computation time 6
orders of magnitude faster. We aim to investigate whether
the same speed-ups are necessary in the restriction of the
problem to an ego-network subgraph. In addition, we would
like to evaluate our method of friend recommendations to
see how they perform with respect to degree centrality met-
rics.

There are many technical issues associated with large-scale
data analysis, including efficient data storage and quick re-
trieval. In the future, we plan to investigate the possibility
of using graph databases, such as neo4j, to allow easier ac-
cess to the follower-friend graph. This would allow us to ex-
pand the size of the dataset without sacrificing performance.

As mentioned earlier, evaluation is an important aspect of
social influence analysis that has been neglected in previous
work. Although StackOverflow proved unsuitable as a test
dataset, in the future we aim to evaluate our methods using

Figure 8: Buzz graph visualization, based on In-
degree (node size) and Pagerank (node color; red =
high, yellow = low)

an appropriate labelled dataset.

On May 27, 2010, Google released a new “reshare” feature
for Buzz which allows users to copy others’ posts into their
own Buzz activity stream, similar to the “retweet” feature
of Twitter. These copied posts retain a link to the orginal
poster, and it is possible to have a chain of “reshares.” So
far, our analysis has been limited to working with just the
follower-followee graph and related metadata. Now, we can
also take into account these “reshare” chains, similar to the
established “information cascades” models. Bakshy, et al.
[1] had access to a dataset in which adoption of new content
was readily perceivable and was thus able to observe actual
cascades of influence rather than the simple potential for
influence. We would like to correlate our recommendations
based on network structure with empirical results such as
these to determine whether network structure alone is effec-
tive in locating influential nodes. This is even more relevant
because they come from what Guo, et al. [10] call “network-
ing oriented” online social networks, and are categorized as
those where content sharing is mainly among friends, and
where the networks are driven by the underlying social re-
lationships.

7. PROJECT CHALLENGES
7.1 Initial Crawler
One of the initial challenges was properly crawling a sub-
graph. The first method attempted was the basic breadth
first search, keeping nodes in a FIFO queue in the order
discovered and expanding all the neighbors of the head of
the queue. This leads to a quick explosion of the number
of nodes and edges in the sampled graph; in just 1500 ex-
panded nodes, the number of total nodes grew to more than
200,000 and the number of edges numbered more than one
million.

This explosion has many implications for the quality of the



sampled subgraph. The rapid growth of nodes upon ex-
panding implies that when limiting the overall size for prac-
ticality purposes, the distance of the nodes expanded to
the initial seed is very small, so intuitively an unfair bias
is present toward the initial seed node. Also, many of the
nodes in the graph are “leaves”, nodes that are were not ex-
panded and thus likely have degree 1, so the majority of the
graph provides little information. These issues were hope-
fully addressed by the randomized pool sampling algorithm
presented previously in the paper.

7.2 Code Performance and Data Management
Significant effort went into choosing the most efficient data
storage configuration. Although we eventually decided on
a traditional MySQL relational database, we also explored
the possibility of using specialized graph databases (such as
Twitter’s FlockDB). Unfortunately, they proved to be too
slow on our hardware.

In addition, crawling performance was also an issue. Crawl-
ing too quickly would result in Google blocking our machine,
but crawling too slowly would mean the crawl would take
an inordinate amount of time. We were also limited in the
rate at which several threads could access the shared queue
of URLs without blocking.
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