Analytical Methods for Network Congestion Control

Steven H. Low
Engineering & Applied Science, Caltech

SYNTHESIS LECTURES ON COMMUNICATION NETWORKS

© These are draft lecture notes. Corrections, comments, questions will be appreciated - please send them to slow@caltech.edu (January 2017).
ABSTRACT

The congestion control mechanism has been responsible for maintaining stability as the Internet scaled up in size, speed, traffic volume, coverage, and complexity by many orders of magnitude over the last three decades. In this monograph we develop methods for the analysis and design of these algorithms. We model Internet traffic as fluids that flow from sources to destinations and model congestion control algorithms as feedback dynamical systems. We show that the model is well-defined, characterize its equilibrium points, and prove their stability. We will use several real protocols for illustration but the emphasis will be on various mathematical techniques for algorithm analysis.

Specifically we are interested in four questions:

1. How to model congestion control algorithms?
2. Are the models well defined?
3. How to characterize the equilibrium points of a congestion control model?
4. How to analyze the stability of these equilibrium points?

We start in Chapter 1 with a summary of classical Internet congestion control protocols. We explain how to model them as dynamical systems using ordinary differential equations and prove the existence and uniqueness of solution trajectories to these equations. This ensures that the models are well-defined. A notable feature of this monograph is the careful treatment of projected dynamics that introduces discontinuity in our differential equations.

We prove in Chapter 2 that the equilibrium point of an arbitrary network under congestion control is the unique optimal solution of a simple convex optimization problem, called network utility maximization. Hence we can interpret congestion control as a distributed algorithm carried out by traffic sources and network resources to maximize utility over the Internet in real time. We explain several implications of this insight.

We present in Chapters 3 through 5 three different methods to study the global asymptotic stability of the equilibrium point, assuming there is no feedback delay. These methods are based on Lyapunov stability theorems, passivity theorems, gradient descent and contraction mapping theorems. The Lyapunov method is the basic tool for proving stability of general nonlinear systems. The passivity method allows one to analyze the stability of an interconnection of multiple dynamical systems in terms of the passivity of the component systems in open loop. The last method treats congestion control as a gradient algorithm for solving the dual of the network utility maximization.

Finally we describe in Chapter 6 the Nyquist stability method for analyzing local stability around the equilibrium point in the presence of feedback delay.

For each topic we first present analytical tools that are useful for our purposes, from convex optimization, to control and dynamical systems, and to projection and contraction theorems. We present proofs for some, but not all, of these classical results to illustrate techniques or concepts that we find particular useful. We then apply these basic tools to
congestion control algorithms and prove rigorously their equilibrium and stability properties.

Even though our development is carried out in the context of congestion control, the set of system theoretic tools employed and the process of understanding a physical system, building mathematical models, and analyzing these models for insights have a much wider applicability than to congestion control.

Many applications, including congestion control, can be modeled by a system of nonlinear differential equations of the form:

\[\dot{x} = (f(x(t)))_{x(t)}^+ \]

where the projection operation \((\cdot)_{x(t)}^+\) on the right-hand side ensures that the state variable \(x(t)\) remains nonnegative. For example \(x(t)\) may represent the sending rates of traffic sources or the prices of an economy. The projection introduces discontinuity to the vector field, even when \(f\) itself is continuous, and complicates analysis. Analytical models often ignore projection even though nonnegative dynamics is prevalent in reality. A notable feature of this monograph is the careful treatment of the projected dynamics. In particular we include detailed proofs that extend standard results on the existence, uniqueness, equilibrium and stability properties of smooth unprojected systems to discontinuous projected systems. Some of the stability proofs for congestion control algorithms modeled by projected dynamics in Chapters 3 and 4 are new. As we will see projection mostly preserves these properties.

KEYWORDS

Communication networks, congestion control, projected dynamics, convex optimization, network utility maximization, Lyapunov stability, passivity, gradient projection algorithm, contraction mapping, Nyquist stability
Contents

1 Congestion control models ... 1
 1.1 Network model ... 1
 1.2 Classical TCP/AQM protocols ... 3
 1.2.1 Window-based congestion control 3
 1.2.2 TCP algorithms ... 6
 1.2.3 AQM algorithms ... 9
 1.3 Models of classical algorithms 11
 1.3.1 Reno/RED .. 12
 1.3.2 Vegas/DropTail ... 14
 1.3.3 FAST/DropTail .. 15
 1.4 A general setup .. 17
 1.4.1 The basic models .. 17
 1.4.2 Limitations and extensions 19
 1.5 Solution of the basic models ... 21
 1.5.1 Existence and uniqueness theorems 22
 1.5.2 Application to TCP/AQM models 26
 1.5.3 Appendix: proof of Lemma 1.3 28
 1.5.4 Appendix: proof of Theorem 1.9 33
 1.6 Bibliographical notes .. 38
 1.7 Problems ... 38

2 Equilibrium structure ... 40
 2.1 Convex optimization ... 40
 2.1.1 Convex program .. 40
 2.1.2 KKT theorem and duality 51
 2.2 Network utility maximization ... 54
Local stability with delay ... 149
6.1 Linear model with feedback delay 149
6.2 Nyquist stability theory .. 150
 6.2.1 LTI system, transfer function and realization 152
 6.2.2 Stability of LTI system ... 157
 6.2.3 Feedback system and loop function 164
 6.2.4 Stability of closed-loop system 167
 6.2.5 Generalized Nyquist stability criterion 172
6.3 Stability of primal algorithm .. 175
6.4 Stability of dual algorithm ... 180
6.5 Appendix: proof of Theorem 6.14 183
6.6 Bibliographical notes .. 184
6.7 Problems .. 185
PURPOSES OF MONOGRAPH

The congestion control mechanism is responsible for maintaining stability as the Internet scales up in size, speed, traffic volume, coverage, and complexity by many orders of magnitude over the last three decades. Our primary goal is to develop a coherent theory of Internet congestion control from the ground up to help understand and design the equilibrium and stability properties of large-scale networks under end-to-end control.

In addition, we have two broader purposes in mind. First we wish to introduce a set of system theoretic tools and illustrate their application to concrete problems. Second we wish to demonstrate in depth the entire process of understanding a physical system, building mathematical models of the system, analyzing the models, exploring the practical implications of the analysis, and using the insights to improve a design. Even though our development is carried out in the context of congestion control, these basic analytical tools and the research process are much more broadly applicable.

The Internet, called ARPANet at the time, was born in 1969 with four nodes. The Transmission Control Protocol (TCP) was published by Vinton Cert and Robert Kahn in 1974 [14], split into TCP/IP (Transmission Control Protocol/Internet Protocol) in 1978, and deployed as a standard on the ARPANet by 1983. An Internet congestion collapse was detected in October 1986 on a 32 kbps link between the University of California Berkeley campus and the Lawrence Berkeley National Laboratory that is 400 yards away, during which the throughput dropped by a factor of almost 1,000 to 40 bps. Two years later Van Jacobson implemented and published the congestion control algorithm in the Tahoe version of TCP [26] based on an idea of Raj Jain, K.K. Ramakrishnan and Dah-Ming Chiu [27]. Before Tahoe, there were mechanisms in TCP to prevent senders from overwhelming receivers, but no effective mechanism to prevent the senders from overwhelming the network. This was not an issue because there were few hosts, until the mid-1980s. By November 1986 the number of hosts was estimated to have grown to 5,089 [1], but most of the backbone links have remained 50 – 56 bps (bits per second) since the beginning of the ARPANet. Jacobson’s scheme adapts sending rates to the congestion level in the network, thus preventing the senders from overwhelming the network.

Jacobson anticipated even in his original paper [26] the network environments in which his algorithm will perform poorly: “... TCP spans a range from 800 Mbps Cray channels to 1200 bps packet radio links.” The algorithm worked very well over a network with relatively low transmission capacity, small delay, and few random packet losses. This was mostly the case in the 1990s, but as the network speed underwent rapid upgrades (see
as Internet exploded onto the global scene beyond research and education, and

![Figure 1: Highest link speed of US Department of Energy’s Energy Sciences Network (ESnet) from 1987 (56 kbps) to 2012 (100Gbps) [2].](image)

as wireless infrastructure was integrated with and mobile services proliferated on the Internet, the strain on the original design started to show. This motivated a flurry of research activities on TCP congestion control in the 1990s. A mathematical understanding of Internet congestion control started in the late 1990s with Frank Kelly’s work on network utility maximization [28]. An intensive effort ensued and lasted for a decade to develop a theory to reverse engineer existing algorithms and understand structural properties of large-scale networks under end-to-end congestion control, systematically design new algorithms based on analytical insights, and deploy some of these innovations in the field. This monograph is a personal account of that effort, focusing on the theory development.

Abstractly we are interested in the following network model

\[
\dot{x} = f(x(t), q(t)), \quad q(t) = R^T p(t)
\]

\[
\dot{p} = g(y(t), p(t)), \quad y(t) = R x(t)
\]

and its variants, where \(x(t), q(t) \in \mathbb{R}^N\), \(p(t), y(t) \in \mathbb{R}^L\), and \(R \in \{0, 1\}^{L \times N}\) for a network with \(N\) nodes and \(L\) links. The graph structure is described by the routing matrix \(R\). The decentralized nature of the system manifests itself in the structure of \(f\) and \(g\):

\[
\dot{x}_i = f_i(x_i(t), q_i(t)), \quad q_i(t) = \sum_{l} R_{il} p_l(t)
\]

\[
\dot{p}_l = g_l(y_l(t), p_l(t)), \quad y_l(t) = \sum_{i} R_{li} x_i(t)
\]
i.e., each node i (link l) updates its state $x_i(t)$ ($p_l(t)$) based only on local variables $(x_i(t), q_i(t))$ ($y_l(t), p_l(t)$). This is a network model that is more general than congestion control and therefore the techniques developed here may be of wider applicability.

ACKNOWLEDGMENTS

The idea of this monograph started when Jean Walrand of Berkeley asked me in early 2004 to write a little book on TCP congestion control for Morgan & Claypool’s Synthesis Lectures on Communication Networks of which he was the inaugural Editor. I agreed but did not start writing until the summer of 2010 when I visited Karl Aström and Anders Rantzer at Lund University in Sweden with my extended family. That was a memorable summer. It was also when my research switched from Internet to power systems, so writing again went onto the backburner after the first draft at Lund. Major revisions were done during the summer of 2015 when I visited Janusz Bialek at Skoltech in Russia to give a short course on analytical methods for Internet and power systems, and during spring 2016 when I visited Jiming Chen, Youxian Sun and Zaiyue Yang at Zhejiang University in China. I thank the tremendous encouragement and patience of Jean Walrand and the gentle prodding of the publisher Michael Morgan over more than a decade. It’s a relief to have paid my debt. I also thank the warm hospitality of my hosts at Lund University, Skoltech, and Zhejiang University.

This monograph is a product of our FAST project at Caltech from 2000–2007 and I have learnt a lot from my collaborators, especially John Doyle, Harvey Newman, and Fernando Paganini, and from the first generation of Netlab members, including Lachlan Andrew, Lijun Chen, Cheng Jin, George Lee, Lun Li, Mortada Mehyar, Christine Ortega, A. Kevin Tang, Jiantao Wang, David Wei, Bartek Wydrowski. I thank the US National Science Foundation (especially Darleen Fisher), Army Research Office, Air Force Office of Scientific Research, Cisco, and Caltech’s Lee Center for Advanced Networking for their generous financial support. Some of us took the effort to deploy our research in the real world through a startup FastSoft. In 2014, FastTCP was accelerating more than 1TB of Internet traffic every second. I experienced first hand the thrill and the challenge in crossing the gap from theory to practice and I thank my colleagues and supporters at FastSoft.

Linqi Guo has worked through the entire draft carefully and corrected numerous errors. I thank him for his meticulous reading and helpful suggestions. Teaching assistants of my networking course (cs/ee 143) at Caltech have contributed some of the exercises, especially Lingwen Gan, Ben Yuan, and Changhong Zhao.

Finally I thank my family, Jenny, Zhi, Zhiyou, and my extended family for their unwavering support and trust.

S. H. Low
Pasadena, CA
NOTATIONS

We collect some of the notational conventions in this book.

Let \mathbb{R}^n, $n \geq 1$, be the set of n-dimensional real vectors, \mathbb{R}_+^n the set of n-dimensional nonnegative real vectors, and $R^{n \times m}$ the set of $n \times m$ real matrices. If x is a vector or matrix then x^T denotes its transpose. By default a vector x is taken to be a column vector and can be specified as either

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \text{or} \quad x = (x_1, \ldots, x_n) \quad \text{or} \quad x = (x_i, i = 1, \ldots, n)$$

If $x_i \in \mathbb{R}^{n_i}$, $i = 1, \ldots, k$, are defined then, unless otherwise specified, x denotes the vector $x := (x_i, i = 1, \ldots, k)$ with dimension $n := \sum_i n_i$. Conversely if a vector x is defined then x_i denotes its ith component in \mathbb{R}^{n_i}. Similarly for functions $f_i : \mathbb{R}^{k_i} \to \mathbb{R}^{m_i}$, $i = 1, \ldots, n$, and $f := (f_i, i = 1, \ldots, n) : \mathbb{R}^K \to \mathbb{R}^M$ where $K := \sum_i k_i$ and $M := \sum_i m_i$.

For a scalar function $f : \mathbb{R}^n \to \mathbb{R}$, $\frac{\partial f}{\partial x}$ is the row vector and $\nabla f(x)$ is the column vector, both with components $\frac{\partial f}{\partial x_i}$. For a vector function $f : \mathbb{R}^n \to \mathbb{R}^n$, $\frac{\partial f}{\partial x}$ is the $n \times n$ Jacobian matrix defined by

$$\left[\frac{\partial f}{\partial x} \right]_{ij} := \frac{\partial f_i}{\partial x_j}$$

Given a set of utility functions $U_i(x_i) : \mathbb{R} \to \mathbb{R}$, $i = 1, \ldots, N$, $U'_i(x_i)$ denote their derivatives. We sometimes use $U : \mathbb{R}^N \to \mathbb{R}$ to denote the sum $U(x) := \sum_i U_i(x_i)$. Since U is separable in x_i we use $U'(x)$ to denote the vector $U'(x) := (U'_i(x_i), i = 1, \ldots, N)$.

For a scalar $a \in \mathbb{R}$, $(a)^+ := \max\{a, 0\}$; for a vector a, $(a)^+$ is defined componentwise, i.e.,

$$(a)^+ := ([a_i]^+, \forall i)$$

For scalars $a, b \in \mathbb{R}$

$$(a)_b^+ := \begin{cases} a & \text{if } a > 0 \text{ or } b > 0 \\ 0 & \text{otherwise} \end{cases}$$

If $a, b \in \mathbb{R}^n$ are vectors of the same dimension then $(a)_b^+$ is defined componentwise, i.e.,

$$[(a)_b^+]_i := (a_i)_b^+ \quad \forall i$$

We use $\| \cdot \|$ to denote an arbitrary norm and $\|x\|_2 := \sqrt{\sum_i x_i^2}$ the Euclidean norm. $B_\delta(x^*) := \{x \|x - x^*\| \leq \delta\}$ is a closed ball around x^* in \mathbb{R}^n unless otherwise specified. $A \subseteq B$ means A is a subset of B and $A \subset B$ means A is a strict subset of B. Given $a_i, i = 1, \ldots, n$, $\text{diag}(a_i, i = 1, \ldots, n)$ denotes the diagonal matrix with a_i as its ith diagonal entry.
CHAPTER 1

Congestion control models

We consider a network under end-to-end congestion control as a deterministic feedback dynamical system described by a set of ordinary differential equations (ODEs). In Chapter 1.1 we present a simple model that treats data packets in the network as fluids that flow from their sources to their destinations. In Chapter 1.2 we describe classical Internet congestion control protocols. In Chapter 1.3 we illustrate how to model these protocols as feedback dynamical systems. In Chapter 1.4 we present general ODE models of congestion control algorithms and discuss limitations and extensions of these models. In Chapter 1.5 we discuss conditions that guarantee the existence and uniqueness of the solution to an ODE model. Finally we show that these conditions are satisfied by the ODE models for congestion control, ensuring that these models are well-defined.

1.1 NETWORK MODEL

A network is an interconnected set of computing, storage, or communication resources shared by competing users. For our purposes, a user is typically not a human, but a traffic flow from a source to a destination through a subset of these resources. A computing or communication resource is characterized by how fast it can process or transmit information, in units of bits per second or packets per second. A storage resource queues up packets while they wait to be processed or transmitted. We will model each resource abstractly as a “link” that consists of a single server with a buffer (waiting space); see Figure 1.1(a). Unless otherwise specified, we assume that the buffer capacity is infinite. We will call the users “sources” or “flows”.

Formally, a network is a set of L links with finite capacities $c = (c_l, l \in L)$ in packets per second (pps). They are shared by a set of N sources. We abuse notation and use L and N to both denote sets and their cardinalities. Each source i uses a set $L_i \subseteq L$ of links. The sets L_i define an $L \times N$ routing matrix R with entries:

$$R_{li} = \begin{cases} 1 & \text{if } l \in L_i \\ 0 & \text{otherwise} \end{cases}$$

We refer to the set L_i of links as source i’s path.

Each source i adapts its transmission rate $x_i(t)$ at time t, in pps, according to an algorithm based on some measure of congestion locally observed at source i. This local measure of congestion, denoted by $q_i(t)$ at time t, summarizes the congestion information...
2.1. CONGESTION CONTROL MODELS

Figure 1.1: (a) A link is modeled as a fluid queue with link capacity c_l, infinite buffer size, input rate $y_l(t)$ at time t, and a congestion price $p_l(t)$ at time t. (b) A network is modeled as a collection of links l shared by a set of sources i with sending rates $x_i(t)$ at time t. The routing matrix in this example is $R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Source i observes the sum $q_i(t) = \sum_l R_{il} p_l(t)$ of link prices in its path and link l observes the aggregate rate $y_l(t) = \sum_i R_{li} x_i(t)$ from sources sharing the link.
1.2. CLASSICAL TCP/AQM PROTOCOLS

on the path of source i. Each link l adapts, implicitly or explicitly, a congestion measure $p_l(t)$ at time t in response to the aggregate input traffic rate $y_l(t)$ locally at link l. Due to its economic interpretation, we call $p_l(t)$ the congestion price at link l or the link price.

We will model below the source algorithms that update the source rates $x_i(t)$ and link algorithms that update link prices $p_l(t)$ by a set of differential and algebraic equations. These local algorithms are interconnected by the routing matrix R that aggregates the link prices $p_l(t)$ on the path of source i into a scalar price $q_i(t)$ observed at source i:

$$q_i(t) := \sum_l R_{li} p_l(t), \quad i \in N$$

The routing matrix R also aggregates the source rates $x_i(t)$ of flows i that traverse link l into an aggregate flow rate $y_l(t)$ at link l:

$$y_l(t) := \sum_i R_{li} x_i(t), \quad l \in L$$

These definitions are illustrated in Figure 1.1(b).

1.2 CLASSICAL TCP/AQM PROTOCOLS

To model the algorithms adapting the source rates and link prices, we start by summarizing the basic mechanism of window-based congestion control. We then describe several classical congestion control protocols. In the next section we will present mathematical models of these algorithms.

1.2.1 WINDOW-BASED CONGESTION CONTROL

TCP (Transmission Control Protocol) is one of the transport layer protocols on the Internet (the other being UDP (User Datagram Protocol)). It provides a reliable bit stream end-to-end from a source to a destination over an unreliable datagram service provided by the IP (Internet Protocol) layer. It hides bit errors, packet losses and reordering in the underlying network and delivers to the destination a bit stream that is free of error, loss or duplicate, in the same order it has been sent by the source. A TCP connection operates in three phases. In phase one a virtual circuit is set up between two end points. In phase two they exchange data and acknowledgment packets. Both end points can send data packets, and receive acknowledgments, regardless of which of them initiated the connection. In phase three, the connection is terminated; either end point can initiate the termination. An application that exchanges a large amount of data, e.g., video streaming, usually spends most of its time in phase two. Congestion control is used in phase two to regulate the sending rate of a sender. This is achieved through a window mechanism, as we now explain.

Consider a sender that wishes to send a large data file, e.g. a video server transferring a movie to a subscriber. The movie is broken into small chunks and control information is
4 1. CONGESTION CONTROL MODELS

added to each chunk to form a *packet*. Examples of control information include sender and receiver information (IP addresses and TCP port numbers), control bits for error detection, sequence number to detect packet loss and to enable the assembly of the original movie at the destination from received packets. These packets are numbered consecutively and then sent into the network one by one from the source towards the destination.\(^1\) An idealized operation is illustrated in Figure 1.2. When a packet is correctly received at the destination

![Figure 1.2: Window control mechanism (idealized). Packets are numbered 1, 2, ..., W is the window size. In the first cycle, the transmission of packet 1 starts at time \(t_0\) and finishes at \(t_0 + \Delta t\). The first bit of packet 1 is received at \(t_1\) and the last bit at \(t_1 + \Delta t\). Immediately packet 2 starts to be transmitted at time \(t_0 + \Delta t\) and received at time \(t_1 + \Delta t\). The ACK for packet 1 is sent at \(t_1 + \Delta t\) and received at the sender at time \(t_0 + \text{RTT}\). The cycle then repeats.

an ACK is sent from the destination towards the source. Figure 1.2 assumes an ACK packet has a negligible size compared with a data packet and incurs zero transmission time.\(^2\) The time between sending of a data packet and the arrival of its ACK at the source is called the round-trip time (RTT). If a packet is lost in the network or incurs an excessive delay, the source will not receive its ACK in time and will retransmit the packet after a timeout. This is the basic mechanism to compensate for bit errors and packet losses.

1TCP is actually a “byte stream” where a packet is identified by the byte numbers the packet contains. This works in the face of packet fragmentation, but it is simpler for our purpose to think of packets being numbered by consecutive integers.

2If both end points send and receive data packets (two-way transfer) then each end point can piggybak its ACK in the data packet it sends to the other end. The header of a TCP packet contains both the field *sequence number* that indexes the data packet an end point originates and the field *ack number* that acknowledges the data packet it has received from the other end.
If the original packet was not lost but only delayed, the receiver will receive duplicate packets. The sequence number in the packet will indicate that the packet is a duplicate and will be discarded. The receiver will send an ACK for each duplicate packet in case the duplicate packets were sent because their ACKs were lost. Duplicate ACKs at the sender will be discarded.

As shown in Figure 1.2, a source keeps a variable called window size \(W \) that determines the maximum number of outstanding packets that are allowed to be transmitted but not yet acknowledged. When the window size is exhausted (i.e., the number of outstanding packets reaches \(W \)), the source must wait for an ACK before sending a new packet. The new packet can be sent only after the next ACK arrives correctly. In reality packets may incur bit errors, they can be dropped in the network, the RTTs can be random and packets may arrive at the destination out of order. Figure 1.2 ignores these complications and depicts an idealized scenario where all packets are of the same size and arrive at the destination correctly with constant RTT. In this idealized scenario the data transfer process is deterministic and periodic where exactly \(W \) packets are sent and acknowledged in each RTT. Moreover, in each RTT, the sender sends packets 1, 2, \ldots, \(W \) back-to-back, waits for their ACKs to return, and these ACKs trigger the next batch of \(W \) packets in the next RTT, and the cycle repeats.

Two features are important for our purpose. The first is the “self-clocking” feature that automatically slows down the source when a network becomes congested and ACKs are delayed. The second is that the window size controls the source sending rate: roughly \(W \) packets are sent every RTT (see Figure 1.2). Before Jacobson’s proposal in 1988 the window size \(W \) was fixed by each TCP connection and the self-clocking feature was the only congestion control mechanism on the Internet. Jacobson’s idea is to dynamically adapt \(W \) to network congestion.

By a congestion control algorithm we mean an algorithm that infers congestion and adjusts \(W \) during phase two of a TCP connection. Since data transfer can be in both directions such an algorithm can be executed in both directions. We will however fix the direction of a TCP connection in our mathematical model so we do not take into account the interaction of data transfers in both directions between the same pair of end points. Even though TCP congestion control is source-based, a congestion control algorithm actually involves two components: a source algorithm that dynamically adjusts sending rate (or window size) in response to congestion in its path, and a link algorithm that updates, implicitly or explicitly, a congestion measure and sends it back, implicitly or explicitly, to sources that use that link.

On the current Internet, the source algorithm is carried out by TCP, and the link algorithm is carried out by (active) queue management (AQM) schemes such as DropTail or RED in e.g. routers. Different protocols use different metrics to measure congestion, e.g. as we will see below, TCP Reno and its variants use loss probability as a congestion
measure, and TCP Vegas and FAST use queueing delay as a congestion measure. Both are implicitly updated at the links and implicitly fed back through end-to-end loss or delay measurements at the sources. The equilibrium and dynamics of the network depend on the TCP/AQM protocol pair.

We now summarize some of the classical TCP protocols (Section 1.2.2) and AQM protocols (Section 1.2.3). We then derive mathematical models of these protocols in Section 1.3. These models will be used in the rest of the book to illustrate various methods to analyze congestion control algorithms.

1.2.2 TCP ALGORITHMS

TCP Tahoe and Reno

The first congestion control algorithm on the Internet was implemented by Jacobson in Tahoe (1988) and Reno (1990) versions of TCP. The window adjustment algorithm is based on an idea of Jain, Ramakrishnan and Chiu that a source should gently probe the network for spare capacity by linearly increasing its window and exponentially reduce its window when congestion is detected. This is called the Additive Increase Multiplicative Decrease (AIMD). Congestion is detected when the source detects a packet loss.

Specifically the Tahoe protocol works as follows. A connection starts cautiously with a small window size of one packet and the source increments its window size by one every time it receives an ACK. This roughly doubles the window size every round-trip time and is called the **slow-start** phase. When the window size reaches a threshold the source enters the **congestion avoidance** phase where it increases its window size by the reciprocal of the current window size every time it receives an acknowledgment. This increases the window size by one packet in each RTT and is referred to as additive increase. The threshold, called the slow-start threshold $ssthreshold$, that determines the transition from **slow-start** to **congestion avoidance** is meant to indicate the available capacity in the network and is adjusted each time a packet loss is detected. On detecting a loss the source sets $ssthreshold$ to half of the current window size, retransmits the lost packet, and re-enters **slow-start** by resetting its window size to one packet.

A packet is deemed lost in one of two ways by TCP Tahoe. The first is if the sender does not receive its ACK within a pre-specified time called a timeout period. The second is if the sender receives three duplicate ACKs. Suppose the sender sends packets 0, 1, 2, 3, 4 back to back. Packet 0 is received correctly, packet 1 is lost, and packets 2, 3, 4 are received correctly. The receiver sends an ACK for packet 0. Each packet 2, 3, 4 that arrives at the receiver triggers a duplicate ACK for packet 0, indicating that the receiver is expecting packet 1. When these three duplicate ACKs arrive at the sender, packet 1 is deemed lost. Often, especially when window size is large, a packet loss is detected through duplicate ACKs much sooner than a timeout.
Two refinements were subsequently implemented in TCP Reno to recover from packet losses more efficiently. Call the time from detecting a loss (through three duplicate ACKs) to receiving the ACK for the retransmitted packet the fast retransmit/fast recover (fr/fr) phase. In TCP Tahoe the window size is frozen in the fr/fr phase. This means that a new packet can be transmitted only a round-trip time later. Moreover the “pipe” from the source to the destination is cleared when the retransmitted packet reaches the receiver and some of the routers in the path may become idle during this period, resulting in a loss of efficiency. The first refinement allows a Reno source to temporarily increment its window size by one on receiving each duplicate ACK while it is in the fr/fr phase. The rationale is that each duplicate ACK signals that a packet has left the network. When the window size becomes larger than the number of outstanding packets, a new packet can be transmitted in the fr/fr phase while it is waiting for a (nonduplicate) ACK for the retransmitted packet. The second refinement essentially sets the window size at the end of the fr/fr phase to half of the window size when fr/fr starts and then enters congestion avoidance directly. Hence slow-start is entered only rarely in TCP Reno when the connection first starts and when a loss is detected by a timeout rather than three duplicate ACKs.

\[
\begin{align*}
\text{for every ACK} & \{ \\
& \quad W \leftarrow \frac{1}{W} \quad \text{(AI)}
\}
\end{align*}
\]

\[
\begin{align*}
\text{for every loss} & \{ \\
& \quad W \leftarrow W/2 \quad \text{(MD)}
\}
\end{align*}
\]

(a) Pseudocode

(b) Window trajectory

Figure 1.3: Congestion avoidance behavior of TCP Reno.

The pseudocode for the congestion avoidance phase of Reno is shown in Figure 1.3(a) and the resulting window trajectory in Figure 1.3(b).

TCP Vegas

TCP Vegas improves upon TCP Reno through three main techniques. The first is a modified retransmission mechanism where timeout is checked on receiving the first duplicate ACK, rather than waiting for the third duplicate ACK (as Reno would), and results in a more timely detection of loss when the clock resolution was low back in the early 1990s (e.g.
1. CONGESTION CONTROL MODELS

500ms). The second technique is a more prudent way to grow the window size during the initial use of slow-start when a connection starts up and it results in fewer losses.

The third technique is a new congestion avoidance algorithm that corrects the oscillatory behavior of Reno. The pseudocode is shown in Figure 1.4(a) and the resulting window trajectory in Figure 1.4(b). Here \(W \) is the current window size, \(RTT \) is the current round-trip time, \(RTT_{\min} \) is the minimum round-trip time observed so far, and \(\alpha < \beta \) are protocol parameters in packets/second.

To understand the pseudocode, consider a source \(i \). The round-trip time \(T_i(t) \) a packet of source \(i \) experiences is the sum of a fixed component \(d_i \) and a variable component \(q_i(t) \), i.e., \(T_i(t) = d_i + q_i(t) \). The fixed component \(d_i \), we call round-trip propagation delay, accounts for signal propagation time and fixed processing time along its path. The variable component \(q_i(t) \) accounts for queueing delay at routers in its path. The quantity \(RTT_{\min}(\min_i T_i(t)) \) is an estimate of a source’s round-trip propagation delay \(d_i \). Let \(w_i(t) \) be source \(i \)’s window size, \(x_i(t) \) be its sending rate, and \(d_i \) be its round-trip propagation delay. Then the pseudocode in Figure 1.4(a) increments or decrements the window size by 1 packet according as (multiplying both sides of the conditionals by \(d_i \))

\[
\begin{align*}
\text{for every ACK} & \{ \\
& \quad \text{if } w_i/RTT_{\min} - W/RTT < \alpha \text{ then } W += 1/w \\
& \quad \text{if } w_i/RTT_{\min} - W/RTT > \beta \text{ then } W -= 1/w \\
\} \\
\text{for every loss} & \{ \\
& \quad W = W/2 \\
\}
\end{align*}
\]

(a) Pseudocode

The quantity \(x_i(t)d_i \) represents the number of source \(i \)’s packets propagating in the communication channel (e.g. fiber optic cables) from source to destination. Hence the quantity \(w_i(t) - x_i(t)d_i \) represents the number of \(i \)’s packets queued at some routers in \(i \)’s path. A Vegas source estimates the number of its own packets buffered in the path and tries to keep this number between \(\alpha := \alpha_i d_i \) (originally 1 packet) and \(\beta := \beta_i d_i \) (originally 3 packets) by adjusting its window size. The window size is incremented or decremented by approximately 1 packet in each round-trip time according as the current estimate is less than \(\alpha \) or greater than \(\beta \). Otherwise the window size is unchanged. The rationale is that each source should maintain a small number of its own packets in the pipe to take advantage of extra capacity when it becomes available.

Figure 1.4: Congestion avoidance behavior of TCP Vegas.
Another interpretation of Vegas observes that
\[w_i(t) - x_i(t)d_i = x_i(t)(T_0(t) - d_i) = x_i(t)q_i(t) \]
where \(q_i(t) \) is the round-trip queueing delay. Then the conditional in the pseudocode of Vegas becomes
\[x_i(t) < \alpha_i \frac{d_i}{q_i(t)} \quad \text{or} \quad x_i(t) > \beta_i \frac{d_i}{q_i(t)} \]
i.e., a Vegas source sets its rate to be proportional to the ratio of its round-trip propagation delay to queueing delay, the proportionality constant being between \(\alpha_i \) and \(\beta_i \). The more congested its path is, the higher the queueing delay and hence the lower the rate.

TCP FAST

TCP FAST can be thought of as a high-speed version of Vegas. The pseudocode for the congestion avoidance phase is shown in Figure 1.5. Both use queueing delay as the measure of congestion (price) and both have the same equilibrium point. Vegas works well when the network is slow or small, but its response is too sluggish in high speed long-distance networks because, regardless of how far the network state is from its equilibrium, Vegas adjusts the window by the same amount (one packet per RTT). In contrast the size of the window adjustment in FAST is proportional to the distance of the network state from its equilibrium. It converges rapidly towards the equilibrium when it is far away and smooths into the equilibrium when it is close. See Chapter 1.3 for more details.

1.2.3 AQM ALGORITHMS

DropTail

Congestion control on the Internet is still predominantly source-based in that the link algorithm is implicit. A link (router) simply drops a packet that arrives at a full buffer. This is called DropTail (or Tail Drop) and the implicit link algorithm is carried out by the queue process. The congestion measure it updates depends on the TCP algorithm.

For TCP Reno and its variants, the congestion measure is packet loss probability. The end-to-end loss probability is observed at the source and is a measure of congestion on the
10 1. CONGESTION CONTROL MODELS

end-to-end path. For TCP Vegas and FAST the congestion measure turns out to be link queueing delay when first-in-first-out service discipline is used. The congestion measure of a path is the sum of queueing delays at all constituent links.

RED

RED (Random Early Detection) is an alternative way to generate packet loss as a congestion measure. Instead of dropping only at a full buffer, RED maintains an exponentially weighted queue length and drops (or marks) packets with a probability that increases with the weighted queue length. When the weighted queue length is less than a minimum threshold no arrival packets are dropped. When it exceeds a maximum threshold all packets are dropped. When it is in between, a packet is dropped with a probability that is a piecewise linear and increasing function of the weighted queue length. See Figure 1.6(a).

![Figure 1.6: Loss probabilities of RED and REM as functions of (weighted) queue length.](image)

REM (Random Exponential Marking) consists of two simple ideas. First, in RED, the link price (loss probability) \(p_l(t) \) depends on the queue length \(b_l(t) \). As the number of flows sharing the link increases the steady-state price and hence queue length must also increase, leading to large delay. REM in contrast maintains a steady-state queue length around a target regardless of the number of flows sharing the link, thus decoupling the steady-state link delay from its congestion price. It achieves this by adjusting the link price \(p_l(t) \) according to

\[
\begin{align*}
\dot{p}_l &= (\alpha_t \left(y_l(t) - c_l\right) + \beta_t \left(b_l(t) - b_l^0\right))_{p_l(t)}^+ \\
\dot{b}_l &= (y_l(t) - c_l)_{b_l(t)}^+
\end{align*}
\]
1.3. MODELS OF CLASSICAL ALGORITHMS

Even though TCP is a source-based mechanism, we must consider congestion control as a feedback system where source rates \(x(t) \) interact with link prices \(p(t) \). Different protocols choose different algorithms to adapt \((x(t), p(t)) \). In this section we present mathematical models of the protocol pairs Reno/RED, Vegas/DropTail, and FAST/DropTail. The model captures the congestion avoidance phase of these protocols.

where

\[
(a)_b^+ := \begin{cases}
 a & \text{if } a > 0 \text{ or } b > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

where \(y_l(t) \) and \(c_l \) are respectively the input rate and link capacity at link \(l \), and \(b_l(t) \) and \(b^0_l \geq 0 \) are respectively the queue length and its target at link \(l \). Hence \(y_l(t) - c_l \) is a rate mismatch and \(b_l(t) - b^0_l \) is a queue mismatch. REM increases \(p_l(t) \) if the weighted sum of the rate mismatch and queue mismatch is positive, and decreases it otherwise. In equilibrium where \(\dot{p} = 0 \), REM matches rate and queue length to their target values:

\[
y_l^* = c_l \quad \text{and} \quad b_l^* = b^0_l
\]

unless \(l \) is not a bottleneck link in which case \(p_l = 0, \ y_l^* \leq c_l \) and \(b_l^* = 0 \).

The second idea of REM is a novel way to convey the link prices \(p_l(t) \) to the sources through loss probability. Specifically REM explicitly embeds the sum of link prices along a path into the end-to-end loss probability that can be observed at the source, as follows. Like RED, REM drops a packet that arrives at a link with a probability independently of all other packets. Unlike RED whose loss probability is a piecewise linear function of the weighted queue length, the loss probability \(\tilde{p}_l(t) \) of REM however is exponential in the link price (see Figure 1.6(b)):

\[
\tilde{p}_l(t) := 1 - \phi^{-p_l(t)}
\]

Then the end-to-end probability \(\hat{q}_i(t) \) that a packet of source \(i \) is lost in its path is exponential in the end-to-end price \(q_i(t) = \sum_l R_{li} p_l(t) \):

\[
\hat{q}_i(t) := 1 - \prod_l (1 - \tilde{p}_l(t))^{R_{li}} = 1 - \phi^{-q_i(t)}
\]

Hence if source \(i \) estimates its end-to-end loss probability \(\hat{q}_i(t) \) it can compute the end-to-end price \(q_i(t) \) as

\[
q_i(t) = -\log_\phi (1 - \hat{q}_i(t))
\]
12 1. CONGESTION CONTROL MODELS

1.3.1 RENO/RED

We only model the average behavior of the additive increase multiplicative decrease (AIMD) algorithm used to control the window size and does not differentiate between TCP Reno and its variants such as NewReno, SACK, etc. All these protocols (henceforth referred to as “Reno”) increase the window by one packet every round-trip time if there is no loss in the round-trip time, and halve the window otherwise.

Let \(w_i(t) \) be the window size of source \(i \). Let \(T_i \) be the round-trip time (propagation plus queuing delay), which we assume to be constant. Let \(x_i(t) := w_i(t)/T_i \) be the source rate at time \(t \). The time unit is on the order of several round-trip times and source rate \(x_i(t) \) should be interpreted as the average rate over this timescale. Dynamics smaller than the timescale of a round-trip time is not captured by the fluid model. Let \(p_l(t) \) be the loss (or marking) probability at link \(l \) at time \(t \). We make the key assumption that the end-to-end loss (or marking) probability \(q_i(t) \) to which source algorithm reacts is the sum of link loss probabilities:

\[
q_i(t) = \sum_l R_{li} p_l(t).
\]

This is reasonable when \(p_l(t) \) are small, in which case

\[
q_i(t) \approx 1 - \prod_l (1 - p_l(t))^{R_{li}} \approx \sum_l R_{li} p_l(t)
\]

Consider the pseudocode of AIMD in Figure 1.3(a). In period \(t \) it transmits at rate \(x_i(t) \) packets per unit time and receives (positive and negative) ACKs at approximately the same rate, assuming every packet is acknowledged. Hence on average source \(i \) receives \(x_i(t)(1 - q_i(t)) \) number of positive ACKs per unit time and each positive ACK increases the window \(w_i(t) \) by \(1/w_i(t) \). It receives on average \(x_i(t)q_i(t) \) negative ACKs (losses) per unit time and each halves the window. Hence the net change to the window in period \(t \) is roughly

\[
\dot{w}_i = x_i(t)(1 - q_i(t)) \frac{1}{w_i(t)} - x_i(t)q_i(t) \frac{w_i(t)}{2}
\]

Since \(T_i \) are assumed to be constant the sending rate \(x_i(t) := w_i(t)/T_i \) has the same dynamics as the window \(w_i(t) \) except for a constant scaling. Hence we will model the dynamics of the sending rate directly, as:

\[
\dot{x}_i = \left(\frac{1 - q_i(t)}{T_i^2} - \frac{1}{2} q_i(t) x_i^2(t) \right)_+^{x_i(t)}
\]

(1.1a)

where

\[
(a)_+^b := \begin{cases}
 a & \text{if } a > 0 \text{ or } b > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

The quadratic term in (1.1a) captures the property that, if the rate doubles, the multiplicative decrease occurs at twice the frequency with twice the amplitude. The operation \((\cdot)^+_{x_i(t)}\)
ensures that \(x_i(t)\) stays nonnegative, i.e., \(\dot{x}_i\) stays 0 when \(x_i(t) = 0\) and the quantity in the bracket is negative.

There are variants of this model. One is that the window increases deterministically by 1 every round-trip time. This modifies the additive increase term in (1.1a) into:

\[
\dot{x}_i = \left(\frac{1}{T^2_i} - \frac{1}{2} q_i(t) x_i^2(t) \right)_{x_i(t)}^+ \tag{1.1b}
\]

It is approximately the same as (1.1a) when the loss probabilities \(p_l(t)\) are small.

Another variant is that, instead of halving the window on each negative acknowledgment, the window is halved once in each round-trip time that contains one or more negative acknowledgments. This modifies the multiplicative decrease term in (1.1a) into:

\[
\dot{x}_i = \left(1 - \frac{q_i(t)}{T^2_i} - \frac{1}{2T_i} q_i(t) x_i(t) \right)_{x_i(t)}^+ \tag{1.1c}
\]

RED updates the queue length \(b_l(t)\) according to:

\[
b_l = (y_l(t) - c_l)_{b_l(t)}^+ \tag{1.1d}
\]

The queue length \(b_l(t)\) is an internal variable and (a “gentle” version of) RED drops (or marks) a packet with a probability \(p_l(t)\) that is a piecewise linear increasing function of \(b_l(t)\) (see Figure 1.6(a)):

\[
p_l(t) = \begin{cases}
0, & b_l(t) \leq b_1 \\
\rho_1 (b_l(t) - b_1), & b_1 \leq b_l(t) \leq b_2 \\
\rho_2 (b_l(t) - b_2) + m, & b_2 \leq b_l(t) \leq b_3 \\
1, & b_l(t) \geq b_3
\end{cases} \tag{1.1d}
\]

where \(m \in (0,1)\) is the nonzero loss probability at the break point,

\[
\rho_1 = \frac{m}{b_2 - b_1} \quad \text{and} \quad \rho_2 = \frac{1 - m}{b_3 - b_2}
\]

In summary the dynamical system that models Reno/RED consists of equations (1.1).

The AQM model (1.1c)–(1.1d) contains internal variables \(b_l(t)\) that are not observed at TCP sources. We can eliminate \(b_l(t)\) and derive the dynamics of \(p_l(t)\) from (1.1c) (see

\[
\dot{r}_t = -\alpha_l (r_l(t) - b_l(t))
\]

where \(\alpha_l \in (0,1)\) is an exponential weight. Then the loss probability \(p_l(t)\) is given by (1.1d) with \(b_l(t)\) replaced by \(r_l(t)\).
1. CONGESTION CONTROL MODELS

Figure 1.6(a):

\[\dot{p}_l(t) = \begin{cases} \frac{p_1(y_l(t) - c_l)}{p_l(t)}, & 0 \leq p_l(t) \leq m \\ \frac{p_2(y_l(t) - c_l)}{p_l(t) - 1}, & m < p_l(t) \leq 1 \end{cases} \]

where

\[(a)_b^+ := \begin{cases} a & \text{if } a > 0 \text{ or } b > 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad (a)_b^- := \begin{cases} a & \text{if } a < 0 \text{ or } b < 0 \\ 0 & \text{otherwise} \end{cases} \]

Then Reno/RED can be modeled by ordinary differential equations (1.1a)(1.2) without internal variables and algebraic equations. Most of our analysis will be on models of this type.

1.3.2 VEGAS/DROPTAIL

Consider the pseudocode in Figure 1.4(a) of the congestion avoidance mechanism of TCP Vegas. Let \(d_i \) denote the round-trip propagation delay of source \(i \), \(q_i(t) \) the round-trip queueing delay, \(T_i(t) := d_i + q_i(t) \) the round-trip time, \(w_i(t) \) the window size and \(x_i(t) := \frac{w_i(t)}{T_i(t)} \) the sending rate of flow \(i \). For simplicity assume \(\alpha = \beta \). As discussed earlier the conditional in the pseudocode is

\[w_i(t) - x_i(t) d_i < \alpha_i d_i \quad \text{or} \quad w_i(t) - x_i(t) d_i > \alpha_i d_i \]

The quantity \(x_i(t)d_i \) represents the number of source \(i \)'s packets propagating in the communication channel (e.g. fiber optic cables) from source to destination, and the quantity \(w_i(t) - x_i(t)d_i \) represents the number of \(i \)'s packets buffered at the routers in its path. A Vegas source estimates the number of its own packets buffered in the path and tries to keep this number at

\[w_i(t) - x_i(t) d_i = \alpha_i d_i \]

i.e., \(x_i(t)q_i(t) \) is the number of \(i \)'s own packets buffered in the queues in its path, we model the window dynamics as:

\[\dot{w_i} = \frac{1}{d_i + q_i(t)} \text{sign} (\alpha_i d_i - x_i(t)q_i(t))_+^{w_i(t)} \]

\[x_i(t) = \frac{w_i(t)}{d_i + q_i(t)} \]

where \(\text{sign}(z) \) is \(-1\) if \(z < 0 \), \(0 \) if \(z = 0 \), and \(1 \) if \(z > 0 \). The operation \((\cdot)_+^{w_i(t)}\) ensures that \(w_i(t) \geq 0 \). Hence (1.3a) says that the window is adjusted by 1 packet per round-trip time by comparing the number \(x_i(t)q_i(t) \) of packets buffered in its path with the target \(\alpha_i d_i \). In equilibrium each source \(i \) maintains \(\alpha_i d_i \) packets in its path.
Hence Vegas uses as its congestion price the queueing delay at a link l

$$p_l(t) := \frac{b_l(t)}{c_l}$$

where $b_l(t)$ is the queue length and evolves according to (1.1c). The price dynamics is therefore (dividing both sides of (1.1c) by c_l):

$$\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)_{p_l(t)}^+$$

(1.3c)

where $y_l(t) := \sum_i R_{li} x_i(t)$. In summary the dynamical system that models Vegas/DropTail consists of equations (1.3).

The TCP model (1.3a)–(1.3b) contains algebraic equations. To reduce the model to ordinary differential equations, we can eliminate $x(t)$ by substituting (1.3b) into (1.3a)(1.3c) to obtain:

$$\dot{w}_i = \frac{1}{d_i + q_i(t)} \text{sign} \left(\alpha_i d_i - \frac{w_i(t) q_i(t)}{d_i + q_i(t)} \right)^{+}_{w_i(t)}$$

$$\dot{p}_l = \frac{1}{c_l} \left(\sum_i \frac{R_{li} w_i(t)}{d_i + q_i(t)} - c_l \right)_{p_l(t)}^+$$

1.3.3 FAST/DROPTAIL

TCP Reno and Vegas were designed in the late 1980s and early 1990s when network capacities are much smaller and a large majority of network traffics are relatively local. The window adjustment by one packet per round-trip time was adequate then, but much too slow as networks scale up in capacity and geographical coverage. This has motivated a large effort in the 2000s to develop an understanding of the mathematical structure of congestion control and a theory-aided design approach where performance analysis was done before, as opposed to after, implementation and deployment. TCP FAST came out of that effort.

Even though the implementation of FAST is very different from that of Vegas (compare their pseudocodes in Figure 1.5 and Figure 1.4(a)), the FAST design was inspired by the underlying mathematical structure of Vegas. In particular FAST attains the same equilibrium of Vegas and therefore achieves proportional fairness (see Chapter 2). It speeds up the dynamics of Vegas by adjusting the window size by an amount proportional to the deviation of the queue length in the path from its target value, instead of by one packet per round-trip time as Vegas does in (1.3a).

Specifically consider the FAST pseudocode in Figure 1.5. It can be modeled by

$$\dot{w}_i = \gamma \left(\alpha_i - x_i(t) q_i(t) \right)^{+}_{w_i(t)}$$

$$x_i(t) = \frac{w_i(t)}{d_i + q_i(t)}$$

(1.4a)

(1.4b)
1. CONGESTION CONTROL MODELS

where \(q_i(t) := \sum_l R_{li} p_l(t) \). Like Vegas, FAST also uses as its congestion price the queueing delay at a link \(l \) whose dynamics is described by:

\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)^{+}_{p_l(t)} \tag{1.4c}
\]

where \(y_l(t) := \sum_i R_{li} x_i(t) \). In summary the dynamical system that models FAST/DropTail consists of equations (1.4).

FAST can be interpreted as a high-speed version of Vegas in the following sense. Compare (1.3a) for Vegas and (1.4a) for FAST (replacing \(\alpha_i d_i \) in (1.3a) by \(\alpha_i \)). While Vegas increments/decrements the window by 1 packet depending on the sign of \(\alpha_i - x_i(t)q_i(t) \), FAST updates the window by an amount proportional to \(\alpha_i - x_i(t)q_i(t) \). For high-speed long-distance networks the magnitude of \(\alpha_i - x_i(t)q_i(t) \) can be big during transient, in which case FAST closes the gap faster than Vegas.

The FAST model (1.4a)–(1.4b) contains algebraic equations. As for Vegas, we can eliminate \(x(t) \) by substituting (1.4b) into (1.4a) to obtain a model consisting of ordinary differential equations:

\[
\dot{w}_i = \gamma \left(\alpha_i - \frac{w_i(t)q_i(t)}{d_i + q_i(t)} \right)^{+}_{w_i(t)} \tag{1.5a}
\]
\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)^{+}_{p_l(t)} \tag{1.5b}
\]

An alternative model is to replace the dynamic link model (1.5b) by a static model where the link queueing delay vector \(p(t) \) is determined implicitly by the window sizes \(w(t) \):

\[
\dot{w}_i = \gamma \left(\alpha_i - \frac{w_i(t)q_i(t)}{d_i + q_i(t)} \right)^{+} \tag{1.6a}
\]
\[
\sum_i R_{li} \frac{w_i(t)}{d_i + q_i(t)} \begin{cases}
= c_l & \text{if } p_l(t) > 0 \\
\leq c_l & \text{if } p_l(t) = 0
\end{cases} \tag{1.6b}
\]

It can be proved that the model (1.6) is well defined: given \(w(t) \), there is a unique queueing delay vector \(p(t) \) that satisfies (1.6b) provided \(R \) has a full row rank.

Another alternative model is to replace the dynamic source model (1.5a) by a static model (obtained by setting \(\dot{w} = 0 \) in (1.4a) and using \(x_i(t) = w_i(t)/(d_i + q_i(t)) \)):

\[
\dot{p}_l = \frac{1}{c_l} \left(y_l(t) - c_l \right)^{+}_{p_l(t)} \tag{1.7a}
\]
\[
x_i(t) = \frac{\alpha_i}{q_i(t)} \tag{1.7b}
\]
1.4 A GENERAL SETUP

1.4.1 THE BASIC MODELS

We have seen in Chapter 1.3 that one can model a physical system in multiple ways, each making different assumptions. All the models there take the form of differential algebraic equations:

\[
\begin{align*}
\dot{x}_i &= \tilde{f}_i(x_i(t), \tilde{x}_i(t), q_i(t)), & i \in \mathbb{N} \\
x_i(t) &= f(x_i(t), \tilde{x}_i(t), q_i(t)), & i \in \mathbb{N} \\
\dot{\tilde{p}}_l &= \tilde{g}_l(y_l(t), p_l(t), \tilde{p}_l(t)), & l \in \mathcal{L} \\
p_l(t) &= g(y_l(t), p_l(t), \tilde{p}_l(t)), & l \in \mathcal{L}
\end{align*}
\]

where \((\tilde{x}(t), \tilde{p}(t))\) are (generally vector) internal variables and \((x(t), p(t))\) are source rates and link prices. The most important feature of this model is its decentralized nature: user \(i\) adapts its rate \(x_i(t)\) based only on local information \((x_i(t), \tilde{x}_i(t))\) and the locally observed congestion measure \(q_i(t)\), and link \(l\) adapts its price \(p_l(t)\) based only on local information \((y_l(t), p_l(t), \tilde{p}_l(t))\). We represent this set of differential algebraic equations in vector form as

\[
\begin{align*}
\dot{x} &= f(x(t), \tilde{x}(t), q(t)) \\
x &= \tilde{f}(x(t), \tilde{x}(t), q(t)) \\
\dot{p} &= g(y(t), p(t), \tilde{p}(t)) \\
p &= \tilde{g}(y(t), p(t), \tilde{p}(t))
\end{align*}
\]

where \(q(t) = R^T p(t)\), \(y(t) = Rx(t)\). As we have seen in Chapter 1.3 above, while including internal variables \((\tilde{x}(t), \tilde{p}(t))\) is convenient for modeling, it is usually easy for practical protocols to eliminate these internal variables to obtain a model involving only \((x(t), p(t))\). Such a model is usually more convenient for analysis.

Our analysis will therefore focus on the following three special cases without the internal variables.

1. **Primal algorithms.** This is the class of algorithms that have dynamics (memory) in the source rates (or window sizes) but not in the link prices:

\[
\begin{align*}
\dot{x} &= f(x(t), q(t)) \quad (1.8a) \\
p &= g(y(t), p(t)) \quad (1.8b)
\end{align*}
\]

2. **Dual algorithms.** This is the class of algorithms that have dynamics in the link prices but not in the source rates (or window sizes):

\[
\begin{align*}
\dot{p} &= g(y(t), p(t)) \quad (1.9a) \\
x &= f(x(t), q(t)) \quad (1.9b)
\end{align*}
\]
3. Primal–dual algorithms. This is the class of algorithms with dynamics in both source rates and link prices:

\[
\begin{align*}
\dot{x} &= f(x(t), q(t)) \quad \text{(1.10a)} \\
\dot{p} &= g(y(t), p(t)) \quad \text{(1.10b)}
\end{align*}
\]

We will refer to any of (1.8), (1.9), (1.10) together with

\[
q(t) = R^T p(t) \quad \text{and} \quad y(t) = R x(t)
\]

(1.11) as the basic model. The structure of these models is illustrated in Figure 1.7. For examples of all three basic models, see the models of FAST/DropTail in Chapter 1.3.3.

For primal algorithms, we can often express \(p(t) \) in terms of \(x(t) \) using (1.8b) because the Jacobian \(\frac{\partial g}{\partial p} - I \) is often nonsingular for TCP/AQM models. Substituting \(p(t) = p(x(t)) \) as a function of \(x(t) \) into (1.8a)(1.11) then reduces the primal algorithm into a set of ODEs in \(x(t) \). Similarly for dual algorithms, we can often express \(x(t) \) in terms of \(p(t) \) using (1.9b) and reduce the dual algorithm into a set of ODEs in \(p(t) \) (substitute \(x(p(t)) \) into (1.9a)(1.11)). Therefore all three basic models can be described by ODEs. We hence often cast our discussion in terms of primal–dual algorithms (1.10) as the prototypical model, knowing that it applies to all three models.

Since the source rates \(x(t) \) and prices \(p(t) \) are nonnegative, hidden in the notation of the functions \((f, g) \) is the projection to the nonnegative quadrant. We sometimes make this
explicit by writing, instead of (1.10):

\[\dot{x} = (f(x(t), q(t)))^+_{x(t)} \]
\[\dot{p} = (g(y(t), p(t)))^+_{p(t)} \]

where for any vectors \(a, b \in \mathbb{R}^n \), the vector \((a)^+_b \) is defined componentwise, i.e., for all \(i = 1, \ldots, n \),

\[[(a)^+_b]_i := (a)^+_b := \begin{cases}
 a_i & \text{if } a_i > 0 \text{ or } b_i > 0 \\
 0 & \text{otherwise}
\end{cases} \quad (1.12) \]

As we will see later in this monograph, the projection on the right-hand side of the differential equations mostly preserves the existence, uniqueness, equilibrium and stability properties of the unprojected system, but the analysis is considerably more complicated because of the discontinuity introduced by the projection. A notable feature of this monograph is the careful treatment of the projected dynamics.

We are interested in three questions:

1. Under what condition does the basic model (1.10) have a unique solution \((x(t), p(t), t \geq 0)\), given any initial point \((x(0), p(0))\)?

2. Does equilibrium of (1.10) exist? Is it unique? How do we characterize it?

3. Is an equilibrium of (1.10) stable?

We answer question 1 in this Chapter, question 2 in Chapter 2, and question 3 in Chapters 3 through 6.

1.4.2 LIMITATIONS AND EXTENSIONS

We now discuss some limitations of our fluid models and various extensions.

1. **No feedback delay.** The basic models ignore feedback delay, i.e., they assume that a change in a link price \(p_l(t) \) is instantly observed at all the sources that use that link, and a change in a source rate \(x_i(t) \) affects the aggregate flow rates at all the links in the path of the source. In reality, of course, there is feedback delay due to signal propagation between links and sources, and due to packet queueing and processing in the network. Feedback delay can be modeled by replacing (1.11) with

\[q_i(t) = \sum_l R_{li}p_l(t - \tau^h_{li}), \quad i \in N \]
\[y_l(t) = \sum_i R_{li}x_i(t - \tau^f_{li}), \quad l \in L \]
Here τ^b_l models the backward delay from link l to source i and τ^f_i models the forward delays from source i to link l, both assumed to be constant. It is the time it takes for a change in the price at link l to affect the rate at source i, and the time it takes for a change in the rate at source i to affect the price at link l, respectively.

We will use this delayed model in Chapter 6 to study linear stability in the presence of feedback delay.

2. **Window control.** A window-based control does not adapt its sending rate $x_i(t)$ directly, but rather its window size $w_i(t)$. This is modeled using the relationship between $x_i(t)$ and $w_i(t)$

$$x_i(t) = \frac{w_i(t)}{T_i(t)} = \frac{w_i(t)}{d_i + q_i(t)}$$

as in (1.3) for Vegas and in (1.4) for FAST. For convenience however we often assume the round-trip time T_i to be constant and model the dynamics of $x_i(t)$ directly as in (1.1) for Reno.

3. **Round-trip timescale.** The basic models ignore flow arrivals and departures and fix set of flows and their routing matrix. They focus on the network dynamics at the round-trip timescale. This amounts to ignoring short-duration TCP flows.

4. **Heterogeneous protocols.** The basic models assume that, while different sources i can adapt their rates using different algorithms f_i, they all react to the same type of congestion prices $p_l(t)$. For instance all sources react to packet loss probabilities in their paths as in Reno, or all sources react to packet delay in their paths as in Vegas or FAST. If sources that use different types of congestion prices (e.g. Reno and Vegas) share the same network, the network behavior can be much more complicated. For instance while a network of homogeneous sources typically has a unique equilibrium point, a network of heterogeneous sources may not.

5. **Deterministic fluid.** We model traffic as a deterministic fluid and ignore randomness in, e.g. packet processing and queueing times, packet arrival process, or flow arrivals and departures.

6. **Queue output process.** The basic models assume a flow maintains its rate along its path so that every link in its path sees the source rate. In reality however as a flow goes through a queue, its output rate depends on the buffering process and is generally different from its input rate, except when the network is in a steady state where all queues are stabilized.
1.5 SOLUTION OF THE BASIC MODELS

The ODE model (1.10) describes the protocol action in the congestion avoidance phase. In this section we discuss conditions on the TCP/AQM models (f, g) that guarantee the existence of a unique solution trajectory $(x(t), p(t), t \geq 0)$ given any initial point $(x(0), p(0))$. We first summarize sufficient conditions for the existence and uniqueness of the solution to general ODE systems. We then illustrate how to use these results to prove that the TCP/AQM models of Chapter 1.3 are well defined.

Consider a system of projected ordinary differential equations:

\[
\begin{align*}
\dot{x} &= (f(x(t)))^+_{x(t)}, & t \geq 0 \\
\dot{x}(0) &= x_0 \geq 0 \text{ given}
\end{align*}
\]

(1.13a)

where $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$, and the projection $(f(x))^+_{x(t)}$ is defined in (1.12). Even though the projection function $g(a, b) := (a)^+_b$, a, b in \mathbb{R}, is continuous in a given any b, it is discontinuous in b for $a < 0$. To visualize the effect of projection see Figure 1.8. Therefore the right-hand side of (1.13a) is discontinuous in $x(t)$ even if f is continuous. It turns out that this is a simple type of discontinuity in that the projection preserves the existence and uniqueness properties, i.e., the conditions we describe below that guarantee the existence of a unique solution to unprojected dynamics $\dot{x} = f(x(t))$ will also guarantee the existence of a unique solution to projected dynamics $\dot{x} = (f(x(t)))^+_{x(t)}$.

Figure 1.8: (a) The function $g(a, b) = (a)^+_b$ is discontinuous along the line $b = 0$ for $a < 0$. (b) The function $f(x) := (x - 1)^+_x$ is discontinuous at $x = 0$.

\[\text{We abuse notation to use } f \text{ to denote either a generic function or a TCP algorithm and } x \text{ to denote either a generic variable or source rates, depending on the context.}\]
22 1. CONGESTION CONTROL MODELS

We hence first consider a system of ODEs without projection:

\[
\begin{align*}
\dot{x} &= f(x(t)), \quad t \geq 0 \quad (1.14a) \\
x(0) &= x_0 \quad \text{given} \quad (1.14b)
\end{align*}
\]

where \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \). We explain different notions of Lipschitz continuity. We then state Lipschitz conditions on \(f \) that guarantee the existence and uniqueness of solutions to the unprojected dynamics (1.14). Finally we state precisely the result that projection preserves these properties.

1.5.1 EXISTENCE AND UNIQUENESS THEOREMS

Definition 1.1 Lipschitz continuity. The function \(f(x) \) is said to be:

1. **locally Lipschitz at** \(x_0 \) if there exist \(r = r(x_0) > 0 \) and \(L = L(x_0) \) such that \(\|f(x) - f(y)\| \leq L\|x - y\| \) for all \(x, y \in B_r(x_0) \).

2. **locally Lipschitz on a domain** \(D \subseteq \mathbb{R}^n \) if it is locally Lipschitz at each point in \(D \).

3. **Lipschitz on a domain** \(D \) if the Lipschitz constant \(L \) is uniform at each point in \(D \), i.e., there exists \(L \) such that \(\|f(x) - f(y)\| \leq L\|x - y\| \) for all \(x, y \in D \).

4. **globally Lipschitz** if it is Lipschitz on \(D = \mathbb{R}^n \), i.e., there exists \(L \) such that \(\|f(x) - f(y)\| \leq L\|x - y\| \) for all \(x, y \in \mathbb{R}^n \).

Being Lipschitz is stronger than continuity. Here \(\| \cdot \| \) can be any norm in \(\mathbb{R}^n \), such as \(p \)-norms defined by:

\[
\begin{align*}
\|x\|_p &:= (|x_1|^p + \cdots + |x_n|^p)^{1/p}, \quad 1 \leq p < \infty \\
\|x\|_{\infty} &:= \max_i |x_i|
\end{align*}
\]

The three most commonly used norms are \(\|x\|_1 \), \(\|x\|_2 \) (Euclidean norm), and \(\|x\|_{\infty} \). Since all norms are equivalent in \(\mathbb{R}^n \), Lipschitz continuity can be defined using any norm. Different choices of norms differ only in their Lipschitz constants.

Example 1.2

\(^5\)A **domain** is an open and connected set.
1. \(f(x) = x^2 \) is Lipschitz on any bounded domain of \(\mathbb{R} \), but only locally Lipschitz on \(\mathbb{R} \). To see this note that, by the mean value theorem, for any finite \(x, y \in \mathbb{R} \) there exists \(x \leq z \leq y \) such that

\[
|f(x) - f(y)| = |f'(z)||x - y| \leq \sup_{z \in C} |x - y| \leq L|x - y|
\]

where \(\sup_{z \in C} (2z) \) is finite for any bounded set \(C \subset \mathbb{R} \) and \(L \) is an upper bound.

2. \(f(x) = x^{-1} \) is locally Lipschitz everywhere in \(\mathbb{R} \) except at \(x = 0 \) and Lipschitz on any compact set \(C \) that does not contain \(x = 0 \). Again

\[
|f(x) - f(y)| = |f'(z)||x - y| \leq \max_{z \in C} \frac{1}{z^2} |x - y| \leq L|x - y|
\]

where \(\max_{z \in C} z^{-2} \) is finite and \(L \) is an upper bound.

3. \(f(x) = \sin x \) is globally Lipschitz on \(\mathbb{R} \) since

\[
|f(x) - f(y)| = |\cos(z)||x - y| \leq |x - y|.
\]

Lemma 1.3

1. Let \(f \) be continuously differentiable on a domain (connected open set) \(D \subseteq \mathbb{R}^n \). Then \(f \) is locally Lipschitz on \(D \).

2. Suppose \(f \) is continuously differentiable on a convex domain \(D \subseteq \mathbb{R}^n \) and let \(L := \sup_{y \in D} \|\frac{\partial f}{\partial x}(y)\| \). Then \(f \) is Lipschitz on \(D \) with Lipschitz constant \(L \) if and only if \(L \) is finite.

3. Suppose \(f \) is continuously differentiable on a convex and compact set \(D \subseteq \mathbb{R}^n \). Then \(L := \sup_{y \in D} \|\frac{\partial f}{\partial x}(y)\| \) is finite and \(f \) is Lipschitz on \(D \) with Lipschitz constant \(L \).

4. Let \(f \) be continuously differentiable on \(\mathbb{R}^n \). Then \(f \) is globally Lipschitz on \(\mathbb{R}^n \) if and only if \(\frac{\partial f}{\partial x} \) is uniformly bounded on \(\mathbb{R}^n \).

The proof of the lemma, given in Appendix 1.5.3, illustrates several useful techniques.

The next result says that global Lipschitz continuity guarantees the existence and uniqueness of the solution to the unprojected dynamic (1.14).

Theorem 1.4 If \(f \) is globally Lipschitz on \(\mathbb{R}^n \), i.e., there exists an \(L \) such that

\[
\|f(x) - f(y)\| \leq L\|x - y\| \quad \forall x, y \in \mathbb{R}^n
\]
then (1.14) has a unique solution \((x(t), t \geq 0)\).

Example 1.5 Consider \(\dot{x} = Ax + b =: f(x) \) for \(t \geq 0 \). Then

\[
\| f(x) - f(y) \| = \| A(x - y) \| \leq \| A \| \cdot \| x - y \| \quad \forall x, y \in \mathbb{R}^n
\]

where \(\| x \| \) is any norm on \(\mathbb{R}^n \) and \(\| A \| \) is the induced matrix norm. Therefore \(f \) is globally Lipschitz on \(\mathbb{R}^n \) and the system has a unique solution \(x(t), t \geq 0 \) by Theorem 1.4.

Global Lipschitz continuity is often too stringent. Local Lipschitz continuity is often enough. For instance we model FAST/DropTail as a dual algorithm in (1.7). The unprojected dynamics is

\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l) \\
x_i(t) = \frac{\alpha_i}{q_i(t)}
\]

Substituting \(x = x(p) \) and \(y = y(p) \) as functions of \(p \), this becomes:

\[
\dot{p}_l = \frac{1}{c_l} \left(\sum_i \frac{R_{il} \alpha_i}{\sum_k R_{iki} p_k(t)} - c_l \right)
\]

The function on the right-hand side is not globally Lipschitz over \(p > 0 \), but is locally Lipschitz. This system has a unique solution \((p(t), t \geq 0)\) given any \(p(0) \) according to the next result (see Chapter 1.5.2 for details).

Theorem 1.6 Suppose \(f \) is locally Lipschitz on a domain \(D \subseteq \mathbb{R}^n \). Let \(W := W(x_0) \) be a compact (closed and bounded) subset of \(D \) that contains the given initial state \(x_0 \). Suppose every solution of (1.14), if exists, lies entirely in \(W \), i.e., \(x(t) \in W \) for all \(t \geq 0 \). Then (1.14) has a solution \((x(t), t \geq 0)\) and it is unique.

Example 1.7 Consider \(\dot{x} = -x^3 =: f(x) \). Note that \(f(x) \) is not globally Lipschitz on \(\mathbb{R} \), but it is locally Lipschitz at all \(x \in \mathbb{R} \). Moreover given any \(x(0) = x_0 \), a solution \(x(t) \), if it exists, stays in the compact set \(W := \{ x \in \mathbb{R} \mid |x| \leq |x_0| \} \). Hence there exists a unique solution by Theorem 1.6. Indeed the solution is \(x(t) = (2t + x_0^{-2})^{-1/2} \).

If \(f \) is only locally Lipschitz on \(\mathbb{R}^n \) for all \(t \geq 0 \) (but there is no compact set \(W \) that contains any solution trajectory as required in Theorem 1.6), then a unique solution \(x(t) \) exists over \([0, T]\) for some \(T > 0 \).
Example 1.8 This example shows that the conditions in Theorems 1.4 and 1.6 are sufficient but not necessary. Consider $\dot{x} = x^{-1} =: f(x)$ for $x > 0$ with $x(0) = x_0 > 0$ given. Its solution is $x(t) = \sqrt{2t} + x_0$. However f is not globally Lipschitz. It is locally Lipschitz on $\{x > 0\}$ but since $x(t)$ grows without bound as $t \to \infty$, there is no compact set W that contains the solution trajectory.

The initial condition $x_0 > 0$ is important for uniqueness. If $x_0 = 0$ then f is not locally Lipschitz at $x = 0$ and indeed both $x(t) \equiv 0$ and $x(t) = \sqrt{2t} + x_0$ are solutions.

When f is Lipschitz, the unique solution $x(t)$ to (1.14) is continuously differentiable since $\dot{x} = f(x(t))$. For projected dynamics (1.13a) whose right-hand side is however discontinuous, a solution even if it exists, is generally not differentiable everywhere. Formally we define a function $x : (0, \infty) \to \mathbb{R}^n_+$ to be a solution to (1.13) if it is absolute continuous and satisfies (1.13) almost everywhere (i.e., except possibly on a subset of $[0, \infty)$ that has Lebesgue measure zero).

The next result generalizes Theorems 1.4 and 1.6 to the case of projected dynamical systems. Its proof is given in Appendix 1.5.4.

Theorem 1.9 Consider the projected dynamical system (1.13) where $f : \mathbb{R}^n \to \mathbb{R}^n$.

1. If f is Lipschitz on the nonnegative quadrant \mathbb{R}^n_+, i.e., there exists L such that
 \[\|f(x) - f(y)\| \leq L\|x - y\| \quad \forall x, y \in \mathbb{R}^n_+ \]
 then (1.13) has a unique solution $(x(t), t \geq 0)$.

2. Suppose f is locally Lipschitz on a domain $D \subseteq \mathbb{R}^n_+$. Let $W := W(x_0)$ be a compact (closed and bounded) subset of D that contains the given initial state x_0. Suppose every solution of (1.13), if exists, lies entirely in W, i.e., $x(t) \in W$ for all $t \geq 0$. Then (1.13) has a unique solution for all $t \geq 0$.

The norm in the theorem can be any norm in \mathbb{R}^n.

6This is called a Carathéodory solution for an ordinary differential equation system with a discontinuous right-hand side. A function $f : I \to \mathbb{R}^n$ where I is an interval in \mathbb{R} is absolutely continuous if given any $\epsilon > 0$ there exists $\delta > 0$ such that for any finite sequence of pairwise disjoint subintervals $[s_k, t_k]$ of I we have
\[\sum_k |t_k - s_k| < \delta \Rightarrow \sum_k \|f(t_k) - f(s_k)\| < \epsilon \]
Continuous differentiability implies Lipschitz continuity implies absolute continuity implies uniform continuity implies continuity. Absolute continuity also implies bounded variation implies differentiability almost everywhere.
1. CONGESTION CONTROL MODELS

1.5.2 APPLICATION TO TCP/AQM MODELS

We now apply Theorem 1.9 to show that a basic model of TCP/AQM is well defined. Consider the following dual algorithm in Chapter 1.3.3 that models FAST/DropTail:

\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)_{p_l(t)}^+ \quad (1.16a)
\]

\[
x_i(t) = \frac{\alpha_i}{q_i(t)} \quad (1.16b)
\]

where for any \(a, b \in \mathbb{R}, (a)_b^+ := a\) if \(a > 0\) or \(b > 0\) and 0 otherwise. Here

\[
q_i(t) = \sum_l R_i p_l(t), \quad y_l(t) = \sum_i R_i x_i(t)
\]

We now prove that (1.16) has a unique solution trajectory.

Write \(x_i(q_i) := x_i(p) := \alpha_i / q_i\) as a function of \(q_i\) or \(p\). Similarly write \(y_l(p) := \sum_i R_i x_i(p)\) as a function of \(p\). Consider then the following system with \(p(t)\) as its state:

\[
\dot{p}_l = \frac{1}{c_l} (y_l(p(t)) - c_l)_{p_l(t)}^+ =: \frac{1}{c_l} (g_l(p(t)))_{p_l(t)}^+ \quad (1.17a)
\]

\[
p(0) = p^0 \quad \text{given} \quad (1.17b)
\]

where \(g(p) := y(p) - c\) and

\[
y_l(p) := \sum_i R_i x_i(p) := \sum_i R_i \frac{\alpha_i}{\sum_k R_{ki} p_k} \quad (1.17c)
\]

Clearly \(g(p)\) is continuously differentiable over \(\mathbb{R}_+^L\) at \(p > 0\). Hence it is locally Lipschitz on any domain \(D \subseteq \mathbb{R}_+^L\) with \(p > 0\).\(^7\) Theorem 1.9.2 then guarantees the existence and uniqueness of solution to (1.17) if we can construct a compact set \(W := W(p^0) \subseteq D\) that contains the given initial point \(p^0\) such that every solution \((p(t), t \geq 0)\) of (1.17), if exists, lies in \(W\). We now construct such an \(W\) in two steps.

First consider the function

\[
V(p) := \sum_i \alpha_i \log x_i(p) + \sum_l p_l (c_l - y_l(p))
\]

We claim that if there is a solution \((p(t), t \geq 0)\) to (1.17) then \(V\) is nonincreasing along the trajectory \(p(t)\). To see this we have

\[
\frac{\partial V}{\partial p_l}(p) = \sum_i \frac{\alpha_i}{x_i(p)} \frac{\partial x_i}{\partial p_l} + \frac{c_l - y_l(p)}{p_l} - \sum_k p_k \sum_i R_{ki} \frac{\partial x_i}{\partial p_l}
\]

\[
= (c_l - y_l(p)) + \sum_i \left(\frac{\alpha_i}{x_i(p)} - q_i(p)\right) \frac{\partial x_i}{\partial p_l}(p)
\]

\[
= c_l - y_l(p)
\]

\(^7\)It is not globally Lipschitz because \(\frac{\partial g}{\partial p}\) is not uniformly bounded on \(\mathbb{R}_+^L\); see Lemma 1.3.4.
where the last equality follows from (1.16b). Hence
\[
\frac{d}{dt} V(p(t)) = \frac{\partial V}{\partial p} \dot{p} = \sum_l \frac{1}{c_l} (c_l - y_l(p(t))) (y_l(p(t)) - c_l)_{p_l(t)}^+
\]
For each \(l \) we have
\[
(c_l - y_l(p(t))) (y_l(p(t)) - c_l)_{p_l(t)}^+ = \begin{cases}
-(c_l - y_l(p(t)))^2 & \text{if } y_l(p(t)) > c_l \text{ or } p_l(t) > 0 \\
0 & \text{if } y_l(p(t)) \leq c_l \text{ and } p_l(t) = 0
\end{cases}
\]
Hence for all \(p(t) \geq 0 \) on the solution trajectory we have
\[
\frac{d}{dt} V(p(t)) \leq 0
\]
Second define \(W := W(p^0) \) by
\[
W := W(p^0) := \{ p \in \mathbb{R}_+^L \mid p \geq 0, V(p) \leq V(p^0) \}
\]
Clearly \(W \) contains \(p^0 \) and any solution \((p(t), t \geq 0)\), if exists, must lie in \(W \) since \(\dot{V}(p(t)) \) is nonincreasing. Moreover \(W \) is closed. We claim that it is also bounded and hence is a compact set. To see this substitute (1.17c) into \(V(p) \) to get
\[
V(p) = \sum_i \alpha_i \left(\log \alpha_i - \log \left(\sum_l R_{i_l} p_l \right) \right) + \sum_l p_l \left(c_l - \sum_i \log \left(\sum_l R_{i_l} p_l \right) \right)
\]
\[
= \sum_i \alpha_i \log \alpha_i + \sum_l c_l p_l - \sum_i q_l(p) x_i(p) - \sum_i \alpha_i \log \left(\sum_l R_{i_l} p_l \right)
\]
where the second and last equalities follow from
\[
\sum_l \sum_i R_{i_l} p_l x_i(p) = \sum_i q_l(p) x_i(p) = \sum_i \alpha_i
\]
If \(W \) is unbounded there must exists a link \(k \) and a sequence of prices \(p^1, p^2, \ldots \), such that \(p^j \in W \) and \(p^j_k > j \) for all integers \(j \), i.e., the sequence \(p^1, p^2, \ldots \), in \(W \) marches off to infinity along its link \(k \) component. The linear term \(c_k p_k \) in the \(V(p) \) expression above dominates over the log term and hence \(V(p^j) \) will become unbounded as \(j \to \infty \). This contradicts \(V(p^j) \leq V(p^0) \) and hence the sequence \(p^j \) cannot be in \(W \), a contradiction.\(^8\)

In summary \(g \) in (1.17a) is locally Lipschitz on any domain \(D \) and we have constructed a compact set \(W \) dependent on the given initial point \(p^0 \) that contains any solution of (1.17) if it exists. Theorem 1.9.2 therefore guarantees that indeed a unique solution \((p(t), t \geq 0)\) exists.

\(^8\)This proves that \(V(p) \) is radially unbounded; see also Remark 3.17 in Chapter 3.2.
1. CONGESTION CONTROL MODELS

1.5.3 APPENDIX: PROOF OF LEMMA 1.3

Since all norms in \(\mathbb{R}^n \) are equivalent we can without loss of generality assume the norm \(\| \cdot \| \) is Euclidean (see Footnote 10). We however present a more involved proof with general norm because it illustrates several techniques that are useful in applications, especially a generalization of the mean value theorem for vector-valued functions under any norm (Lemma 1.11).

Dual norm. For this purpose consider any norm \(\| \cdot \| \) on \(\mathbb{R}^n \) and define its dual norm \(\| \cdot \|_* \) by: for any \(x \in \mathbb{R}^n \)

\[
\| x \|_* := \max_{y: \| y \|=1} x^T y
\]

The maximization is attained since inner product is continuous and the feasible set is compact. If we think of \(x^T \) as an \(1 \times n \) matrix then \(\| x \|_* \) is the matrix norm induced by the general vector norm \(\| \cdot \| \) on \(\mathbb{R}^n \). A very useful inequality is:

\[
x^T y \leq \| x \| \cdot \| y \|_* \quad \forall x, y \in \mathbb{R}^n
\]

which follows directly from the definition of the dual norm. Since this holds for all \(x, y \), it is equivalent to

\[
|x^T y| \leq \| x \| \cdot \| y \|_* \quad \forall x, y \in \mathbb{R}^n
\]

because one can always choose \(-x\) in place of \(x\) if necessary. Moreover, given any \(x \in \mathbb{R}^n \), there is a normalized \(y(x) \in \mathbb{R}^n \) that attains equality, i.e.,

\[
x^T y(x) = \| x \|_* \quad \text{and} \quad \| y(x) \| = 1
\]

A crucial fact for \(\mathbb{R}^n \) is that the dual of a dual norm is the original norm, i.e., \(\| \cdot \|_{**} = \| \cdot \| \). This and (1.18c) imply: given any \(x \in \mathbb{R}^n \) there exists an \(y(x) \in \mathbb{R}^n \) such that

\[
x^T y(x) = \| x \| \quad \text{and} \quad \| y(x) \|_* = 1
\]

because

\[
\| x \| = \| x \|_{**} = \max_{y: \| y \|_*=1} x^T y = x^T y(x)
\]

where \(y(x) \) is a maximizer (which clearly exists).\(^9\) The inequalities (1.18a)(1.18b) say that the inner product of any two vectors are upper bounded by the product of the norm of one

\(^9\)For the \(p \)-norm the dual is the \(q \)-norm with \(p^{-1} + q^{-1} = 1 \) (see Lemma 1.10) and

\[
(y(x))_i := \frac{x_i^{p-1}}{\| x \|_p^{p-1}} \text{sign}((x_i)^p)
\]

so that \(x^T y(x) = \| x \|_p \) and \(\| y(x) \|_q = 1 \).
of the vectors and its dual norm of the other vector. For Euclidean norm this is the Cauchy-Schwarz inequality, but (1.18a) holds for any norm. More remarkably, (1.18c)(1.18d) say both the norm and its dual norm of any vector can be attained by the inner product of the vector with some other vector, again for any norm that, unlike the Euclidean norm, may not be defined by inner product.

These properties (1.18) are useful in applications and we use them to prove Lemma 1.3. For instance, together with the Hölder inequality, (1.18a) implies that p and q norms are dual of each other where $p, q \in [1, \infty]$ and $1/p + 1/q = 1$ (if $p = \infty$ then $q := 1$).

Lemma 1.10 Let $p, q \in [1, \infty]$ and $1/p + 1/q = 1$. The p-norm and the q-norm are dual of each other.

Proof of Lemma 1.10. The Hölder inequality implies

$$
\sum_i |x_i y_i| \leq \|x\|_q \|y\|_p \quad \forall x, y \in \mathbb{R}^n
$$

Hence

$$
\|x\|_q \geq \max_{y: \|y\|_p = 1} \sum_i |x_i y_i| \geq \max_{y: \|y\|_p = 1} \sum_i x_i y_i = \|x\|_*
$$

Hence $\|x\|_q \geq \|x\|_*$. To prove the reverse inequality we have from (1.18a)

$$
\|x\|_* \geq \left(\|y\|_p\right)^{-1} \sum_i x_i y_i = \left(\sum_i |y_i|^p\right)^{-1/p} \sum_i x_i y_i \quad \forall y \in \mathbb{R}^n
$$

Since $q = 1 + \frac{2}{p}$, choose

$$
y_i := |x_i|^{q/p} \text{ sign}(x_i)
$$

so that the above inequality becomes:

$$
\|x\|_* \geq \left(\sum_i |x_i|^q\right)^{-1/p} \sum_i |x_i|^{1+q/p} = \left(\sum_i |x_i|^q\right)^{1/q} = \|x\|_q
$$

Hence $\|x\|_* = \|x\|_q$ when $\|\cdot\| = \|\cdot\|_p$. □

Lemma 1.10 and (1.18a) implies the following useful special cases:

$$
\begin{align*}
x^T y &\leq \|x\|_p \|y\|_q \quad (p^{-1} + q^{-1} = 1) \\
x^T y &\leq \|x\|_2 \|y\|_2 \quad (p = q = 2, \text{ Cauchy-Schwarz inequality}) \\
\|x\|_2 &\leq \|x\|_1 \|x\|_\infty \quad (y := x, p = 1, q = \infty)
\end{align*}
$$
1. CONGESTION CONTROL MODELS

We now use (1.18a) and (1.18d) to prove the mean value theorem for vector-valued functions, which implies Lemma 1.3.

Lemma 1.11 Consider any differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$. Given any x, y, w in \mathbb{R}^n we have

$$w^T (f(y) - f(x)) = w^T \frac{\partial f}{\partial x}(z)(y - x) \quad (1.19a)$$

$$\|f(y) - f(x)\| \leq \left\| \frac{\partial f}{\partial x}(z) \right\| \|y - x\| \quad (1.19b)$$

where $z := \alpha x + (1 - \alpha)y$ for some $\alpha \in [0, 1]$, $\| \cdot \|$ is any norm, and for matrix, it denotes the induced norm.

Proof of Lemma 1.11. Fix any x, y, w in \mathbb{R}^n. Let $z(\alpha) := (1 - \alpha)x + \alpha y$ for $\alpha \in [0, 1]$ so that $z(0) = x$ and $z(1) = y$, and $z(\alpha)$ traces the straight path from x to y. Define

$$g(\alpha) := g_w(\alpha) := w^T f(z(\alpha))$$

Since g is from \mathbb{R} to \mathbb{R} the standard mean value theorem implies that

$$g(1) - g(0) = g'(\beta)$$

for some $\beta \in [0, 1]$ that depends on w. Since $g(0) = w^T f(x)$ and $g(1) = w^T f(y)$ this becomes (using chain rule)

$$w^T (f(y) - f(x)) = w^T \frac{\partial f}{\partial x}(z(\beta))(y - x)$$

proving (1.19a).

To prove (1.19b), use (1.18d) to choose $w \in \mathbb{R}^n$ such that\(^{10}\)

$$w^T (f(y) - f(x)) = \|f(y) - f(x)\| \quad \text{and} \quad \|w\|_* = 1$$

\(^{10}\) If the norm $\| \cdot \|$ is Euclidean then the argument below simplifies to: setting $w := f(y) - f(x)$ in (1.19a) yields

$$\|f(y) - f(x)\|_2^2 = (f(y) - f(x)) \frac{\partial f}{\partial x}(z(\beta))(y - x) \leq \|f(y) - f(x)\|_2 \cdot \left\| \frac{\partial f}{\partial x}(z(\beta)) \right\|_2 \|y - x\|_2$$

proving (1.19b). This is done in [23].
Substituting this w into (1.19a) yields
\[
\|f(y) - f(x)\| = w^T (f(y) - f(x)) = w^T \frac{\partial f}{\partial x}(z(\beta))(y - x)
\]
\[
\leq \|w\| \cdot \left\| \frac{\partial f}{\partial x}(z(\beta))(y - y) \right\|
\]
\[
\leq \left\| \frac{\partial f}{\partial x}(z(\beta)) \right\| \cdot \|y - x\|
\]
proving (1.19b). In the above, the first inequality follows from (1.18a) and the second inequality follows from the definition of the induced norm of \(\frac{\partial f}{\partial x} \). This completes the proof of Lemma 1.11.

\[\square\]

Proof of Lemma 1.3. To prove Lemma 1.3.1 fix any \(x_0 \in D \). Take any \(r > 0 \) such that the convex and compact set \(B_r(x_0) \subseteq D \). For any \(x, y \in B_r(x_0) \) we have from (1.19b)
\[
\|f(y) - f(x)\| \leq \left\| \frac{\partial f}{\partial x}(z) \right\| \|y - x\|
\]
for some \(z \in B_r(x_0) \) between \(x \) and \(y \) and for any norm \(\| \cdot \| \). By assumptions in Lemma 1.3, \(\frac{\partial f}{\partial x} \) not only exists but is also continuous. Since \(B_r(x_0) \) is compact the maximization in
\[
L := L(x_0) := \max_{z \in B_r(x_0)} \left\| \frac{\partial f}{\partial x}(z) \right\|
\]
is indeed attained. Hence \(f \) is locally Lipschitz at \(x_0 \) with Lipschitz constant \(L \), as desired.

For Lemma 1.3.2, let
\[
L := \sup_{z \in D} \left\| \frac{\partial f}{\partial x}(z) \right\|
\]
Suppose \(L \) is finite. Since \(D \) is convex, the above argument goes through with \(B_r(x_0) \) replaced by \(D \) to prove that \(f \) is Lipschitz with \(L \). Conversely suppose \(f \) is Lipschitz with a Lipschitz constant \(K \), i.e., \(\|f(x) - f(y)\| \leq K \|x - y\| \) for all \(x, y \in D \). We now argue that \(L \) must be finite. Assume for the sake of contradiction that for each integer \(k > 0 \) there exists an \(x_k \in D \) such that the induced norm
\[
\left\| \frac{\partial f}{\partial x}(x_k) \right\| := \max_{\|y\| \neq 0} \frac{\left\| \frac{\partial f}{\partial x}(x_k) y \right\|}{\|y\|} > k
\]
Let \(y_k \neq 0 \) attain the maximization above, i.e., for all integers \(k > 0 \), there exist \(x_k \in D \) and \(y_k \in \mathbb{R}^n \) such that
\[
\left\| \frac{\partial f}{\partial x}(x_k) y_k \right\| > k \|y_k\| \quad (1.20a)
\]
32 1. CONGESTION CONTROL MODELS

Apply (1.18d) to (1.20a) to choose an $w_k \in \mathbb{R}^n$ such that

$$w_k^T \frac{\partial f}{\partial x}(x_k) y_k = \left\| \frac{\partial f}{\partial x}(x_k) y_k \right\| \quad \text{and} \quad \|w_k\|_* = 1$$

i.e., for all integers $k > 0$ there exist $x_k \in D$ and y_k, w_k in \mathbb{R}^n such that

$$w_k^T \frac{\partial f}{\partial x}(x_k) y_k > k \|y_k\| \quad \text{and} \quad \|w_k\|_* = 1 \quad (1.20b)$$

Fix any $\epsilon > 0$. Since $\frac{\partial f}{\partial x}$ is continuous there is a $\delta_k > 0$ such that for all integers $k > 0$

$$\left\| \frac{\partial f}{\partial x}(z) - \frac{\partial f}{\partial x}(x_k) \right\| < \epsilon \quad \text{for any} \quad z \in B_{\delta_k}(x_k) \subseteq D \quad (1.20c)$$

Note that y_k in (1.20a) can be chosen with arbitrarily small norm $\|y_k\| > 0$. Hence we can choose \hat{x}_k in the ball $B_{\delta_k}(x_k)$ such that $\hat{x}_k - x_k = y_k$ for an $0 < \|y_k\| < \delta_k$. Then we have by (1.19a)

$$w_k^T (f(\hat{x}_k) - f(x_k)) = w_k^T \frac{\partial f}{\partial x}(\hat{z})(\hat{x}_k - x_k)$$

$$= w_k^T \frac{\partial f}{\partial x}(x_k) y_k + w_k^T \left(\frac{\partial f}{\partial x}(\hat{z}) - \frac{\partial f}{\partial x}(x_k) \right) y_k \quad (1.21)$$

for some $\hat{z} \in B_{\delta_k}(x_k)$ between \hat{x}_k and x_k.

We now examine each term in (1.21). On the left-hand side, (1.18a) implies

$$w_k^T (f(\hat{x}_k) - f(x_k)) \leq \|w_k\|_* \cdot \|f(\hat{x}_k) - f(x_k)\| = \|f(\hat{x}_k) - f(x_k)\| \quad (1.22)$$

by the choice of w_k. On the right-hand side, the first term is lower bounded in (1.20b). The magnitude of the second term can be upper bounded by:

$$\left| w_k^T \left(\frac{\partial f}{\partial x}(\hat{z}) - \frac{\partial f}{\partial x}(x_k) \right) y_k \right| \leq \|w_k\|_* \cdot \left| \left(\frac{\partial f}{\partial x}(\hat{z}) - \frac{\partial f}{\partial x}(x_k) \right) y_k \right|$$

$$\leq \left\| \frac{\partial f}{\partial x}(\hat{z}) - \frac{\partial f}{\partial x}(x_k) \right\| \cdot \|y_k\|$$

$$< \epsilon \|y_k\|$$

where the first inequality follows from (1.18b), the second inequality from the definition of matrix norm, and the last inequality from (1.20c) since $\hat{z} \in B_{\delta_k}(x_k)$. Hence the right-hand side of (1.21) satisfies

$$w_k^T \frac{\partial f}{\partial x}(x_k) y_k + w_k^T \left(\frac{\partial f}{\partial x}(\hat{z}) - \frac{\partial f}{\partial x}(x_k) \right) y_k > (k - \epsilon) \|y_k\|$$
Substituting this and (1.22) into (1.21), we have, for all integers \(k > 0 \) there exist \(x_k, \hat{x}_k \in B_{\delta_k}(x_k) \subseteq D \) such that
\[
\|f(\hat{x}_k) - f(x_k)\| > (k - \epsilon)\|\hat{x}_k - x_k\|
\]
For large enough \(k \), this contradicts that \(f \) is Lipschitz with Lipschitz constant \(K \). This completes the proof of Lemma 1.3.2.

Lemma 1.3.3 follows from Lemma 1.3.2 since \(L \) is finite if \(D \) is compact. Lemma 1.3.4 follows from Lemma 1.3.2 with \(D = \mathbb{R}^n \). This completes the proof of the lemma.

1.5.4 APPENDIX: PROOF OF THEOREM 1.9

Consider the projected dynamical system
\[
\dot{x} = \pi_K(x(t), f(x(t))), \quad x(0) = x_0 \quad \text{given (1.23)}
\]
where \(f : \mathbb{R}^n \to \mathbb{R}^n \) and \(\pi \) denotes the projection such that \(x(t) \) stays in the closed convex polyhedron \(K \). Informally \(\pi(x, v) = v \) if \(x \) is in the interior of \(K \) or if \(v \) points into \(K \), and, if \(x \) is on the boundary of \(K \) and \(v \) points out of \(K \), \(\pi(x, v) = v + \gamma \) where \(\gamma \) is an inward normal to \(K \) at \(x \) such that a solution of (1.23) stays in \(K \). The system (1.13) is a special case of (1.23) where \(K \) is the nonnegative quadrant \(\mathbb{R}^n_+ \), i.e.,
\[
\dot{x} = \pi_{\mathbb{R}^n_+}(x(t), f(x(t))) = (f(x(t)))^+_x(t)
\]
For the proof in this subsection we assume \(K \subseteq \mathbb{R}^n_+ \). Consider the following condition:

C1.1: There exists an \(B < \infty \) such that \(f \) satisfies

1. \(\|f(x)\| \leq B(1 + \|x\|) \) for all \(x \in K \), and
2. \((f(x) - f(y))^T (x - y) \leq B\|x - y\|^2 \) for all \(x, y \in K \).

Here \(\| \cdot \| \) can be any norm since all norms are equivalent in \(\mathbb{R}^n \) (the constant \(B \) may depend on the chosen norm). These conditions are called the linear growth condition and the one-sided Lipschitz condition. The standard Lipschitz condition \(\|f(x) - f(y)\| \leq L\|x - y\| \) implies both the one-sided Lipschitz condition and continuity of \(f \), but the one-sided Lipschitz condition and continuity do not imply each other. In particular \(f \) can be discontinuous and satisfies C1.1. Hence the right-hand side of (1.23) can be discontinuous both because of the projection \(\pi \) and because \(f(x) \) is discontinuous (even though Theorem 1.9 assumes \(f \) to be either globally or locally Lipschitz).

Recall that a solution to (1.23) is defined to be a function \((x(t), t \geq 0) \) that is absolutely continuous and satisfies (1.23) almost everywhere. Theorem 1.9 follows from the next result proved in [20, Theorems 2 and 3].

\[\text{[20, equation (5)] for a precise definition of } \pi.\]
Lemma 1.12 Suppose C1.1 holds. Then there is a unique solution \((x(t), t \geq 0)\) to (1.23).

To prove Theorem 1.9 we first show that if \(f\) is Lipschitz over the nonnegative quadrant then \(f\) satisfies C1.1 with \(K = \mathbb{R}_n^+\) and hence a unique solution to (1.13) exists (Theorem 1.9.1). Then we show that if \(f\) is only locally Lipschitz but any solution, when exists, stays in a compact set then a unique solution exists as well (Theorem 1.9.2).

Proof of Theorem 1.9.1. First suppose \(f\) in (1.13) is Lipschitz over the nonnegative quadrant \(K := \mathbb{R}_n^+\), i.e., there exists \(L < \infty\) such that

\[
\|f(x) - f(y)\| \leq L\|x - y\|, \quad x, y \in K
\]

under any norm \(\| \cdot \|\). Since \(f\) is defined on \(\mathbb{R}^n\), \(f(0)\) is finite. Hence we have for any \(x \in K\)

\[
\|f(x)\| \leq \|f(x) - f(0)\| + \|f(0)\| \leq L\|x\| + \|f(0)\| \leq B(1 + \|x\|)
\]

for any finite \(B \geq \max\{L, \|f(0)\|\}\), where the second inequality follows from the Lipschitz continuity of \(f\). Moreover, for any \(x, y \in K\), the Cauchy-Schwarz inequality implies

\[
(f(x) - f(y))^T(x - y) \leq \|f(x) - f(y)\|_2 \cdot \|x - y\|_2
\]

Since all norms are equivalent in \(\mathbb{R}^n\) we can convert the above inequality from the Euclidean norm \(\| \cdot \|_2\) to the norm that defines the Lipschitz continuity of \(f\) to obtain

\[
(f(x) - f(y))^T(x - y) \leq a\|f(x) - f(y)\| \cdot \|x - y\| \leq aL\|x - y\|^2
\]

for some finite constant \(a\), where the second inequality follows from the Lipschitz continuity of \(f\). Hence \(f\) satisfies condition C1.1, and Theorem 1.9.1 follows from Lemma 1.12.

Proof of Theorem 1.9.2. Suppose now that \(f\) is only locally Lipschitz over a domain \(D \subseteq \mathbb{R}_n^+\) under any norm, but any solution to (1.13), if exists, lies entirely in a compact set \(W \subseteq D\) that contains the initial point \(x_0\). We will prove the theorem through two lemmas.

Lemma 1.13 The function \(f\) is Lipschitz on the compact set \(W \subseteq D\), i.e., there exists \(L < \infty\) such that

\[
\|f(x) - f(y)\| \leq L\|x - y\|, \quad x, y \in W
\]

Lemma 1.14 Suppose \(f\) is Lipschitz on \(W\) under any norm. There is a function \(\hat{f} : \mathbb{R}_n^+ \to \mathbb{R}_n^+\) that is Lipschitz on \(\mathbb{R}_n^+\) (with possibly a different Lipschitz constant if \(\| \cdot \|\) is not the Euclidean norm) and coincides with \(f\) over \(W\), i.e.,

\[
\hat{f}(x) = f(x), \quad x \in W
\]
Then since any solution \((x(t), t \geq 0) \) to (1.13), if it exists, lies entirely in \(W \), the solutions to the system \((1.13) \) coincide with the solutions to the following system

\[
\dot{x} = \left(\hat{f}(x(t)) \right)_{x(t)}^+, \quad x(0) = x_0 \text{ given}
\] (1.24)

Since \(\hat{f} \) is Lipschitz on \(\mathbb{R}_+^n \) (with possibly a different Lipschitz constant from that of \(f \)), by Theorem 1.9.1, there is indeed a unique solution \((x(t), t \geq 0) \) to (1.24) and hence to (1.13). Therefore the proof of the theorem will be complete after Lemmas 1.13 and 1.14 are proved.

Proof of Lemma 1.13. Since \(W \) is compact, \(D \) is open, \(W \subseteq D \), and \(f \) is locally Lipschitz in \(D \) we can construct an open cover in \(D \) of \(W \) such that \(f \) is Lipschitz on each open set in the cover, as follows. For each \(x \in W \) there is an \(r(x) > 0 \) and \(L(x) < \infty \) such that the open ball \(B_{r(x)}(x) \subseteq D \) and

\[
\|f(y) - f(z)\| \leq L(x)\|y - z\|, \quad y, z \in B_{r(x)}(x)
\]

Clearly the collection \(\{B_{r(x)}(x) : x \in W\} \) is such an open cover with \(W \subseteq \cup_{x \in W} B_{r(x)}(x) \subseteq D \). Since \(W \) is compact there is a finite subcover, i.e., there exists a finite collection \(\{B_{i} := B_{r(x_i)}(x_i), x_i \in W\} \) such that

\[
W \subseteq \cup_i B_i \subseteq D
\]

We now prove by contradiction that \(f \) is Lipschitz on the compact set \(W \).

Suppose not and for any integer \(k > 0 \) there are \(y_k \neq z_k \) in \(W \) such that \(\|f(y_k) - f(z_k)\| > k \|y_k - z_k\| \). Since \(W \) is compact there exists convergent subsequences \(y_{k_j} \) and \(z_{k_j} \) such that \(\lim_j y_{k_j} = y \) and \(\lim_j z_{k_j} = z \) with \(y, z \in W \).\(^{12}\) This implies three mutually exclusive cases illustrated in Figure 1.9, each of which we now argue violates

\[
\|f(y_{k_j}) - f(z_{k_j})\| > k_j \|y_{k_j} - z_{k_j}\| \quad \text{for all } j \tag{1.25}
\]

leading to a contradiction.

\(\text{(a)}\) Suppose \(y, z \in B_i \) for some \(B_i \) over which \(f \) is Lipschitz. Since \(\lim_j y_{k_j} = y \) and \(\lim_j z_{k_j} = z \), \(B_i \) contains all but finitely many \(y_{k_j}, z_{k_j} \). The Lipschitz continuity of \(f \) over \(B_i \) then violates (1.25) since \(y_{k_j} \neq z_{k_j} \) for all \(j \).

\(\text{(b)}\) Suppose \(y \) and \(z \) are in different covering sets but \(y, z \) are “close”. Specifically since \(f \) is locally Lipschitz at \(y \), there is an \(L_y \) and a \(\delta_y > 0 \) such that \(\|f(a) - f(b)\| \leq L_y \|a - b\| \).\(^{12}\) Even though \(y_{k_j} \neq z_{k_j} \) for all \(j \), it is possible that all convergent subsequences have \(y = z \). Hence we cannot take limit in (1.25) and use \(\|f(y) - f(z)\| \geq \lim_j k_j \|y_{k_j} - z_{k_j}\| \).
1. CONGESTION CONTROL MODELS

Figure 1.9: Proof of Lemma 1.13.
1.5. SOLUTION OF THE BASIC MODELS

\[L_y \|a - b\| \text{ for all } a, b \text{ in } B_{\delta_y}(y). \] Similarly there is an \(L_z \) and a \(\delta_z > 0 \) such that \[\|f(a) - f(b)\| \leq L_z \|a - b\| \text{ for all } a, b \text{ in } B_{\delta_z}(z). \] If either \(z \in B_{\delta_y}(y) \) or \(y \in B_{\delta_z}(z) \) then (1.25) is violated (since \(B_{\delta_y}(y) \) or \(B_{\delta_z}(z) \) contains all but finitely many \(y_{k_j}, z_{k_j} \)).

(c) Suppose finally that \(y \) and \(z \) are in different covering sets \(B_1 \) and \(B_k \) respectively and \(\|y - z\| > \min\{\delta_y, \delta_z\} =: r > 0 \). Then taking limit in \(j \) on both sides of (1.25) yields

\[
\|f(y) - f(z)\| \geq \left(\lim_j k_j \right) \left(\frac{1}{j} \right) \geq r \left(\lim_j k_j \right) \tag{1.26}
\]

Since \(\mathcal{W} \) is connected (because \(\mathcal{D} \) is connected by definition) there is a sequence of covering sets, say, \(B_1, \ldots, B_k \) and \(w_1, \ldots, w_{k-1} \) such that

\[y \in B_1, w_1 \in B_1 \cap B_2, w_2 \in B_2 \cap B_3, \ldots, w_{k-1} \in B_{k-1} \cap B_k, z \in B_k \]

By construction \(f \) is Lipschitz with Lipschitz constant \(L(x_i) \) over each open ball \(B_i \) of radius \(r(x_i) \). We have

\[
\|f(y) - f(z)\| = \|(f(y) - f(w_1)) + (f(w_1) - f(w_2)) + \cdots + (f(w_{k-1}) - f(z))\|
\]
\[
\leq \|(f(y) - f(w_1))\| + \|(f(w_1) - f(w_2))\| + \cdots + \|(f(w_{k-1}) - f(z))\|
\]
\[
\leq L(x_1)\|y - w_1\| + L(x_2)\|w_1 - w_2\| + \cdots + L(x_k)\|w_{k-1} - z\|
\]
\[
\leq 2(L(x_1)r(x_1) + \cdots + L(x_k)r(x_k)) < \infty
\]

This contradicts (1.26).

This proves that \(f \) is Lipschitz on the compact set \(\mathcal{W} \), as desired. \(\square \)

Proof of Lemma 1.14. Given a function \(g : A \to H_2 \) where \(A \) is a subset of a Hilbert space \(H_1 \) and \(H_2 \) is another Hilbert space.\(^{13}\) If \(g \) is Lipschitz on \(A \) under the norm induced by the inner product (Euclidean norm for \(\mathbb{R}^n \)), then there is a function \(\hat{g} : H_1 \to H_2 \) that extends \(g \) (i.e., \(\hat{g}(x) = g(x) \) for \(x \in A \)) and is Lipschitz on \(H_1 \) with the same Lipschitz constant as \(g \). This is called the Kirszbraun theorem. We now apply this to our problem.

Lemma 1.13 shows that \(f \) is Lipschitz on \(\mathcal{W} \subseteq \mathbb{R}^+_n \) under some \(p \)-norm, \(p \in [0, \infty] \). Since all \(p \)-norms are equivalent in \(\mathbb{R}^n \), \(f \) is Lipschitz on \(\mathcal{W} \) under the Euclidean norm with a possibly different Lipschitz constant. The Kirszbraun theorem then implies that there is a Lipschitz-continuous extension \(\hat{f} : \mathbb{R}^+_n \to \mathbb{R}^+_n \) with \(\hat{f} \equiv f \) on \(\mathcal{W} \).

Applying Theorem 1.9.1 to \(\hat{f} \) completes the proof of Theorem 1.9.2. \(\square \)

\(^{13}\) A Hilbert space is a inner product space that is complete under the norm induced by the inner product. Examples are \(\mathbb{R}^n, \mathbb{R}^+_n \) or any linear subspace of \(\mathbb{R}^n \) endowed with the Euclidean norm (induced by the inner product on \(\mathbb{R}^n \)).
1. CONGESTION CONTROL MODELS

1.6 BIBLIOGRAPHICAL NOTES

The Transmission Control Protocol (TCP) was published by Vinton Cerf and Robert Kahn in 1974 [14] and deployed as the TCP/IP standard on the ARPANet (precursor of the Internet) by 1983. There are many textbooks that describe in detail transport protocol services and different congestion control protocols in TCP e.g. [16, 43, 31]. The first congestion control algorithm on the Internet was implemented by Jacobson in Tahoe (1988) and Reno (1990) versions of TCP [26] based on the Additive Increase Multiplicative Decrease (AIMD) idea of [27]. The TCP Vegas is proposed in [12]. A mathematical model is introduced, validated and analyzed in [36]. TCP FAST is proposed and analyzed in [48] (including that the link model (1.6b) is well defined). The RED algorithm is proposed in [22] and REM in [4]. There are many other AQM proposals, including the PI controller [25] and AVQ [30]. Heterogeneous protocols where sources react to different types of congestion prices, e.g. some react to packet loss and others to packet delay are analyzed in [44, 45].

There are many good texts on dynamical systems described by ordinary differential equations. The materials in Chapter 1.5.1 on the existence and uniqueness of solutions to Lipschitz continuous ODEs are mainly taken from [29, Chapter 3]. Its application to the TCP/AQM algorithm in Chapter 1.5.2 is new. Projected dynamics (1.13) is a simple kind of discontinuous ODE systems. For projection onto any closed convex polyhedron, the existence and uniqueness of the solution are established in [20, Theorems 2 and 3]. This is used to prove Theorem 1.9 in Appendix 1.5.4 (see [24] for the Kirszbraun theorem). It is also proved in [20, Lemma 2] that the solution is continuous in its initial state, which is used to prove LaSalle’s invariance principle in Chapter 3.1 for projected dynamics. See [17] for a tutorial on general discontinuous ODE systems.

1.7 PROBLEMS

Exercise 1.1. Show that if f is locally Lipschitz at x_0 then it is continuous at x_0, i.e., given any $\epsilon > 0$ there exists a $\delta = \delta(\epsilon) > 0$ such that $\|f(x) - f(x_0)\| < \epsilon$ for all $x \in B_\delta(x_0)$.

Exercise 1.2. Consider $\dot{x} = f(x(t))$ for $t \geq 0$ where $f(x) = \sqrt{x}$, $x \geq 0$.

1. Show that $f(x)$ is not locally Lipschitz around 0.

2. Suppose $x(0) = 0$. Since f is continuous, solutions exists. Show that it is not unique by exhibiting two distinct solutions $(x(t), t \geq 0)$.

Exercise 1.3. Suppose functions f_1 and f_2 are globally Lipschitz with constants L_1 and L_2 respectively, i.e.,

$$\|f_1(y) - f_1(x)\| \leq L_1\|y - x\| \quad \text{and} \quad \|f_2(y) - f_2(x)\| \leq L_2\|y - x\|$$

Prove
1. $f_1 + f_2$ is Lipschitz;
2. $f_2 \circ f_1$ is Lipschitz;
3. $f_1 f_2$ is not necessarily Lipschitz, unless both are bounded.

Exercise 1.4. Consider the following simplified version of the Reno/RED model:

\[
\dot{x}_i = \left(\frac{1}{T_i^2} - \frac{1}{2} q_i(t) x_i^2(t) \right)_+ x_i(t)
\]

\[
\dot{b}_i = (y_i(t) - c_i)_{b_i(t)}^+
\]

\[
p_i(t) = \min\{\rho_i b_i(t), 1\}
\]

where for any $a, b \in \mathbb{R}$, $(a)_+ := a$ if $a > 0$ or $b > 0$ and 0 otherwise, and $q_i(t) = \sum_i R_{li} p_i(t)$ and $y_i(t) := \sum_i R_{li} x_i(t)$. We can eliminate the prices $p_i(t)$ to obtain an ODE model involving only $(x(t), b(t))$:

\[
\dot{x}_i = \left(\frac{1}{T_i^2} - \frac{1}{2} x_i^2(t) \sum_l R_{li} \min\{\rho_l b_l(t), 1\} \right)_+ x_i(t) =: [f_i (x_i(t), b(t))]_{x_i(t)}^+ (1.27a)
\]

\[
\dot{b}_i = \left(\sum_i R_{li} x_i(t) - c_i \right)_{b_i(t)}^+ =: [g_i (x(t), b(t))]_{b_i(t)}^+ (1.27b)
\]

Prove that the function (f, g) defined by the right-hand side of (1.27) is Lipschitz on any compact $D \in \mathbb{R}^{N+L}$.14

14To prove that given any initial state $(x(0), b(0)) = (x_0, b_0)$ the system (1.27) has a unique solution $(x(t), b(t), \ t \geq 0)$, we need to show, in addition, that there exists a compact subset $W := W(x_0, b_0)$ of D containing (x_0, b_0) such that every solution $(x(t), b(t), \ t \geq 0)$ of (1.27), if exists, lies in W. Theorem 1.9.2 then guarantees the existence and uniqueness of solution to (1.27) given any initial state (x_0, b_0).
Consider a set of ordinary differential equations (ODEs):
\[\dot{x} = f(x(t)), \quad t \geq 0, \quad x(0) = x_0 \quad (2.1) \]
where \(f : D \rightarrow \mathbb{R}^n \) and \(D \subseteq \mathbb{R}^n \) is a domain (open and connected set). Here \(f \) may not be continuous, e.g., (2.1) can be a projected dynamical system.

Definition 2.1 A point \(x^* \in D \) is an equilibrium of (2.1) if \(f(x^*) = 0 \).

In this chapter we study the equilibria of the family of primal-dual algorithms modeled by a set of ODEs (the basic model (1.10)). It turns out that, under mild assumptions, the equilibrium \((x^*, p^*)\) of a primal-dual algorithm has a very simple characterization: \(x^* \) is the unique maximizer of the following convex problem called network utility maximization:
\[
\max_{x \geq 0} \sum_i U_i(x_i) \quad \text{subject to} \quad Rx \leq c
\]
and \(p^* \) is a minimizer of the associated Lagrangian dual problem. In this chapter we explain this equilibrium structure and explore some of its implications.

2.1 CONVEX OPTIMIZATION

We start by introducing some basic concepts in convex optimization.

2.1.1 CONVEX PROGRAM

A convex program is defined by a convex set and a convex function, as we now define.

Convex set. A set is called convex if, given any two points in the set, every point in between lies in the set.

Definition 2.2 A set \(D \subseteq \mathbb{R}^n \) is convex if, given any \(x, y \in D \),
\[
\alpha x + (1 - \alpha)y \in D, \quad \forall \alpha \in [0, 1]
\]
For instance for any \(x_0 \in D \) there exists \(r > 0 \) such that the \(r \)-ball around \(x_0 \),
2.1. CONVEX OPTIMIZATION

\[B_r(x_0) := \{ x \in D \mid \|x - x_0\|_2 \leq r \} \]

is contained in \(D \), where \(\|x\|_2 := \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \) is the Euclidean norm. Moreover \(B_r(x_0) \) is convex for any \(r > 0, x_0 \in D \). The definition is illustrated in Figure 2.1.

![Diagram](https://via.placeholder.com/150)

(a) Convex set.
(b) Nonconvex set.

Figure 2.1: Definition of a convex set: every point in between two points in the set lies in the set.

Three types of convex sets are the most useful in engineering applications. First is a set specified by linear inequalities:

Affine set: \[C := \{ x \in \mathbb{R}^n \mid Ax \leq b \}, \quad n \geq 1 \]

where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m, m \geq 1 \). The second is a second-order cone (SOC) defined as:

SOC: \[C := \{ (x, t) \in \mathbb{R}^{n+1} \mid \|x\|_2 \leq t \}, \quad n \geq 1 \]

A ball \(B_t(0) \) is a cross section of the second-order cone defined by \(\|x\|_2 \leq t \) for a fixed \(t \). The third is a set of semidefinite matrices defined as follows. A real matrix \(X \in \mathbb{R}^{n \times n} \) is symmetric if \(X = X^T \), i.e., \(X_{ij} = X_{ji} \) for all \(i, j = 1, \ldots, n \). A real matrix \(X \) is positive semidefinite (psd) if \(X \) is symmetric and \(x^T X x = \sum_{i,j} X_{ij} x_i x_j \geq 0 \) for all \(x \in \mathbb{R}^n \). We write \(X \succeq 0 \) to denote that \(X \) is positive semidefinite. Given a symmetric matrix \(X \in \mathbb{R}^{n \times n} \) the following are equivalent:

1. \(X \) is positive semidefinite.
2. All eigenvalues of \(X \) are nonnegative.
3. \(A = BB^T \) for some matrix \(B \in \mathbb{R}^{n \times m} \) and some natural number \(m \).

The set of all positive semidefinite matrices is:

psd matrices: \[S_n^+ := \{ X \in \mathbb{R}^{n \times n} \mid A \succeq 0 \}, \quad n \geq 1 \]
2. EQUILIBRIUM STRUCTURE

The proof that these three types of sets are convex is left as an exercise. Efficient algorithms exist to solve constrained optimization problems that minimize a certain cost function over an affine set, second-order cones, or semidefinite matrices.

Given these three basic convex sets we can create other convex sets through simple convexity-preserving operations. Let X and Y be linear subspaces. For example $X := \mathbb{R}^n$ and $Y := \mathbb{R}^m$.

1. **Linear transformation:** Let $f : X \to Y$ be linear.

 (a) If $A \subseteq X$ is convex then $f(A) := \{ f(x) \mid x \in A \} \subseteq Y$ is convex.

 (b) If $B \subseteq Y$ is convex then $f^{-1}(B) = \{ x \mid f(x) \in B \} \subseteq X$ is convex.

2. **Direct product:** Let $A \subseteq X$, $B \subseteq Y$ be convex. Then $A \times B := \{ (x, y) \mid x \in A, y \in B \}$ is convex. In fact the direct product of an arbitrary (e.g., uncountably many) number of convex sets is convex.

3. **Finite sum:** Let $A, B \subseteq X$ be convex. Then $A + B := \{ a + b \mid a \in A, b \in B \}$ is convex. Therefore the sum of any finite number of convex sets is convex.

4. **Arbitrary intersection:** Let $A, B \subseteq X$ be convex. Then the intersection $A \cap B$ is convex. In fact the intersection of an arbitrary collection of (e.g., uncountably many) convex sets is convex.

The proof that these set operations preserve convexity is left as an exercise. In contrast to intersection the union of two convex sets can be nonconvex.

Example 2.3 Consider the ellipsoid

$$E := \{ x \in \mathbb{R}^n \mid x^T Ax \leq c \}$$

where $A \in \mathbb{R}^{n \times n}$ is a psd matrix and $c > 0$. E is convex because it can be derived from an application of convexity-preserving operation on a convex set as follows. Since A is psd it can be expressed as $A := BB^T$ for some $B \in \mathbb{R}^{n \times m}$. Hence $x^T Ax = x^T BB^T x = \| BB^T x \|_2^2$.

Let $y = B^T x$. Then the set $C := \{(y, t) \in \mathbb{R}^{m+1} \mid \| y \|_2 \leq t \}$ is a (convex) SOC. Hence the set $D := \{ y \in \mathbb{R}^m \mid \| y \|_2 \leq c \}$ is convex since it is the intersection of two convex sets:

$$D = C \cap (\mathbb{R}^m \times \{ t = c \})$$

Then $E = f^{-1}(D)$ where $f(x) := B^T x$ is a linear function from \mathbb{R}^n to \mathbb{R}^m. Hence E is convex as desired.

Convex function.
Definition 2.4 A function $f : D \to \mathbb{R}$ defined over a convex domain $D \subseteq \mathbb{R}^n$ is convex if, for all $x, y \in D$ and all $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

It is strictly convex if the inequality is strict for $x \neq y$ and $\alpha \in (0, 1)$. A function f is concave (strictly concave) if $-f$ is convex (strictly convex).

The definition says that the straight line connecting $f(x)$ and $f(y)$ lies above the function f between x and y, as illustrated in Figure 2.2(a).

![Convex and Nonconvex Functions](image)

(a) Convex function.
(b) Nonconvex function.

![Differentiable Convex Function](image)

(c) Differentiable convex function.

Figure 2.2: Definition of a convex function: The straight line connection $f(x)$ and $f(y)$ lies above f between x and y. The linear approximation of a differentiable convex function f lies below f.

Example 2.5 If $f(x) = x^2$ then for any x, y and $\alpha \in [0, 1]$

$$\alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y) = \alpha(1 - \alpha)(x - y)^2 > 0$$
44 2. EQUILIBRIUM STRUCTURE

for \(x \neq y \) and \(\alpha \in (0, 1) \). Hence \(f \) is strictly convex.

Checking if a function is convex by verifying the convexity definition is often difficult. The following theorem provides three different ways to check the convexity of a function. Consider \(f : D \rightarrow \mathbb{R} \) over a convex domain \(D \subseteq \mathbb{R}^n \). Let \(\nabla f(x) \) denote the column vector of partial derivatives of \(f \) (whereas \(\frac{\partial f}{\partial x} \) denotes the row vector of partial derivatives). Let

\[
\nabla^2 f(x) := \frac{\partial^2 f}{\partial x^2} := \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{bmatrix}
\]

denote the \(n \times n \) Hessian matrix.

Theorem 2.6 The function \(f \) is convex on \(D \) if and only if any one of the following holds:

1. For a differentiable function \(f \),

\[
f(y) - f(x) \geq \nabla f(x)^T (y - x), \quad \forall x, y \in D
\]

2. For a twice differentiable function \(f \),

\[
\nabla^2 f(x) \succeq 0, \quad \forall x \in D
\]

i.e., the Hessian matrix is positive semidefinite (all eigenvalues are nonnegative).

3. For \(x \in D \) and all \(v \in \mathbb{R}^n \) the function

\[
g(t) := f(x + tv)
\]

is convex on \(\{ t \in \mathbb{R} \mid x + tv \in D \} \).

The first-order condition in Theorem 2.6.1 says that the function \(f \) always lies above its linear approximation, i.e., \(f(y) \) is always greater than or equal to the tangent plane to \(f \) at any point \(x \). This is illustrated in Figure 2.2(c). The second-order condition in Theorem 2.6.2 roughly says that the gradient at any point \(x \) is increasing around \(x \). The condition in Theorem 2.6.3 does not require differentiability of \(f \) and says that, if we take any cross section of the surface \(f \) defined by \((x, v) \), i.e., from \(x \) in the direction of \(v \) or \(-v\), the corresponding scalar function \(g(t) \) is convex.

A common mistake is to confuse the second-order condition in Theorem 2.6.2 that \(\nabla^2 f(x) \) is positive definite with the condition that

\[
x^T \nabla^2 f(x) x \geq 0 \quad \text{for all } x \in D
\]

For any \(x \in D \), \(\nabla^2 f(x) \succeq 0 \) if and only if

\[
y^T \nabla^2 f(x) y \geq 0 \quad \text{for all } y \in \mathbb{R}^n
\]
i.e., regardless of what D is, the test on $\nabla^2 f(x)$ is for all $y \in \mathbb{R}^n$. This is illustrated in the next example.

Example 2.7 Consider the function

$$f(x_1, x_2) = x_1 x_2$$

over the domain

$$D := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0\}$$

with

$$\nabla^2 f(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

We have

$$x^T \nabla^2 f(x)x = 2x_1 x_2 > 0 \quad \text{for all } x \in D$$

This however does not imply that f is strictly convex over D. The eigenvalues of $\nabla^2 f(x)$ are 1 and -1, and hence f is neither convex nor concave. Indeed the function value along the direction $x_1 = x_2$ corresponding to the eigenvalue-eigenvector pair $(1, [1 \ 1]^T)$ is given by

$$g(t) := f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = (x_1 + t)(x_2 + t), \quad t > -\min\{x_1, x_2\}$$

Hence $g(t)$ is convex in t, i.e., f is convex along $x_1 = x_2$. Along the direction $x_1 = -x_2$ corresponding to the eigenvalue-eigenvector pair $(-1, [1 \ -1]^T)$ the function value is

$$g(t) := f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) = (x_1 + t)(x_2 - t), \quad -x_1 \leq t \leq x_2$$

Hence $g(t)$ is concave in t, i.e., f is concave along $x_1 = -x_2$. This is illustrated in Figure 2.3.

Example 2.8 We illustrate Theorem 2.6 using $f(x) = \log x$ for $x > 0$.

1. We have $f'(x) = x^{-1}$ and for $x \neq y > 0$ (such that $\frac{y}{x} \neq 1$)

$$f(y) - f(x) = \log \frac{y}{x} < \frac{y}{x} - 1 = \frac{1}{x}(y-x) = f'(x)(y-x)$$

where the inequality follows from $\log z < z - 1$ for $z > 0$ and $z \neq 1$. Hence f is strictly concave by Theorem 2.6.1.
Figure 2.3: Contour plot of \(f(x) = x_1 x_2 \) which is neither convex nor concave over \(D := \{(x_1, x_2) \mid x_1 > 0, x_2 > 0\} \).
2. To use Theorem 2.6.2 we have

\[
f''(x) = -\frac{1}{x^2} < 0
\]

implying strict concavity of \(f \).

\[\Box\]

Example 2.9 We illustrate the three sufficient conditions of Theorem 2.6 using the convex function \(f : \mathbb{R}^2 \to \mathbb{R} \) defined by:

\[
f(x) := f(x_1, x_2) := x_1^2 - 4x_1x_2 + 4x_2^2 = (x_1 - 2x_2)^2
\]

For the first-order condition we have

\[
\nabla f(x) := \nabla f(x_1, x_2) = 2(x_1 - 2x_2) \begin{bmatrix} 1 \\ -2 \end{bmatrix}
\]

and hence

\[
f(y) - f(x) - \nabla f(x)^T(y - x)
\]

\[
= (y_1 - 2y_2)^2 - (x_1 - 2x_2)^2 - 2(x_1 - 2x_2)((y_1 - x_1) - 2(y_2 - x_2))
\]

\[
= (y_1 - 2y_2)^2 - 2(x_1 - 2x_2)(y_1 - 2y_2) + (x_1 - 2x_2)^2
\]

\[
= ((y_1 - 2y_2) - (x_1 - 2x_2))^2 \geq 0
\]

satisfying the condition of Theorem 2.6.1.

For Theorem 2.6.2 we have

\[
\nabla^2 f(x) = 2 \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}
\]

Therefore \(\nabla^2 f(x) \) is positive semidefinite as

\[
y^T \nabla^2 f(x) y = 2 \left(\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right)^2 \geq 0
\]

for any \(y \in \mathbb{R}^2 \).

For Theorem 2.6.3 we have

\[
g(t) := f(x + tv) = ((x_1 + tv_1) - 2(x_2 + tv_2))^2 = ((v_1 - 2v_2)t + (x_1 - 2x_2))^2
\]

which is clearly a convex function in \(t \) for any fixed \(x \) and \(v \).

\[\Box\]

The addition, multiplication by a positive constant, and supremum operations preserve convexity. Specifically suppose \(f_1 \) and \(f_2 \) are two convex functions on the same domain. Then
2. **EQUILIBRIUM STRUCTURE**

1. \(f := \alpha f_1 + \beta f_2, \alpha, \beta \geq 0, \) is convex.

2. \(f := \max\{f_1, f_2\} \) is convex. In fact \(f(x) := \sup_{y \in Y} f(x; y) \) is convex in \(x \) for arbitrary set \(Y \), provided that, for every \(y \in Y \) fixed, \(f(x; y) \) is convex in \(x \).

3. \(f(x, y) := |x| + |y| \) defined on \(\mathbb{R}^2 \) is convex as it can be expressed in terms of the supremum and addition operations \((f(x, y) = \max\{x, -x\} + \max\{y, -y\}) \).

Convex functions define another important class of convex sets. Let \(f : D \to \mathbb{R} \) where \(D \subseteq \mathbb{R}^n \). If \(D \) is a convex set and \(f \) a convex function then for each \(\alpha \in \mathbb{R} \) the **level set** \(\{x \in D \mid f(x) \leq \alpha\} \) is convex. Let \(f : D \to \mathbb{R}^m \) where \(D \subseteq \mathbb{R}^n \) be a vector-valued function where \(f := (f_1, \ldots, f_m) \) with \(f_i : D \to \mathbb{R} \). Then the set specified by:

\[
X := \{x \in D \mid f(x) \leq b\} \quad \text{for some } b \in \mathbb{R}^m
\]

is convex if each \(f_i \) is convex. This is because the level sets

\[
X_i := \{x \in D \mid f_i(x) \leq b_i\}, \quad i = 1, \ldots, m
\]

are all convex and \(X = \cap_{i=1}^m X_i \) and hence is convex since intersection preserves convexity.

Convex program. Consider an optimization problem of the form:

\[
\min_x f(x) \quad \text{subject to} \quad x \in X \tag{2.2}
\]

\(X \subseteq \mathbb{R}^n \) is called the **feasible set** and \(f : \mathbb{R}^n \to \mathbb{R} \) the **objective function.** The problem (2.2) is called a **convex program/problem** if \(f \) is a convex function and \(X \) is a convex set. For instance

\[
X := \{x \in \mathbb{R}^n \mid g(x) \leq b\} \quad \text{for some } b \in \mathbb{R}^m
\]

for a vector-valued convex function \(g : \mathbb{R}^n \to \mathbb{R}^m \). An \(x \in X \) is called a **feasible solution** of (2.2). A feasible solution \(x^* \) that attains the minimum of \(f \) over \(X \) (i.e., \(f(x^*) \leq f(x) \) for all \(x \in X \)) is called a (global) **optimal solution/optimum** or a (global) **minimizer.** A feasible solution \(x^* \) that attains the minimum of \(f \) over a neighborhood of \(x^* \) (i.e., \(f(x^*) \leq f(x) \) for all \(x \in B_r(x^*) \cap X \) for some \(r > 0 \)) is called a **local optimal solution/optimum** or a **local minimizer.** By setting \(U(x) = -f(x) \), the following maximization problem is called a convex program if \(U(x) \) is a concave function and \(X \) is a convex set:

\[
\max_x U(x) \quad \text{subject to} \quad x \in X
\]

An optimal solution may not exist and when it does, it may not be unique.

Theorem 2.10 Consider the problem (2.2).
1. An optimal solution x^* exists if X is nonempty and compact (closed and bounded) and f is continuous.

2. The optimal solution x^* is unique if f is strictly convex.

Note that the existence of an optimal solution x^* requires only that f be continuous, not necessarily convex.

Convexity is important for the efficient computation of an optimal solution. This is because for a convex objective function, local optimality implies global optimality. Moreover only the first-order condition is required to guarantee local optimality. Specifically, for an unconstrained minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

a necessary condition for a point x^* to be a local minimizer is (assuming f is differentiable)

$$\nabla f(x^*) = 0$$

If f is convex then this is also sufficient for x^* to be globally optimal, as illustrated in Figure 2.2. For constrained minimization problem (2.2) where X is nonempty, closed and convex, the first-order necessary condition for $x^* \in X$ to be a local minimizer becomes: there is a neighborhood $B_r(x^*)$ for some $r > 0$ such that

$$\nabla^T f(x^*)(x - x^*) \geq 0 \quad \forall x \in B_r(x^*) \cap X$$

(2.3)

i.e., moving away from x^* to any other feasible point x in $B_r(x^*)$ can only increase the function value f. If f is convex then this is both necessary and sufficient for x^* to be globally optimal. To see this, suppose (2.3) holds but there is another $\hat{x} \in X$ such that $f(\hat{x}) < f(x^*)$. Consider $z(\alpha) := \alpha \hat{x} + (1 - \alpha)x^*$. Since X is convex $z(\alpha)$ is feasible for $\alpha \in [0, 1]$. Since f is convex we have, for any $\alpha \in (0, 1]$,

$$f(z(\alpha)) \leq \alpha f(\hat{x}) + (1 - \alpha)f(x^*) < f(x^*)$$

But, for small enough $\alpha > 0$ so that $z(\alpha) \in B_r(x^*)$, this contradicts

$$f(z(\alpha)) \geq f(x^*) + \nabla^T f(x^*)(z(\alpha) - x^*) \geq f(x^*)$$

where the first inequality follows from Theorem 2.6.1 and the second inequality from (2.3). Hence x^* is globally optimal in X.

Example 2.11 Consider

$$\min_{x \in \mathbb{R}} f(x) := x^2 \quad \text{subject to } x \geq a$$
2. EQUILIBRIUM STRUCTURE

Figure 2.4: Example 2.11: \(\min_{x \geq a} x^2 \). If \(a \leq 0 \) then the unique minimizer is \(x_1^* = 0 \) where \(f'(x^*) = 0 \). If \(a > 0 \) then the unique minimizer is \(x_2^* = a \) where \(f'(x^*) > 0 \).
See Figure 2.4. It is clear from the figure that the unique minimizer is 0 where \(f'(0) = 0 \) if \(a \leq 0 \) and \(a \) where \(f'(a) > 0 \) if \(a > 0 \). We will derive this conclusion from the optimality condition (2.3) which is

\[
f'(x^*)(x - x^*) \geq 0, \quad \forall x \geq a
\] (2.4)

First suppose \(a \leq 0 \). If \(a \leq x^* < 0 \) then \(f'(x^*) < 0 \) and there exists a feasible \(x > x^* \) where (2.4) cannot be satisfied. Similarly if \(x^* > 0 \geq a \) then \(f'(x^*) > 0 \) and there exists a feasible \(a \leq x < x^* \) where (2.4) cannot be satisfied. Hence the unique optimal is \(x^* = 0 \) where \(f'(x^*) = 0 \). Suppose next \(a > 0 \). Then \(f'(x) > 0 \) for any feasible \(x \geq a \). Then the only way (2.4) can be satisfied is if \(x^* = a \).

Therefore the optimality condition reduces for this example (for any \(a \in \mathbb{R} \)) to: \(x^* \) is optimal if and only if there exists a \(p^* \) such that

\[
x^* \geq a, \quad p^* \geq 0, \quad f'(x^*) = p^*, \quad p^*(x^* - a) = 0
\]

This is called the Karush-Kuhn-Tucker (KKT) condition for optimality.

2.1.2 KKT THEOREM AND DUALITY

For our purposes a special case of (2.2) is sufficient where the objective function \(f \) is separable in \(x_i \) and the feasible set \(X \) is specified by a set of linear inequalities (i.e., an affine set). It is also more convenient for the application to TCP/AQM to consider, without loss of generality, maximization instead of minimization.

Consider

\[
\max_{x \geq 0} \sum_{i=1}^{N} U_i(x_i) \quad \text{subject to} \quad Rx \leq c \quad (2.5)
\]

where \(R \in \mathbb{R}^{L \times N} \) is any \(L \times N \) matrix and \(c \in \mathbb{R}^L \) is any vector. They will specialize to a routing matrix and a link capacity vector for TCP/AQM later, but remain a generic matrix and a generic vector in this section. Hence there are \(L \) linear (or affine) constraints:

\[
\sum_i R_{li}x_i \leq c_l, \quad l = 1, \ldots, L
\]

Even though the objective function is separable in the decision variables \(x_i \), these variables are coupled through the constraint \(Rx \leq c \). A direct solution will therefore require the coordination among the \(x_i \)’s. When (2.5) models TCP congestion control (see below), this means that all TCP sources must coordinate in deciding their sending rates. This is clearly impractical on a large network like the Internet. The simple structure of (2.5) – separable objective linear constraints – however means that a decentralized solution can be derived by considering the Lagrangian dual (or the dual) problem of (2.5).
To derive the dual problem define the Lagrangian of (2.5) to be the following function:

\[L(x, p) := \sum_i U_i(x_i) - p^T(Rx - c) \quad \text{for } p \geq 0 \]

To interpret, note that the Lagrangian \(L(x, p) \) contains \(L \) terms each of the form:

\[p_l \left(\sum_i R_{li} x_i - c_l \right), \quad l = 1, \ldots, L \]

one for each constraint \(\sum_i R_{li} x_i \leq c_l \). Since \(p_l \geq 0 \), this term is nonnegative if \(x \) violates the constraint. Hence one can interpret \(L(x, p) \) as the sum of the primal objective function \(\sum_i U_i(x_i) \) and a penalty when any of the constraints in (2.5) is violated. Indeed if we minimize over each \(p_l \geq 0 \) the penalty term \(p_l(\sum_i R_{li} x_i - c_l) \) we will ensure that no constraints can be violated. Hence the problem (2.5), also called the primal problem, is equivalent to

\[
\max_{x : x \geq 0, Rx \leq c} \sum_i U_i(x_i) = \max_{x \geq 0} \min_{p \geq 0} L(x, p)
\]

The dual objective function is defined to be:

\[D(p) := \max_{x \geq 0} L(x, p) \]

\[= \sum_i \max_{x_i \geq 0} \left(U_i(x_i) - x_i \sum_l R_{li} p_l \right) + \sum_l c_l p_l \]

where the last equality follows because the separability of the objective function allows us to interchange the order of \(\max_{x \geq 0} \) and \(\sum_i \). The maximization over \(x \) in the definition of the dual objective function \(D(p) \) is unconstrained (i.e., \(x \) may not satisfy \(Rx \leq c \) but still satisfied the constraint \(x \geq 0 \) that has not been dualized), and typically much easier to solve than the original constrained problem (2.5). When \(U_i \) are strictly concave and continuously differentiable functions, the maximization over \(x_i \) can be solved analytically: given a \(p \in \mathbb{R}_+^L \)

\[x_i := x_i(p) := \left[U_i^{-1} \left(\sum_l R_{li} p_l \right) \right]^+ \quad (2.6) \]
2.1. CONVEX OPTIMIZATION

where \([a]^+ := \max\{a, 0\}\) for any \(a \in \mathbb{R}\). \(U'_i\) are the derivatives of \(U_i\) and \(U'^{-1}_i\) are their inverses.\(^2\) In terms of \(x_i(p)\) defined in (2.6) we can write

\[
D(p) = \sum_i \left(U_i(x_i(p)) - x_i(p) \sum_l R_{il}p_l \right) + \sum_l c_l p_l
\]

Then the (Lagrangian) dual problem is defined to be:

\[
\min_{p \geq 0} \max_{x \geq 0} L(x, p)
\]

where \(x_i(p)\) are given by (2.6). Hence the dual problem is:

\[
\min_{p \geq 0} \max_{x \geq 0} \left(\sum_i U_i(x_i(p)) - x_i(p) \sum_l R_{il}p_l \right) + \sum_l c_l p_l
\]

This is called the weak duality theorem. For general nonlinear optimization the inequality can be strict in which case the gap

\[
\min_{p \geq 0} D(p) - \max_{x : x \geq 0, Rx \leq c} \sum_i U_i(x_i) \leq \min_{p \geq 0} D(p)
\]

\(^1\)Even if \(U_i\) is strictly concave increasing it is necessary to project \(U'^{-1}_i(q_i)\) to the nonnegative real. For example if \(U_i(x_i) = \log(x_i + a_i)\) for \(x_i \geq 0\) with \(a_i > 0\) then \(U'^{-1}_i(q_i) = \frac{1}{q_i} - a_i\) for \(q_i > 0\). Hence \(U'^{-1}_i(q_i)\) can be negative for sufficiently large \(q_i\). In the context of congestion control, projection means that if the end-to-end congestion price \(q_i\) is sufficiently large then set the sending rate \(x_i\) to zero.

\(^2\)Since the minimization is over a scalar \(x_i\), if \(U_i\) is concave and continuously differentiable then the inverse of \(U_i\) may not exist in which case \(U'^{-1}_i\) is defined to be the generalized inverse:

\[
U'^{-1}_i(p) := \inf \left\{ x_i \in \mathbb{R} \mid U'_i(x_i) = \sum_l R_{il}p_l \right\}
\]

If \(U_i\) is concave and differentiable then \(U'_i\) is not necessarily continuous in which case the generalized inverse \(U'^{-1}_i\) is:

\[
U'^{-1}_i(p) := \inf \left\{ x_i \in \mathbb{R} \mid U'_i(x_i) \leq \sum_l R_{il}p_l \right\}
\]
is called the *duality gap*. For our convex program (2.5)–(2.7), *strong duality* holds and the duality gap is zero.³ The dual problem (2.7) is sometimes called the Lagrange relaxation because, in the maximization of $L(x, p)$ over x, the hard constraint $Rx \leq c$ has been relaxed into a penalty term in the Lagrangian function. It is therefore not surprising that the relaxed problem (2.7) yields an upper bound on the original problem (2.5).

The key results on convex optimization that we will use are summarized in the following theorem.

Theorem 2.12 Consider the convex problem (2.5) and its Lagrangian dual problem (2.7) and assume (2.5) is feasible. Suppose further that U_i are continuously differentiable and concave. An $x^* \in \mathbb{R}_+^N$ is primal optimal if and only if there exists a $p^* \in \mathbb{R}_L$ such that

1. primal feasibility: $Rx^* \leq c, x^* \geq 0$.
2. dual feasibility: $p^* \geq 0$.
3. stationarity: $U_i'(x_i^*) \leq \sum_l R_{il}p^*_l$, with equality if $x_i^* > 0$, for $i = 1, \ldots, N$.
4. complementary slackness: $p^*_l (\sum_i R_{il}x_i^* - c_l) = 0$ for $l = 1, \ldots, L$.

Moreover p^* is dual optimal, i.e., p^* minimizes (2.7). The primal optimal solution x^* is unique if U_i are strictly concave. If, in addition, R has a full row rank then the dual optimal solution p^* is unique.

The complementary slackness condition means that if $p_i^* > 0$ then the constraint must be active $\sum_i R_{il}x^* = c_l$; equivalently if the constraint is inactive $\sum_i R_{il}x^* < c_l$ then $p_i^* = 0$.

2.2 NETWORK UTILITY MAXIMIZATION

We now apply the theory of convex optimization to understand the equilibrium structure of TCP/AQM algorithms. The idea is to identify equilibrium conditions of these dynamical systems with the KKT condition and derive the underlying utility functions that an equilibrium point implicitly optimizes. We first apply Theorem 2.12 to example systems Reno/RED, Vegas/DropTail and FAST/DropTail. We then prove the result for a class of dual algorithms and for general primal-dual algorithms. We discuss implications of network utility maximization on these algorithms.

³If, in addition to the linear constraints, there are nonlinear convex *inequality* constraints in (2.5), then strong duality holds provided Slater’s condition, or other constraint qualifications, hold. Slater’s condition is not needed for linear inequality constraints [11].
2.2. NETWORK UTILITY MAXIMIZATION

2.2.1 EXAMPLE: RENO/RED

From (1.1b) in Chapter 1.3.1 Reno is modeled by

\[\dot{x}_i = \left(\frac{1}{T^2_i} - \frac{1}{2} q_i(t) x_i^2(t) \right)_{x_i(t)}^+ \]

where \(q(t) := R^T p(t) \) and for any \(a, b \in \mathbb{R}, (a)_b^+ = a \) if \(a > 0 \) or \(b > 0 \) and 0 otherwise. Here, as in the rest of this chapter, \(R \) denotes a routing matrix. We take a simpler model of RED where the loss probability is linear in the backlog until it saturates at 1:

\[\dot{b}_l = (y_l(t) - c_l)_l^+ \]

\[p_l(t) = \min \{ pb_l(t), 1 \} \]

where \(y(t) := Rx(t) \) and \(c := (c_l, l \in L) > 0 \) is a link capacity vector.

The equilibrium of Reno/RED is defined by \(\dot{x}_i = 0 \) and \(\dot{b}_l = 0 \) for all \(i, l \). By the definition of \((a)_b^+ \), \(\dot{x}_i = 0 \) can only be zero if the equilibrium rate \(x_i^* > 0 \) and

\[\frac{1}{T^2_i} - \frac{1}{2} q_i^* (x_i^*)^2 = 0 \]

since \(T_i > 0 \). Similarly \(\dot{b}_l = 0 \) implies \(y_l^* \leq c_l \) with equality if \(b_l^* > 0 \). Hence the equilibrium of Reno/RED is characterized by:

\[x_i^* = \frac{1}{T_i} \frac{\sqrt{2}}{\sqrt{q_i^*}} \quad \text{and} \quad y_l^* \begin{cases} \leq c_l \\ = c_l \quad \text{if} \quad b_l^* > 0 \end{cases} \quad \text{for all} \quad i, l \quad (2.8) \]

where \(p_l^* = \min \{ pb_l^*, 1 \} \). Hence we have

\[\frac{1}{T^2_i} \frac{2}{(x_i^*)^2} = q_i^* = \sum_l R_{li} p_l^* \]

Define a function \(U_i(x_i) \) such that its derivative equals the left-hand side expression:

\[U_i'(x_i) := \frac{1}{T^2_i} \frac{2}{x_i^3} \]

so that

\[U_i(x_i) := -\frac{1}{T^2_i} \frac{2}{x_i} \]

and \(U(x) := \sum_i U_i(x_i) \).

Theorem 2.12 then implies that a point \((x^*, p^*) \in \mathbb{R}^{N+L} \) is an equilibrium of Reno/RED if and only if it is an optimal solution of

\[\max_{x \geq 0} U(x) := -\sum_i \frac{2}{T^2_i} \frac{1}{x_i} \quad \text{subject to} \quad Rx \leq c \quad (2.9) \]
2. EQUILIBRIUM STRUCTURE

and its Lagrangian dual. To see this, note that, from Theorem 2.12, \((x^*, p^*)\) is an optimal solution of (2.9) and its dual if and only if

\[
x^* \geq 0, \quad Rx^* \leq c, \quad p^* \geq 0, \quad \frac{2}{T_i^2(x^*_i)^2} = \sum_l R_{il}p^*_l = q^*_i, \quad y^*_l \left\{ \begin{array}{l} \leq c_l \quad \text{if } b^*_l > 0 \\ = c_l \end{array} \right. \]

These conditions coincide with the definition of equilibrium for Reno/RED.

Finally we claim that \((x^*, p^*)\) is unique if the routing matrix \(R\) has full row rank.

Since \(f_i\) are strictly convex the optimal \(x^*_i\) is unique. Hence the optimal \(q^*_i\) is unique since

\[
q^*_i = \frac{2}{T_i^2(x^*_i)^2}
\]

Since \(R\) has full row rank, \(RR^T\) is invertible and hence

\[
q^* = R^Tp^* \implies Rq^* = RR^Tp^* \implies p^* = (RR^T)^{-1}Rq^*
\]

which is unique.

Implications. From (2.8) the steady-state throughput of Reno is inversely proportional to the round-trip time \(T_i\) and inversely proportional to the square root of the end-to-end loss probability \(q_i\). This means that a long-distance connection (where the propagation delay is long) has a smaller steady-state throughput than a local connection. It also means that a TCP flow whose path has a high loss probability suffers a low throughput, even if the losses are not due to buffer overflow (congestion) but due to random bit error or interference over a wireless link.

2.2.2 EXAMPLES: VEGAS/DROPTAIL; FAST/DROPTAIL

Vegas is modeled by (writing \(\alpha_i\) instead of \(\alpha_id_i\)):

\[
\dot{w}_i = \frac{1}{d_i + q_i(t)} \text{sign} (\alpha_i - x_i(t)q_i(t))^{+}, \quad x_i(t) = \frac{w_i(t)}{d_i + q_i(t)} \tag{2.10a}
\]

\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)^{+}_{p_l(t)} \tag{2.10b}
\]

where \(q(t) := R^Tp(t), \ y(t) := Rx(t), \) and \(\text{sign}(a) := 1 \text{ if } a > 0, \ -1 \text{ if } a < 0 \text{ and } 0 \text{ if } a = 0.\)

Let \(T_i(t) := d_i + q_i(t)\) be the round-trip time of TCP flow \(i\) at time \(t.\)

Equilibrium \((x^*, p^*)\) (or equivalently \((w^*, p^*)\)) is defined by:

\[
\dot{w}_i = 0 \quad \text{and} \quad \dot{p}_l = 0 \quad \text{for all } i, l
\]

yielding

\[
x^*_i q^*_i = \alpha_i \quad \text{and} \quad y^*_l \left\{ \begin{array}{l} \leq c_l \quad \text{if } p^*_l > 0 \\ = c_l \end{array} \right. \quad \text{for all } i, l
\]
2.2. NETWORK UTILITY MAXIMIZATION

FAST is modeled by:

\[
\dot{w}_i = \gamma (\alpha_i - x_i(t)q_i(t))^+ \quad x_i(t) = \frac{w_i(t)}{d_i + q_i(t)}
\]

\[
\dot{p}_l = \frac{1}{c_l} (y_l(t) - c_l)^+
\]

(2.11a)

(2.11b)

It has the same equilibrium as Vegas.

At equilibrium we have

\[
\sum_l R_{li}p_i^* = q_i^* = \frac{\alpha_i}{x_i^*}
\]

Hence equating

\[
U'_i(x_i) = \sum_l R_{li}p_l = \frac{\alpha_i}{x_i}
\]

yields the utility function \(U_i(x_i) = \alpha_i \log x_i \). A point \((x^*, p^*) \in \mathbb{R}^{N+L} \) is an equilibrium of Vegas or FAST if and only if it is an optimal solution of

\[
\max_{x \geq 0} \sum_i \alpha_i \log x_i \quad \text{subject to} \quad Rx \leq c
\]

(2.12)

and its Lagrangian dual. This is because Theorem 2.12 states that \((x^*, p^*) \) is an optimal solution of (2.12) if and only if

\[
x^* \geq 0, \quad Rx^* \leq c, \quad p^* \geq 0, \quad \frac{\alpha_i}{x_i^*} = \sum_l R_{li}p_l^* =: q_i^*, \quad y_l^* \left\{ \begin{array}{c} \leq c_l \quad \text{if } p_l^* > 0 \end{array} \right.
\]

These conditions coincide with the definition of equilibrium for Vegas or FAST. Finally \((x^*, p^*) \) is unique if the routing matrix \(R \) has full row rank.

Implications. As mentioned before, FAST can be considered a high-speed version of Vegas in the following sense. Vegas adjusts its window by 1 packet per round-trip time based on the sign of \(\alpha_i - x_i(t)q_i(t) \) but regardless of how far \(x_i(t)q_i(t) \) is from its target value \(\alpha_i \) (compare (2.10a) and (2.11a)). FAST on the other hand adjusts its window based on both the sign and the magnitude of \(\alpha_i - x_i(t)q_i(t) \). Hence under FAST \(x_i(t)q_i(t) \) converges rapidly to a neighborhood of the target \(\alpha_i \) when it is far away and slows down when it is close.

Unlike Reno, Vegas/FAST do not discriminate long-distance flows that have a large propagation delay. As explained in Chapter 1.3.2 the parameter \(\alpha_i \) represents the target (steady-state) number of flow \(i \)'s own packets in buffers along its path, not including packets that are propagating in the links. It determines both the throughput \(x^* \) (primal variable) and queueing delay \(p^* \) (dual variable): a larger \(\alpha_i \) generally leads to a higher throughput \(x_i^* \) and larger queueing delay \(p^* \).
2. EQUILIBRIUM STRUCTURE

2.2.3 EQUILIBRIUM OF DUAL ALGORITHM

Consider the class of general dual algorithms:

\[\dot{p}_l = \gamma_l (y_l(t) - c_l)_{p_l(t)}^+ := g_l(y_l(t), p_l(t)) \]
\[x_i(t) = (U_i'^{-1}(q_i(t)))^+ \]

(2.13a)

(2.13b)

where for any \(a \in \mathbb{R}, (a)^+ := \max\{a, 0\} \) and \(U_i'^{-1} \) are the inverses of the derivatives \(U_i' \) of the utility functions \(U_i \). For any \(a \in \mathbb{R} \) and \(b \geq 0, (a)^+_b := a \) if \(a > 0 \) or \(b > 0 \) and \((a)^+_b := 0 \) if \(a \leq 0 \) and \(b = 0 \). As before,

\[q_i(t) = \sum_l R_{il} p_l(t) \quad \text{and} \quad y_i(t) = \sum_i R_{li} x_i(t) \]

The previous examples suggest that the link algorithm (2.13a) can model congestion prices that are proportional to queue length or queueing delay under first-in-first-out queueing discipline.

Dual algorithms have dynamics only in the congestion prices, not in the source rates. Since \(x(t) \), and hence \(y(t) \), are statically determined by \(p(t) \) through (2.13b), we also write \(x(p) = x(q) \) and \(y(p) \) to mean, componentwise,

\[x_i(p) := x_i(q_i) := (U_i'^{-1}(q_i))^+ \quad \text{and} \quad y_i(p) := \sum_l R_{li} x_i(p) \]

where \(q_i := \sum_l R_{li} p_l \). We call \(p^* \), as opposed to \((x^*, p^*) \), an equilibrium of the dual algorithm (2.13) if

\[g(y(p^*), p^*) = 0 \]

where \(g \) is defined in (2.13a). Consider the network utilization maximization:

\[\max_{x \geq 0} \sum_i U_i(x_i) \quad \text{subject to } Rx \leq c \]

(2.14a)

and its Lagrangian dual:

\[\min_{p \geq 0} D(p) := \sum_i \max_{x_i \geq 0} (U_i(x_i) - x_i q_i) + \sum_l p_l c_l \]

(2.14b)

We make the following assumptions:

C2.1: Every link has a strictly positive finite capacity \(c > 0 \). \(R \) has no zero row (every flow uses at least one link). The domains over which \(U_i \) are defined satisfy: there exists a finite \(p \) such that

\[\sum_l R_{li} x_i(p) \leq c_l, \quad l = 1, \ldots, L \]
Condition C2.1 implies that (2.14a) is feasible. If \(U_i \) are continuous then an optimal solution exists. The condition C2.2 on the second derivative of \(U_i \) serves two purposes. First it ensures that the primal optimal \(x^* \) is unique and when \(R \) has a full row rank, the dual optimal \(p^* \) will also be unique when \(x^* > 0 \). Second it ensures that the dual dynamic \(g(y(p), p) \), though discontinuous in \(p \), is a projection of a locally Lipschitz function to a closed convex set. This allows the application of Theorem 1.9.2 to guarantee the existence and uniqueness of solution to (2.13); see Remark 3.17 in Chapter 3.2.

Theorem 2.13 Suppose conditions C2.1 and C2.2 hold. Then the dual algorithm (2.13) has an equilibrium \(p^* \) that is an optimal solution of the dual problem (2.14b). Moreover the equilibrium source rate \(x(p^*) \) is the unique optimal solution of the primal problem (2.14a). If the routing matrix \(R \) has full row rank and \(x^* > 0 \) then \(p^* \) is unique.

Proof. Since \(U_i \) are continuously differentiable and strictly concave, \(U'_i \) are continuous and strictly decreasing and hence their inverses \(U'^{-1}_i \) are well-defined. The feasible set is nonempty under condition C2.1 and compact, and hence Theorem 2.10 implies that an optimal solution \(x^* \) of the primal problem (2.14a) exists. Moreover it is unique since the objective function is strictly concave. By Theorem 2.12 there exists a Lagrange multiplier \(p^* \geq 0 \) such that

\[
U'(x^*) \leq q^*, \quad x^* \geq 0, \quad (x^*)^T (U'(x^*) - q^*) = 0 \\
y^* = Rx^* \leq c, \quad p^* \geq 0, \quad (p^*)^T (y^* - c) = 0
\]

and that \(p^* \) is optimal for the dual problem (2.14b). This is exactly the condition for \(g(y(p^*), p^*) = 0 \), i.e., for \(p^* \) to be an equilibrium of (2.13).

To prove the uniqueness of \(p^* \), note that \(x^* > 0 \) implies \(q^*_i = U'_i(x^*_i) \) holds for all \(i \). Hence \(q^* \) is unique since \(x^* \) is unique. Then

\[
q^* = R^T p^* \quad \implies \quad Rq^* = RR^T p^* \quad \implies \quad p^* = (RR^T)^{-1} Rq^*
\]

where \((RR^T)^{-1} \) exists since \(R \) has a full row rank. Hence \(p^* \) is unique when \(R \) has a full row rank and \(x^* > 0 \). This proves the existence and uniqueness of the equilibrium \(p^* \) and the primal-dual optimality of \(p^* \) and the associated source rates \(x^* := x(p^*) \).

In the proof above for the uniqueness of \(p^* \) we have assumed that \(q^* \) that is determined by \(U'_i(x^*) \) is in the row space of \(R \) (\(q^* = R^T p^* \) for some \(p^* \)); see Exercise 2.9 when this assumption does not hold. The condition \(x^* > 0 \) is needed for the uniqueness of \(p^* \) because otherwise it is possible to have multiple equilibrium \(p^* \) even when \(R \) has a full row rank; see Exercise 2.11.
2. EQUILIBRIUM STRUCTURE

2.2.4 EQUILIBRIUM OF PRIMAL-DUAL ALGORITHM

The examples above suggest that different TCP congestion control algorithms all solve the same prototypical network utility maximization (NUM) problem but may have different utility functions. This is indeed the case as long as the end-to-end congestion measure q_i to which the congestion control algorithm adapts is the sum of the link congestion measures p_l.

Consider the class of primal-dual algorithms:

$$\dot{x} = (f(x(t), q(t)))^+_{x(t)} \quad (2.15a)$$

$$\dot{p} = (g(y(t), p(t)))^+_{p(t)} \quad (2.15b)$$

where

$$q(t) = R^T p(t) \quad \text{and} \quad y(t) = Rx(t) \quad (2.15c)$$

A point $(x, p) \geq 0$ is an equilibrium of (2.15) if and only if $\dot{x} = 0$ and $\dot{p} = 0$. Since

$$(f_i(x_i, q_i))^+_{x_i} := \begin{cases} f_i(x_i, q_i) & \text{if } f_i(x_i, q_i) > 0 \text{ or } x_i > 0 \\ 0 & \text{if } f_i(x_i, q_i) \leq 0 \text{ and } x_i = 0 \end{cases}$$

$\dot{x}_i = 0$ if and only if

$$f_i(x_i, q_i) \leq 0 \quad \text{with equality if } x_i > 0, \quad \forall i \quad (2.16a)$$

Similarly $\dot{p}_l = 0$ if and only if

$$g_l(y_l, p_l) \leq 0 \quad \text{with equality if } p_l > 0, \quad \forall l \quad (2.16b)$$

Formally we say that a point (x, p) is an *equilibrium* of the basic model (2.15) if and only if $x \geq 0$, $p \geq 0$ and (x, p) satisfies (2.16).

Consider in particular one of the equilibrium conditions $f_i(x_i, q_i) = 0$ when $x_i > 0$ (we will consider the case of $x_i = 0$ later). We will argue that, under appropriate assumptions, the set of (x_i, q_i) that satisfies this condition defines implicitly $q_i =: u_i(x_i)$ as a function of x_i. This will imply that any reasonable TCP design f_i inevitably induces a utility function that source i implicitly optimizes as we will see. The function f_i for Reno is (see Chapter 2.2.1):

$$f_i(x_i, q_i) := \frac{1}{T_i^2} - \frac{1}{2} q_i x_i^2 \quad (2.17a)$$

and that for FAST is from (2.11a):

$$f_i(w_i, q_i) := \gamma \left(\alpha_i - \frac{w_i q_i}{d_i + q_i} \right) \quad (2.17b)$$
Hence any equilibrium will have $x_i > 0$ and $f_i(x_i, q_i) = 0$ for Reno and $w_i > 0$ and $f_i(w_i, q_i) = 0$ for FAST. Each of these conditions defines implicitly q_i as a function of x_i or w_i. The next result generalizes these examples.

Lemma 2.14 Consider a continuously differentiable $f_i : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$. Suppose for each $x_i > 0$ in an arbitrary set $X_i \subseteq \mathbb{R}_+$ the following conditions (dependent on x_i) hold:

1. $\frac{\partial f_i}{\partial q_i}(x_i, q_i) < 0$ over a compact interval $Q_i := [0, \bar{q}_i]$ for some positive finite \bar{q}_i;

2. there exists \hat{q}_i with $0 < \hat{q}_i \leq \bar{q}_i$ such that $f_i(x_i, q_i) \leq 0$ for all $q_i \geq \hat{q}_i$.

3. $f_i(x_i, 0) > 0$.

Then given any $x_i \in X_i$ with $x_i > 0$, there is a unique $q_i := u_i(x_i)$ that satisfies $f_i(x_i, u_i(x_i)) = 0$ and $u_i(x_i) \geq 0$. Moreover if for each $(x_i, q_i) \in X_i \times Q_i$

4. $\frac{\partial f_i}{\partial x_i}(x_i, q_i) < 0$ as long as $x_i > 0$ and $q_i > 0$.

then $u_i(x_i)$ is a strictly decreasing function on $X_i \setminus \{0\}$.

Before proving the lemma we explain how the conditions in the lemma are motivated by practical TCP design f_i. The f_i of Reno and FAST in (2.17) both satisfy the assumptions in the lemma.\(^4\) For example, given $x_i > 0$ for Reno, $\hat{q}_i \geq 2/(x_i T_i)^2$ from (2.17a) and \bar{q}_i can be any number greater than or equal to \hat{q}_i. The first assumption says that, as long as $x_i > 0$, as congestion price q_i along source i’s path increases, the rate adjustment f_i will strictly decrease. Moreover, when it is high enough (when $q_i \geq \hat{q}_i$), the sending rate x_i itself will be reduced ($f_i(x_i, q_i) \leq 0$). The first two assumptions thus imply that, as congestion price q_i increases, source i will eventually reduce its rate x_i but the size of the reduction strictly decreases. This implies a strictly concave utility function as we will see below. The third assumption says that when there is no congestion $q_i = 0$, the rate will be raised ($f_i > 0$). The last assumption says that the higher the sending rate x_i the smaller the adjustment f_i.

These assumptions are satisfied by Reno/Vegas/FAST. The conclusion that u_i is strictly decreasing means that the more severe the congestion, the smaller the sending rate. As we will see below this implies the strict concavity of the utility functions. By the continuity of f_i, assumptions 1 and 4 imply that $\frac{\partial f_i}{\partial x_i} \leq 0$ and $\frac{\partial f_i}{\partial q_i} \leq 0$ over $\mathbb{R}_+ \times \mathbb{R}_+$.

\(^4\)Note that if, e.g., FAST is designed to be

$$f_i(w_i, q_i) := \gamma \left(\frac{\alpha_i}{w_i} - \frac{q_i}{d_i + q_i} \right)$$

then f_i is not defined at $w_i = 0$ and hence not continuously differentiable on $\mathbb{R}_+ \times \mathbb{R}_+$ as required by the lemma.
62 2. EQUILIBRIUM STRUCTURE

Proof of Lemma 2.14. We first prove the existence of the implicit function u_i on $X_i \setminus \{0\}$. Fix any $x_i \in X_i$ with $x_i > 0$. Define for each $q_i \in Q_i$

$$h_i(q_i) := (q_i + \gamma f_i(x_i, q_i))^+$$

where $(a)^+ := \max\{a, 0\}$ for any $a \in \mathbb{R}$ and $\gamma > 0$ will be determined below. We will prove that h_i is a contraction mapping from the closed set Q_i into Q_i. Then the contraction theorem (see Theorem 5.6 in Chapter 5) implies that there is a unique fixed point $q_i =$: $u_i(x_i)$ of h_i in Q_i, i.e.,

$$u_i(x_i) = (u_i(x_i) + \gamma f_i(x_i, u_i(x_i)))^+$$

Moreover $u_i(x_i) = q_i \geq 0$. If the fixed point $q_i = 0$ then the above equation becomes $0 = (f_i(x_i, 0))^+$, which is impossible under assumption 3 of the lemma. Hence the fixed point $q_i > 0$ and $f_i(x_i, u_i(x_i)) = 0$ as desired.

Hence, for the existence of u_i, we are left to prove that h_i is a mapping from Q_i to Q_i and then h_i is a contraction mapping.

First, if $\hat{q}_i \leq q_i \leq \tilde{q}_i$ then $f_i(x_i, q_i) \leq 0$ by assumption 2 of the lemma and hence $h_i(q_i) \leq q_i \leq \tilde{q}_i$, i.e., $h_i(q_i) \in Q_i$. Consider now $0 \leq q_i < \hat{q}_i$. Let $a := \max_{q_i' \in [0, q_i]} f_i(x_i, q_i')$ which exists and is finite since f_i is continuous. Moreover $h(q_i) \leq (q_i + \gamma a)^+$. If $a \leq 0$ then $0 \leq h_i(q_i) \leq q_i \leq \tilde{q}_i$ and hence $h_i(q_i) \in Q_i$. Otherwise $a > 0$ and $0 \leq h_i(q_i) \leq q_i + \gamma a \leq \tilde{q}_i$ as long as $0 < \gamma \leq \gamma_1$ with

$$\gamma_1 := \frac{\tilde{q}_i - q_i}{a} > 0$$

where the strict inequality follows from $q_i < \tilde{q}_i$ and a is finite. This proves that h_i is a mapping from Q_i into Q_i.

To show that h_i is a contraction on Q_i, use the mean value theorem to obtain: for any q_i, \tilde{q}_i in Q_i,

$$h_i(q_i) - h_i(\tilde{q}_i) = (q_i - \tilde{q}_i) + \gamma (f_i(x_i, q_i) - f_i(x_i, \tilde{q}_i)) = \left(1 + \gamma \frac{\partial f_i}{\partial q_i}(x_i, z)\right) (q_i - \tilde{q}_i)$$

for some z between q_i and \tilde{q}_i. Since f_i is continuously differentiable and Q_i is compact, assumption 1 of the lemma implies that

$$m_i(x_i) := -\max_{q_i' \in Q_i} \frac{\partial f_i}{\partial q_i}(x_i, q_i') \quad \text{and} \quad M_i(x_i) := -\min_{q_i' \in Q_i} \frac{\partial f_i}{\partial q_i}(x_i, q_i')$$

satisfy $0 < m_i(x_i) < M_i(x_i) < \infty$. Then

$$1 - \gamma M_i(x_i) \leq 1 + \gamma \frac{\partial f_i}{\partial q_i}(x_i, z) \leq 1 - \gamma m_i(x_i)$$
2.2. NETWORK UTILITY MAXIMIZATION

Hence

\[1 + \gamma \frac{\partial f_i}{\partial q_i}(x_i, z) \leq \max \{ 1 - \gamma m_i(x_i), \gamma M_i(x_i) - 1 \} =: \alpha(x_i) =: \alpha \]

Then \(\alpha < 1 \) as long as \(0 < \gamma < \gamma_2 \) where

\[\gamma_2 := \frac{2}{M_i(x_i)} \]

Hence choose \(0 < \gamma < \min\{\gamma_1, \gamma_2\} \) and we have

\[|h_i(q_i) - h_i(\tilde{q}_i)| = \alpha |q_i - \tilde{q}_i| \]

for some \(\alpha \in (0, 1) \). We have thus proved that, given any \(x_i \in X_i \) with \(x_i > 0 \), the function \(h_i \) is a contraction mapping from \(Q_i \) into \(Q_i \). This proves the existence of the implicit function \(u_i \) on \(X_i \). We have thus proved that, given any \(x_i \in X_i \) with \(x_i > 0 \), the function \(h_i \) is a contraction mapping from \(Q_i \) into \(Q_i \). This proves the existence of the implicit function \(u_i \) on \(X_i \). Finally we prove that \(u_i \) is strictly decreasing on \(X_i \) under assumption 4 of the lemma. Consider without loss of generality \(0 < x_1 < x_2 \) in \(X_i \) and the corresponding \(q_1 := u_i(x_1) \) and \(q_2 := u_i(x_2) \) such that

\[f_i(x_1, q_1) = 0 \quad \text{and} \quad f_i(x_2, q_2) = 0 \]

Assumption 3 of the lemma then implies that \(q_1 > 0, q_2 > 0 \). To show that \(q_1 > q_2 \) we have by the mean value theorem

\[0 = f_i(x_2, q_2) - f_i(x_1, q_1) = \left(f_i(x_2, q_2) - f_i(x_2, q_1) \right) + \left(f_i(x_2, q_1) - f_i(x_1, q_1) \right) = \frac{\partial f_i}{\partial q_i}(\tilde{x}, \tilde{q}_i)(q_2 - q_1) + \frac{\partial f_i}{\partial x_i}(\tilde{x}, q_1)(x_2 - x_1) \]

for some \(\tilde{x} \in [x_1, x_2] \) and some \(\tilde{q} \) between \(q_2 \) and \(q_1 \). Since both \(\tilde{x} > 0 \) and \(q_1 > 0 \), assumption 4 of the lemma implies that the second term is negative. Hence the first term must be positive and this is possible only if \(q_1 > q_2 \) under assumption 1 of the lemma. Hence \(u_i \) is strictly decreasing on \(X_i \). This completes the proof of the lemma.

Lemma 2.14 says that there is a unique function \(u_i(x_i) \geq 0 \) on \(X_i \setminus \{0\} \) that satisfies one of the equilibrium conditions \(f_i(x_i, u_i(x_i)) = 0 \) in (2.16a). We now address the case where \(x_i = 0 \). Extend \(u_i(x_i) \) to \(X_i \) by defining

\[u_i(0) := \lim_{x_i \to 0} u_i(x_i) \geq 0 \quad \text{(2.18)} \]

which exists (possibly \(+\infty \)) since \(u_i \) is strictly decreasing for \(x_i > 0 \). Since \(f_i \) is continuous we have

\[f_i(0, u_i(0)) = \lim_{x_i \to 0} f_i(x_i, u_i(x_i)) = 0 \quad \text{(2.19)} \]
2. EQUILIBRIUM STRUCTURE

Under conditions C2.3 – C2.5 below \(u_i \) is well defined on \(\mathbb{R}_+ \), and hence \(\{(x, u(x)) | x_i \geq 0\} \) is exactly the set of points that satisfy \(f_i(x_i, u_i(x_i)) = 0 \). Moreover, since \(f_i \) is continuously differentiable, assumption 4 in Lemma 2.14 implies

\[
\frac{\partial f_i}{\partial x_i}(0, q_i) \leq 0
\]

This condition and (2.19) together imply

\[
u_i(0) \leq q_i \iff f_i(0, q_i) \leq 0
\]

In summary, under the conditions of Lemma 2.14, the function \(u_i : \mathbb{R}_+ \to \mathbb{R}_+ \) defined in the lemma and extended by (2.18) satisfies: \((x_i, q_i) \) satisfies (2.16a) if and only if

\[
u_i(x_i) \leq q_i \quad \text{with equality if } x_i > 0 \tag{2.20}
\]

For Reno/Vegas/FAST it is not possible that \(f_i(0, q_i) < 0 \) and \(u_i(0) < q_i \) in equilibrium because \(\{u_i(x_i) | x_i \geq 0\} = \mathbb{R}_+ \). See Exercise 2.10 for an example \(f_i \) where this is possible.

Define the utility function of each source \(i \) as

\[
U_i(x_i) = \int u_i(x_i) \, dx_i, \quad x_i \geq 0 \tag{2.21}
\]

that is unique up to a constant. Then \(U_i \) is a continuous function assuming \(u_i \) does not contain delta functions. Moreover \(u_i(x_i) = q_i \geq 0 \) for all \(x_i \geq 0 \) implies that \(U_i \) is nondecreasing. Under the conditions in Lemma 2.14, \(u_i \) is strictly decreasing and hence \(U_i \) is strictly concave. An increasing utility function represents a greedy source – a larger rate yields a higher utility – and concavity represents diminishing return.

Now consider the problem of network utility maximization:

\[
\max_{x \geq 0} \sum_i U_i(x_i) \quad \text{subject to } Rx \leq c \tag{2.22a}
\]

and its Lagrangian dual:

\[
\min_{p \geq 0} \sum_i \max_{x_i \geq 0} (U_i(x_i) - x_i q_i) + \sum_l p_l c_l \tag{2.22b}
\]

An optimal rate vector \(x^* \) exists since the objective function in (2.22a) is continuous and the feasible solution set is compact (\(c \) is assumed to be positive and finite). It is unique if \(U_i \) are strictly concave. The dual problem has an optimal solution since the primal problem is feasible. The dual variable \(p \) is a precise measure of congestion in the network. As the sources are coupled through the shared links (the capacity constraint), solving for \(x^* \) directly however may require coordination among possibly all sources and hence is infeasible in a large network. The key to understanding the equilibrium of (2.15) is to regard \(x(t) \) as...
2.2. NETWORK UTILITY MAXIMIZATION

primal variables, \(p(t) \) as dual variables, \((f, g) = (f_i, g_i, i \in S, l \in L)\) as a distributed primal-dual algorithm to solve the primal problem (2.22a) and its Lagrangian dual (2.22b), and an equilibrium point as an optimal primal and dual solution.

We summarize the assumptions on \((f, g)\):

C2.3: For all \(i \in S\) and \(l \in L\), \(f_i\) and \(g_l\) are functions such that the solutions of (2.16) are nonnegative. The set \(\{ x \geq 0 \mid Rx \leq c \} \) is nonempty, contains a strictly feasible point, and \(c > 0 \) is finite.

C2.4: For all \(i \in S\), \(f_i(x_i, q_i)\) are continuously differentiable on \(\mathbb{R}_+ \times \mathbb{R}_+ \). Moreover \(\frac{\partial f_i}{\partial x_i}(x_i, q_i) < 0 \) and \(\frac{\partial f_i}{\partial q_i}(x_i, q_i) < 0 \) if \(x_i > 0 \) and \(q_i > 0 \). For each \(x_i > 0 \) there exists \(\hat{q}_i := \hat{q}_i(x_i) > 0 \) such that \(f_i(x_i, q_i) \leq 0 \) for all \(q_i \geq \hat{q}_i \). Finally \(f_i(x_i, 0) > 0 \).

C2.5: The condition (2.16b) is equivalent to \(y_l \leq c_l \) with equality if \(p_l > 0 \).

Condition C2.3 guarantees that an equilibrium always satisfies \((x^*, p^*) \geq 0\). C2.4 implies the assumptions in Lemma 2.14 and hence a unique \(u_i(x_i) \geq 0 \), with \(u_i(0) \) defined by (2.18), on \(\mathbb{R}_+ \) that satisfies \(f_i(x_i, u(x_i)) = 0 \). The discussion above then guarantees the existence and strict concavity of utility functions \(U_i \) and hence the uniqueness of optimal \(x^* \). C2.5 guarantees primal feasibility and complementary slackness of \((x^*, p^*)\) (compare with (2.20)).

Theorem 2.15 Suppose assumptions C2.3 – C2.5 hold.

1. An equilibrium \((x^*, p^*)\) of (2.15) exists.

2. Moreover \((x^*, p^*)\) is an equilibrium of (2.15) if and only if it solves the primal problem (2.22a) and its dual (2.22b) with the utility function given by (2.21).

3. The utility functions \(U_i \) are strictly concave and hence the optimal rate vector \(x^* \) is unique.

4. The optimal price vector \(p^* \) is unique provided \(R \) has a full row rank and \(x^* > 0 \).

Proof. As discussed above, the TCP functions \(f_i \) imply the existence of continuous and strictly concave increasing utility functions \(U_i \). Since \(U_i \) are continuous and the feasible set is nonempty (under C2.3) and compact, an optimal solution of \((x^*, p^*)\) of (2.22) exists by Theorem 2.10. We now show that \((x^*, p^*)\) is an optimal solution of (2.22) if and only if it is an equilibrium of (2.15). This will prove the first two claims.

By Theorem 2.12, \((x^*, p^*)\) is primal-dual optimal if and only if

1. primal feasibility: \(Rx^* \leq c, x^* \geq 0 \).

2. dual feasibility: \(p^* \geq 0 \).
2. EQUILIBRIUM STRUCTURE

3. stationarity: \(U'_i(x^*_i) \leq \sum_l R_{li} p^*_l \), with equality if \(x^*_i > 0 \), for \(i = 1, \ldots, N \).

4. complementary slackness: \(p^*_l (\sum_i R_{li} x^*_i - c_l) = 0 \) for \(l = 1, \ldots, L \).

By definition \((x^*, p^*)\) is an equilibrium if \(x^* \geq 0 \), \(p^* \geq 0 \) and \((x^*, p^*)\) satisfies (2.16). But (2.16a) is equivalent to (2.20) (which is the stationarity condition) and, by condition C2.5, (2.16b) is equivalent to primal feasibility and complementary slackness. Hence \((x^*, p^*)\) is an equilibrium if and only if it is primal-dual optimal.

For the last two claims, see the proof of Theorem 2.13 (as well as the remark about the uniqueness of \(p^* \) after the proof).

\[\square\]

2.3 IMPLICATIONS OF NETWORK UTILITY MAXIMIZATION

2.3.1 TCP/AQM PROTOCOLS

Various TCP/AQM protocols can be interpreted as different distributed algorithms \((f, g)\) to solve the network utility maximization problem (2.22a) and its dual (2.22b) with different utility functions \(U_i \). This computation is carried out by sources and links over the Internet in real time in the form of congestion control. Theorem 2.15 characterizes a large class of protocols \((f, g)\) that admits such an interpretation. This interpretation is the consequence of end-to-end control: it holds as long as the end-to-end congestion measure to which the TCP algorithm reacts is the sum of the constituent link congestion measures, under some mild assumptions on the TCP and AQM algorithms that are typically satisfied (assumptions C2.3–C2.5). \(^5\)

The definition of utility functions \(U_i \) depends only on TCP algorithms \(f_i \). The role of AQM \(g_l \) is to ensure that the complementary slackness condition of problem (2.22) is satisfied (Theorem 2.12.4). The complementary slackness has a simple interpretation: AQM should match input rate to capacity to maximize utilization at every bottleneck link. Any AQM that stabilizes queues possesses this property and generates a Lagrange multiplier \(p^* \) that solves the dual problem.

The theorem also provides important insights that help understand, and design, practical protocols that have been deployed on the Internet (e.g., TCP FAST).

First the theorem implies that an arbitrary network under end-to-end control has a unique equilibrium point. The equilibrium point is determined by the utility functions \(U_i \) and network parameters such as link capacities \(c \) and routing matrix \(R \). It is independent of, e.g., the order in which flows have arrived (for a given set of flow arrivals). The convexity of the underlying optimization problem that \((f, g)\) attempts to solve also leads to a relatively

\(^5\)If the sources react to the maximum congestion price in their paths, then the networks achieves maxmin fairness in equilibrium.
simple dynamic behavior. Even though it may not be possible, nor critical, that optimality is exactly attained in a real network, the utility maximization framework offers a means to steer the network towards an operating point that is easily understandable.

Second, being the Lagrange multipliers, the prices λ^* are indeed the right measure of congestion. For implicit congestion control the prices often represent (functions of) packet loss probabilities or queueing delays at the network links. Since the Lagrange multipliers are determined by (U, c, R) this means that the steady-state packet loss probabilities or queueing delays are independent of the buffer size. In particular if p represents loss probabilities at the network links then doubling the buffer sizes will not reduce the steady-state packet losses but will only increase the average queueing delay – buffers will fill up to attain the same loss probabilities before their sizes were doubled.

Third it is useful to treat a practical congestion control scheme simply as an implementation of a certain optimization algorithm. The optimization model then makes possible a systematic method for design and refinement, where modifications to a congestion control mechanism are guided by modifications to the optimization algorithm. For instance, the dual algorithm (2.13) in Chapter 2.2.3 can be interpreted as the first-order gradient projection algorithm to solve the dual problem (2.14b) (see Theorem 5.8 in Chapter 5.2 for more details). It is well known that Newton algorithms usually converge much faster than the first-order gradient projection algorithm, but the computation of Hessian requires global information and is hard to implement in practice. Guided by this insight, however, one can design a practical Newton-like scheme that can attain optimality with a much higher convergence rate without increasing the communication requirement.

2.3.2 UTILITY FUNCTION, THROUGHPUT AND FAIRNESS

A central issue in networking is how to allocate resources to competing users efficiently and fairly in a decentralized manner. These notions are straightforward when there is a single resource (link) but much subtler for a network of resources. For a single resource of capacity c an allocation policy is efficient if the aggregate equilibrium throughput $\sum_i x_i^* = c$ and it is fair if users are allocated an equal share $x_i^* = c/N$ for all i. On a network, the equilibrium throughputs x_i depend on their routes R and the link capacities c and are generally unequal among users i. The aggregate equilibrium throughput $T(x^*) := \sum_i x_i^*$ that the network can support, however, remains a reasonable measure of efficiency, though there are alternative notions. A natural extension of equal sharing at a single resource to a network setting is maxmin fairness where the smallest rate is maximized. An insight from network utility maximization is that the network bandwidth is allocated among competing

6If p_l represent queueing delay then their equilibrium values p_l^* are independent of the buffer sizes as long as the buffers are large enough to accommodate the equilibrium queues.

7For example any Pareto-optimal allocation x^* that lies on the boundary of the feasible set $\{x : Rx \leq c\}$ can be defined to be efficient.
users according to their utility functions, given a network specified by \((R, c)\). Hence a general notion of fairness can be defined in terms of utility functions. In this section we explain two counterintuitive behaviors of network utility maximization.

Consider the following class of utility functions parameterized by a scalar \(\alpha \geq 0\):

\[
U(x_i, \alpha) = \begin{cases}
(1 - \alpha)^{-1}x_i^{1-\alpha} & \text{if } \alpha \neq 1 \\
\log x_i & \text{if } \alpha = 1
\end{cases}
\] (2.23)

It includes many resource allocation policies considered in the literature as special cases: e.g. maximum throughput \((\alpha = 0)\), proportional fairness \((\alpha = 1)\), and maxmin fairness \((\alpha = \infty)\). It provides a convenient way to compare fairness across allocation policies. Moreover it also includes several TCP congestion control algorithms as special cases: e.g. Reno \((\alpha = 2)\), and Vegas, FAST \((\alpha = 1)\). A bandwidth allocation policy can hence be defined in terms of this class of utility functions parameterized by \(\alpha\).

Suppose all flows adopt the same utility (2.23) with the same \(\alpha\). We sometimes refer to a network by \((R, c, \alpha)\) where \(R\) is the (fixed) routing matrix. We now explain how changing \(c\) or \(\alpha\) impacts the aggregate throughput \(T(x^*)\).

Suppose we add capacities to some links without reducing the capacity of the other links. The new equilibrium rates \(x^*\) will be determined by network utility maximization with the new link capacity vector and generally be different. Will the aggregate throughput \(T(x^*)\) be always higher? Surprisingly, the answer is “not necessarily” even though the utility function is strictly increasing in \(x_i\). Moreover, given any parameter \(\alpha_0 > 0\) there exists a network specified by \((R, c)\) such that for all \(\alpha > \alpha_0\), adding any equal amount of capacity to all links will result in a strictly lower throughput \(T(x^*)\)!

Given two allocation policies identified with \(\alpha_1\) and \(\alpha_2\), we say the first policy is fairer than the second policy if \(\alpha_1 > \alpha_2\) and more efficient if the aggregate throughput \(T(\alpha_1) := \sum_i x_i(\alpha_1)\) in equilibrium under policy \(\alpha_1\) is higher than the aggregate throughput \(T(\alpha_2) := \sum_i x_i(\alpha_2)\) under policy \(\alpha_2\). It is a folklore that a fairer policy (with a larger \(\alpha\)) is always less efficient (with a smaller \(T(\alpha)\)). Using the network utility maximization model, we can show however that this is not the case for all networks. Indeed it is possible to characterize exactly the set of networks specified by \((R, c)\) for which a fairer allocation is indeed always less efficient, i.e., \(T(\alpha)\) is a decreasing function of \(\alpha\). This characterization has led to the discovery of the first counterexamples, i.e., networks \((R, c)\) where a fairer allocation is more efficient.

Hence counterintuitive behaviors can arise in a network where sources interact through shared links in intricate and surprising ways. The popular practice of modeling a network by a single node will fail to capture such subtlety.
2.4 BIBLIOGRAPHICAL NOTES

Excellent texts on convex optimization include [7, 11]. Network utility maximization is first formulated in [28]. Theorem 2.15 interprets Internet congestion control as maximizing utility and is from [34] but the proofs presented in Chapter 2.2.4 are new. In particular Lemma 2.14 justifies the existence of a utility function U_i corresponding to a TCP algorithm f_i by appealing to properties motivated by TCP algorithms such as Reno/Vegas/FAST, without invoking global implicit function theorems that usually require assumptions that are difficult to satisfy. This interpretation holds as long as the sources react to the sum of congestion prices in their paths. If they react to the maximum price in their paths then the network achieves maxmin fairness, i.e., it maximizes the minimum source rates; see [52].

The dual algorithm (2.13) in Chapter 2.2.3 is from [35] and is the gradient projection algorithm to solve the dual problem (2.14b). Practical Newton-like schemes that can attain optimality with a much higher convergence rate but the same communication requirement are proposed in [5, 49, 50, 53].

The class of utility functions (2.23) is first proposed in [37] for network congestion control. This class has also been used earlier in economics as social welfare functions. The counterintuitive behavior in fairness-efficiency tradeoff and in capacity-throughput relation described in Chapter 2.3.2 is studied in [46]. See [32] for an axiomatic theory of fairness. See also [9] for bounds on these tradeoffs for general systems whose feasible set is not necessarily described by the linear network capacity constraint $Rx \leq c$ in congestion control, and [10] for the effect of fairness on the number of random flow arrivals that can be supported on the network.

2.5 PROBLEMS

Exercise 2.1 (Convex sets). Prove that the following sets are convex:

1. **Affine set**: $C = \{x \in \mathbb{R}^n \mid Ax = b\}$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, $m, n \geq 1$.

2. **Second-order cone**: $C = \{(x, t) \in \mathbb{R}^{n+1} \mid \|x\|_2 \leq t\}$, $n \geq 1$. Here $\|x\|_2 := \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$ is the Euclidean norm.

3. **Semidefinite matrices**: $C = \{A \in \mathbb{S}^{n \times n} \mid A \succeq 0\}$, $n \geq 1$. where $\mathbb{S}^{n \times n}$ is the set of symmetric $n \times n$ real matrices and $A \succeq 0$ means $x^T Ax \geq 0$ for any $x \in \mathbb{R}^n$. Such a matrix is called *positive semidefinite*.

Exercise 2.2 (Operations preserving set convexity). Operations that preserve convexity are of fundamental importance to the convex optimization theory. Let X and Y be linear subspaces. For example $X := \mathbb{R}^n$ and $Y := \mathbb{R}^m$.

1. **Linear transformation**: Let $f : X \to Y$ be linear. Prove:
2. **Equilibrium Structure**

(a) If \(A \subseteq \mathbb{X} \) is convex then \(f(A) := \{ f(x) \mid x \in A \} \) is convex.

(b) If \(B \subseteq \mathbb{Y} \) is convex then \(f^{-1}(B) = \{ x \in \mathbb{R}^n \mid f(x) \in B \} \) is convex.

2. **Arbitrary direct product:** Let \(A \subseteq \mathbb{X}, B \subseteq \mathbb{Y} \) be convex.

(a) Prove that the product space \(\mathbb{X} \times \mathbb{Y} := \{ (x, y) \mid x \in \mathbb{X}, y \in \mathbb{Y} \} \)
with + and \(\cdot \) defined by

\[
(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2) \quad \forall (x_1, y_1), (x_2, y_2) \in \mathbb{X} \times \mathbb{Y};
\]

\[
\lambda(x, y) := (\lambda x, \lambda y) \quad \forall \lambda \in \mathbb{R}, \forall (x, y) \in \mathbb{X} \times \mathbb{Y}
\]
is also a linear space. For example, if \(\mathbb{X} = \mathbb{R}^m \) and \(\mathbb{Y} = \mathbb{R}^n \) for some \(m, n \geq 1 \), then \(\mathbb{X} \times \mathbb{Y} = \mathbb{R}^{m+n} \).

(b) Prove that the direct product \(A \times B := \{ (x, y) \mid x \in A, y \in B \} \)
is convex. In fact the direct product of an arbitrary number of convex sets is convex.

3. **Finite sum:** Let \(A, B \subseteq \mathbb{X} \) be convex. Prove that the set \(A + B := \{ a + b \mid a \in A, b \in B \} \)
is convex. Therefore the sum of any finite number of convex sets is convex.

4. **Arbitrary intersection:** Let \(A, B \subseteq \mathbb{X} \) be convex. Prove that the intersection \(A \cap B \) is convex. In fact the intersection of an arbitrary collection of convex sets is convex.

5. **Union can be nonconvex.** Let \(A, B \subseteq \mathbb{X} \) be convex. Give an example where the union \(A \cup B \) is nonconvex. [Hint: Consider \(\mathbb{X} = \mathbb{R} \).]

Exercise 2.3 (Convex functions). Prove that the following functions are convex:

1. **Exponential:** \(f(x) := e^{ax} \) where \(a, x \in \mathbb{R} \).

2. **Entropy:** \(f(x) := x \ln x \) defined on \(\mathbb{R}_+ := (0, \infty) \).

3. **Log-exponential:** \(f(x_1, x_2) := \ln(e^{x_1} + e^{x_2}), x_i \in \mathbb{R} \).

Exercise 2.4 (Convex functions). For each of the following functions determine if it is convex, concave, or neither.
• $f(x) = e^x - 1$ on \mathbb{R}.
• $f(x) = x_1x_2$ on $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0\}$.
• $f(x) = \frac{1}{x_1x_2}$ on $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0\}$.
• $f(x) = x_1/x_2$ on $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0\}$.

Exercise 2.5 (Operations preserving function convexity). Prove that addition, multiplication by nonnegative constants, and supremum operations preserve convexity. Specifically suppose f_1 and f_2 are two convex functions on the same domain. Prove that:

1. $f := \alpha f_1 + \beta f_2, \alpha, \beta \geq 0$, is convex.
2. $f := \max\{f_1, f_2\}$ is convex.
3. $f(x, y) := |x| + |y|$ defined on \mathbb{R}^2 is convex. [Hint: use result in 2.]

Exercise 2.6 (Level sets are convex). Let $f : C \to \mathbb{R}$ where $C \subseteq \mathbb{R}^n$. Prove that the level set $\{x \in C \mid f(x) \leq \alpha\}$ is convex for any $\alpha \in \mathbb{R}$ provided that C is a convex set and f is a convex function.

Exercise 2.7 (Convex optimization). Consider

$$\text{(P)}: \quad \min_x f(x) \quad \text{s.t.} \quad Ax = b; \ g_i(x) \leq 0, \ i = 1, \ldots, k,$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, k \geq 1$, and f, g_1, \ldots, g_k are scalar functions defined on \mathbb{R}^n. Prove that if f, g_1, g_2, \ldots, g_k are convex then the feasible set

$$C = \{x \mid Ax = b, g_i(x) \leq 0 \text{ for } i = 1, \ldots, k\}$$

is convex. In this case (P) is called a convex program. [Hint: The set C is the intersection of $k + 1$ convex sets. Use the results of previous problems.]

Exercise 2.8 (Duality theory). Consider Problem (P) in Exercise 2.7. Let $\mu \in \mathbb{R}^m, \lambda \in \mathbb{R}^k_+ = [0, \infty)^k$, and define

$$L(x, \mu, \lambda) := f(x) + \mu^T(Ax - b) + \lambda^T g(x)$$

where $g(x) = (g_1(x), g_2(x), \ldots, g_k(x))^T$.

1. **Unconstrained optimization.** Let $L(\mu, \lambda) := \min_{x \in \mathbb{R}^n} L(x, \mu, \lambda)$ denote the unconstrained optimization over x for fixed μ, λ. Assume that Problem (P) has an optimal solution and denote it by x^*. Show that $L(\mu, \lambda) \leq f(x^*)$ for any $\mu \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}^k_+$.

2. **Constrained optimization.** Consider the constrained optimization problem (P). For fixed μ, λ, the function $L(x, \mu, \lambda)$ is convex. Therefore, the unconstrained optimization problem

$$\min_x L(x, \mu, \lambda)$$

is convex. Use this result to prove the duality theorem.

3. **Strong duality.** Prove that the optimal values of the primal and dual problems are equal.

4. **Weak duality.** Prove that the optimal values of the primal and dual problems are bounded by each other.

5. **Slater’s condition.** Consider the Slater’s condition for the primal problem (P). Prove that if the Slater’s condition holds, then the primal and dual problems are equivalent.

6. **Karush-Kuhn-Tucker (KKT) conditions.** Consider the KKT conditions for the primal problem (P). Prove that if the KKT conditions hold, then the primal and dual problems are equivalent.
2. EQUILIBRIUM STRUCTURE

2. Dual problem. Consider the dual problem

\[(D) : \max_{\mu, \lambda} L(\mu, \lambda) \quad \text{s.t.} \quad \lambda \geq 0 \]

Assume \((D)\) has an optimal solution and denote it by \((\mu^*, \lambda^*)\).

(a) Show that \(L(\mu^*, \lambda^*) - f(x^*) \leq \sum_{i=1}^{k} \lambda_i^* g_i(x^*) \leq 0\). It implies that Problem \((D)\) provides a lower bound for Problem \((P)\). Note that this holds whether or not \(f, g_1, g_2, \ldots, g_k\) are convex.

(b) Assume now \(f, g_1, g_2, \ldots, g_k\) are convex. Show that the equality is attained if and only if

\[\partial_x L(x^*, \mu^*, \lambda^*) = 0 \]

assuming \(f, g_1, g_2, \ldots, g_k\) are differentiable.

(c) Show that if there exists \((x, \mu, \lambda)\) such that \(x\) is feasible for \((P)\), \((\mu, \lambda)\) is feasible for \((D)\), \(\partial_x L(x, \mu, \lambda) = 0\), and \(\lambda_i g_i(x) = 0\) for \(i = 1, \ldots, k\), then \(x\) solves \((P)\) and \((\mu, \lambda)\) solves \((D)\). These are the KKT conditions.

Exercise 2.9 (Uniqueness of \(p^*\)). We claim that when the routing matrix \(R\) has a full row rank, then the prices \(p\) are unique. Moreover, given \(q\), \(p\) is given by

\[R^T p = q \quad \Rightarrow \quad p = (RR^T)^{-1}Rq \]

This implicitly assumes that, given \(q\), there is a solution \(p\) that satisfies \(R^T p = q\), i.e., \(q\) lies in the row space of \(R\).

1. Given any vector \(q\), describe how you would check if a solution \(p\) exists.

2. Give an example where the given \(q\) does not satisfy your condition for existence of a solution \(p\). What is the expression \((RR^T)^{-1}Rq\)? (Hint: Try \(R = [1 \ 1]\).)

Exercise 2.10 (TCP with finite \(u(x)\)). Consider a TCP design \(f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}\) given by

\[f(x, q) := a + e^{-x} - q \]

Show that \(f\) satisfies condition C2.4 and determine the unique function \(u\) in Lemma 2.14. Also show that it is possible to have \(f(0, q) < 0\) and \(u(0) < q\) in equilibrium.

Exercise 2.11 (Nonuniqueness of \(p^*\)). Consider a network with two links with capacities \(c_1, c_2\) and three flows with a routing matrix

\[R := \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \]
i.e., flows 1 and 2 traverse links 1 and 2 respectively and flow 3 traverses both links. Let the TCP design of flows 1 and 2 be the function given in Exercise 2.10:

\[f_1(x_1, q_1) := a_1 + e^{-x_1} - q_1, \quad f_2(x_2, q_2) := a_2 + e^{-x_2} - q_2 \]

and that of flow 3 be:

\[f_3(x_3, q_3) := \gamma (x_3 q_3) \]

Show that, even though \(R \) has a full row rank, the optimal link prices \(p^* \) may be nonunique, by an appropriate choice of parameters \(c_l, a_i, \alpha \).

Exercise 2.12 (Throughput vs. fairness). Consider a linear network with \(L \) links indexed by \(1, \ldots, L \), each of capacity \(c = 1 \). There are \(L+1 \) flows indexed by \(0, \ldots, L \). Flows \(l = 1, \ldots, L \) traverse only link \(l \) and the flow indexed by \(0 \) traverses all the \(L \) links. Suppose all flows have the following utility function with the same \(\alpha \neq 0 \):

\[U_i(x_i) = \begin{cases} \frac{x_i^{1-\alpha}}{1-\alpha}, & \alpha \neq 1 \\ \log x_i, & \alpha = 1. \end{cases} \]

The rate at which each flow transmits is determined by the solution of the following utility maximization, subject to capacity constraints:

\[
\max_{x \geq 0} \sum_{i=0}^{L} U_i(x_i) \quad \text{s.t.} \quad Rx \leq c
\]

where \(x = (x_0, \ldots, x_L) \), matrix \(R \) is a routing matrix. The expression \(x \geq 0 \) means \(x_i \geq 0 \) for \(i = 0, \ldots, L \).

Calculate the aggregate throughput \(T(\alpha) = \sum_{i=0}^{L} x_i(\alpha) \). Explain the dependence of \(T(\alpha) \) on \(\alpha \). Also comment on the dependence of fairness on \(\alpha \).

Exercise 2.13 (TCP steady state analysis). Consider the network in Fig. 2.5, where R1–R4 are routers, L1–L3 are links, S1–S3 are source hosts, and T1–T3 are the corresponding destination hosts. The link capacities of L1, L2 and L3 are 2500 packets/s. The one way propagation delay of each link L1 – L3 is 10ms and assume there is no propagation delay between a host and a router. There are three flows: flow 1 from S1 to T1, flow 2 from S2 to T2, and flow 3 from S3 to T3. Flow 1 starts at \(t=0 \), flow 2 starts at \(t=10\text{sec} \) and flow 3 starts at \(t=20\text{sec} \). All flows use TCP FAST, i.e., the window update is \(W(t+1) = \frac{\text{RTT}_{\text{min}}}{\text{RTT}} W(t) + \alpha \), with \(\alpha = 50 \).

1. Calculate the steady-state throughput of each flow and queue length of each link, during 0s–10s, 10s–20s and after 20s, assuming each flow knows its \(\text{RTT}_{\text{min}} \) (round-trip propagation delay) accurately. Assume before flow 2 starts, all packets are buffered at L1.
2. **EQUILIBRIUM STRUCTURE**

![Network topology for TCP steady state analysis.](image)

Figure 2.5: Network topology for TCP steady state analysis.

2. Repeat 1 but with each flow measuring its steady-state RTT$_{\text{min}}$ that includes queuing delay due to other flows that started before it does. Assume before flow 2 starts, all packets are buffered at L1.
CHAPTER 3

Global stability: Lyapunov method

In Chapter 2 we characterize the equilibrium of a network under end-to-end congestion control and discuss some implications on network performance such as throughput, delay, loss and fairness. This is useful because the first step in designing a congestion control algorithm should be to ensure it has desirable equilibrium properties. In this chapter we study whether the algorithm will indeed drive the network towards an equilibrium starting from an arbitrary initial state. Even though in reality a network is rarely in equilibrium a stable control ensures that it is always pursuing a desirable state. It also makes the global behavior of the overall network easier to understand.

Numerous congestion control algorithms have been proposed in the literature. We will restrict our analysis to a subset that has proved useful in modeling classical congestion control algorithms. Our purpose is not the study of particular protocols, but use these examples to illustrate the main techniques in proving global stability and explain structural features of congestion control algorithms. We present in this and the following two chapters three different methods to prove global stability. They are methods based on the Lyapunov stability theory (Chapter 3), the passivity theory (Chapter 4), and convergence theorems for gradient algorithms (Chapter 5). In each chapter we first introduce the general method and the associated stability results and then apply them to congestion control algorithms.

For simplicity, the models studied in these chapters ignore feedback delay even though delay is critical in determining stability. In Chapter 6 we will study local stability around an equilibrium in the presence of feedback delay. Global stability in the presence of feedback delay is much more difficult and beyond the scope of this monograph.

3.1 LYAPUNOV STABILITY THEOREMS

Consider a time-invariant dynamical system:

\[\dot{x} = f(x(t)), \quad t \geq 0, \quad x(0) = x_0 \] \hspace{1cm} (3.1)
where \(f : D \to \mathbb{R}^n \) and \(D \subseteq \mathbb{R}^n \) is a domain (open connected set). Here we allow \(f \) to be either locally Lipschitz itself or a projection of a locally Lipschitz function \(\tilde{f} \) to a closed convex set, specifically,

\[
f(x) := \left(\tilde{f}(x) \right)_+
\]

with a locally Lipschitz \(\tilde{f} \). A point \(x^* \in D \) is an equilibrium of (3.1) if \(f(x^*) = 0 \). Assume \(D \) contains an equilibrium point \(x^* \).

Definition 3.1 Stability. An equilibrium \(x^* \in D \) of (3.1) is:

1. **stable** if \(\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0 \) such that
 \[
 \|x_0 - x^*\| < \delta \Rightarrow \|x(t)\| < \epsilon \quad \forall t \geq 0
 \]
 It is **unstable** if it is not stable.

2. **asymptotically stable** if it is stable and \(\delta \) can be chosen such that
 \[
 \|x_0 - x^*\| < \delta \Rightarrow \lim_{t \to \infty} x(t) = x^*
 \]

3. **globally asymptotically stable** if \(D = \mathbb{R}^n \) or \(D = \mathbb{R}^+_n \), \(x^* \) is stable and given any initial point \(x_0 \in D \), \(\lim_{t \to \infty} x(t) = x^* \), i.e., the solution converges to \(x^* \).

These definitions are illustrated in Figure 3.1.

Theorem 3.2 If \(x^* \) is a globally asymptotically stable equilibrium then it is the unique equilibrium.

In that case we can assume without loss of generality that \(x^* = 0 \in D \) by studying the perturbed system \(x(t) - x^* \). It is however more convenient for us not to make this assumption because our (unshifted) variables in TCP congestion control often stay nonnegative \(x(t) \geq 0 \).

A general method to prove the stability of an equilibrium point \(x^* \) of (3.1) is to find what is called a **Lyapunov function** \(V(x) \) with the property that \(V(x) \) is finite, lower bounded, and it decreases along the solution trajectory of (3.1). Specifically let \(V : D \to \mathbb{R} \)

\(^1\text{We require } D \text{ to be an open set so as to avoid differentiability issues at the boundary. This is only for simplicity of exposition and does not lose generality if, starting from any } x_0 \text{ on the boundary of } D, f \text{ always drives } x(t) \text{ towards the interior.}\)
Figure 3.1: Stability of an equilibrium x^*.

(a) Stable
(b) Unstable
(c) Asymptotically stable
be a continuously differentiable function, i.e., the row vector $\frac{\partial V}{\partial x}$ of partial derivatives of V exists and is continuous. Define

$$\dot{V}(x) := \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \frac{\partial V}{\partial x} f(x)$$

We use V both as a function $V(x)$ of $x \in \mathbb{R}^n$ and as a function $V(x(t))$ of $t \in \mathbb{R}_+$, depending on the context. As a function of t, $\dot{V}(x(t))$ is the rate of change in V along the solution trajectory of (3.1). If $f(x) = (\tilde{f}(x))^+_x$ then $f(x)$ is discontinuous in x even when \tilde{f} is Lipschitz continuous. Hence even though $\dot{V}(x)$ always exists it is generally discontinuous in x when we allow projected dynamics.

Consider the following conditions:

- **C3.1**: V is positive definite (lower bounded): $V(x^*)$ is finite and $V(x) > V(x^*)$ for all $x \neq x^*$ in D.

- **C3.2**: V has a negative semidefinite rate: $\dot{V}(x) \leq 0$ for all x in D.

- **C3.2’**: V has a negative definite rate: $\dot{V}(x) < 0$ for all $x \neq x^*$ in D.

- **C3.2’’**: There exists $0 < \delta_0 < \varepsilon_0$ with $B_{\delta_0}(x^*) \subseteq D$ such that for all $0 < \delta \leq \delta_0$ and $\delta < \varepsilon \leq \varepsilon_0$, there exists $\alpha > 0$ such that

$$\dot{V}(x) \leq -\alpha < 0 \quad \forall x \text{ with } \delta \leq \|x - x^*\| \leq \varepsilon$$

- **C3.3**: V is radially unbounded: $\|x\| \to \infty$ implies $V(x) \to \infty$.

We comment on these conditions. Condition C3.1 is equivalent to the following condition often found in the literature:

- **C3.1’**: V is positive definite: $V(x^*) = 0$ and $V(x) > 0$ for all $x \neq x^*$ in D. because, otherwise, we can always define $\tilde{V}(x) := V(x) - V(x^*)$ and V satisfies C3.1 and any of the other conditions if and only if \tilde{V} satisfies C3.1’ and the same set of other conditions. As we will see below, condition C3.2’ is commonly used to guarantee asymptotic stability when f is locally Lipschitz. C3.2’ is inadequate when $f(x) = (\tilde{f}(x))^+_x$ is a projected dynamics and generally discontinuous, and we require C3.2’’. Indeed C3.2’ implies C3.2’’ when f is continuous since, in that case, $\dot{V}(x) = \frac{\partial V}{\partial x} f(x)$ is continuous in x. If V satisfies C3.3 then the level set $\Omega_c := \{x | V(x) - V(x^*) \leq c\}$ is bounded for all values of $c > 0$. See Exercise 3.2. Otherwise, for example, if $x^* = 0$ and $V(x) = (x_1 - x_2)^2$, then Ω_c is unbounded for any c (This V does not satisfy C3.1 either).

Functions V that satisfy these conditions are called Lyapunov functions because of the following key result on the stability of nonlinear dynamical systems.
3.1. Lyapunov Stability Theorems

Theorem 3.3 Lyapunov Stability (locally Lipschitz \(f \)). Suppose \(f \) in (3.1) is locally Lipschitz on \(D \). Let \(x^* \in D \) be an equilibrium. Let \(V : D \to \mathbb{R} \) be a continuously differentiable function.

1. If \(V \) satisfies C3.1, C3.2 then \(x^* \) is stable.

2. If \(V \) satisfies C3.1, C3.2' then \(x^* \) is asymptotically stable.

3. If \(D = \mathbb{R}^n \) or \(D = \mathbb{R}^n_+ \) and \(V \) satisfies C3.1, C3.2', C3.3 then \(x^* \) is globally asymptotically stable.

Proof.

Part 1. To prove stability, fix any \(\varepsilon > 0 \). We will derive an \(\delta > 0 \) such that \(x(t) \in B_{\delta}(x^*) \) for all \(t \geq 0 \). We can assume without loss of generality that the set

\[
B_{\varepsilon}(x^*) := \{ x \in \mathbb{R}^n \mid ||x - x^*|| \leq \varepsilon \}
\]

lies in \(D \). Otherwise we can pick any \(r \in (0, \varepsilon] \) such that the set

\[
B_{r}(x^*) := \{ x \in \mathbb{R}^n \mid ||x - x^*|| \leq r \}
\]

lies in \(D \) and replace \(B_{\varepsilon} \) with \(B_{r} \) in the following. The argument proceeds in three steps and is easy to visualize in the simple case (e.g. \(V(x) = x_1^2 + x_2^2 \) in \(\mathbb{R}^2 \)) illustrated in Figure 3.2 and its caption.

Let \(v \) be the minimum \(V(x) \) on the boundary of the closed ball \(B_{\varepsilon}(x^*) \) relative to \(V(x^*) \):

\[
v := \min_{x : ||x - x^*|| = \varepsilon} V(x) - V(x^*)
\]

Condition C3.1 means that \(v > 0 \) and hence the set

\[
\Omega_{v/2} := \left\{ x \in B_{\varepsilon}(x^*) \mid V(x) - V(x^*) \leq \frac{v}{2} \right\}
\]

is nonempty (since \(V \) is continuous). It is in the interior of \(B_{\varepsilon}(x^*) \) since \(V(x) - V(x^*) \) equals \(v/2 \) on the boundary of \(\Omega_{v/2} \) but equals \(v \) on the boundary of \(B_{\varepsilon}(x^*) \). Moreover \(\Omega_{v/2} \) must

\[\text{unbounded if } \varepsilon > 1 \text{ because } (x_1, 0) \text{ is in the set for arbitrarily large } |x_1|. \]

\[\text{However, the definition of } v \text{ ensures that } v < 1 \text{ and hence } \Omega_{v/2} \text{ is strictly contained in } B_{\varepsilon}(x^*). \text{ See Remark 3.7 and Figure 3.5.} \]
3. GLOBAL STABILITY: LYAPUNOV METHOD

Figure 3.2: Proof of part 1. Assume without loss of generality $V(x^*) = 0$. (a) Since V is continuous, $v := \min_{x: \|x-x^*\| = \varepsilon} V(x)$ is finite and positive under condition C3.1. (b) Hence the $\Omega_{v/2} := \{x \in B_c(x^*)|V(x) \leq v/2\}$ lies in the interior of $B_c(x^*)$. (c) $\Omega_{v/2}$ must contain a ball $B_\delta(x^*)$ such that $x(0) \in B_\delta(x^*)$ implies $x(t) \in \Omega_{v/2} \subset B_c(x^*)$.

(a) $B_\varepsilon(x^*)$ induces $v > 0$
(b) $v > 0$ induces $\Omega_{v/2}$
(c) $\Omega_{v/2}$ induces $B_\delta(x^*)$
3.1. LYAPUNOV STABILITY THEOREMS

contain a ball \(B_\delta(x^*) \) for some \(\delta > 0 \) (see Figure 3.3(b)) since, otherwise, it means that for \(k = 1, 2, \ldots \), there exists an \(x_k \in B_1/k(x^*) \cap B_\delta(x^*) \) with \(V(x_k) - V(x^*) > \nu/2 \). Since \(x_k \to x^* \) and \(V \) is continuous, \(V(x_k) \to V(x^*) \), contradicting \(V(x_k) - V(x^*) > \nu/2 \) for all \(k \). These sets are illustrated in Figure 3.3(a).

![Figure 3.3](image)

(a) Level surface, \(\epsilon \)- and \(\delta \)-balls

(b) \(B_\delta(x^*) \) must lie inside \(\Omega_{\nu/2} \)

Figure 3.3: \(B_\delta(x^*) \subseteq \Omega_{\nu/2} \subset B_\epsilon(x^*) \).

We now show that
\[
\|x(0) - x^*\| < \delta \quad \Rightarrow \quad \|x(t) - x^*\| < \epsilon \quad \text{for all } t \geq 0
\]

Suppose \(x(0) \in B_\delta(x^*) \). Then \(x(0) \in \Omega_{\nu/2} \) and, since \(\dot{V} \leq 0 \) by condition C3.2,
\[
V(x(t)) - V(x^*) \leq V(x(0)) - V(x^*) \leq \frac{\nu}{2}, \quad t \geq 0
\]

Hence \(x(t) \in \Omega_{\nu/2} \subset B_\epsilon(x^*) \) for all \(t \geq 0 \) as desired, since \(\Omega_{\nu/2} \) is in the interior of \(B_\epsilon(x^*) \).

Part 2. To prove asymptotic stability of \(x^* \) we have to prove that, under C3.1 and C3.2’, \(\delta > 0 \) can be chosen such that \(x(0) \in B_\delta(x^*) \) implies, in addition, \(\lim_{t \to \infty} x(t) = x^* \). Fix any \(\epsilon_0 > 0 \). Construct an \(\delta_0 > 0 \) as in part 1 such that \(x(0) \in B_{\delta_0}(x^*) \) implies \(x(t) \in B_{\epsilon_0}(x^*) \) for all \(t \geq 0 \). This is convenient as it allows us to restrict attention to the compact set \(B_{\epsilon_0}(x^*) \).

We will prove part 2 in three steps.

Step 1: We show that \(V(x(t)) \to V(x^*) \) as \(t \to \infty \). Condition C3.2’ implies that \(V(x(t)) \) monotonically decreases and hence \(V(x(t)) \to v^* \) for some \(v^* \). Suppose for the sake of

\[\text{Since } B_\epsilon(x^*) \text{ is compact, Theorem 1.6 or Theorem 1.9 of Chapter 1.5.1 implies that, starting from an initial state } x(0) \in B_\delta(x^*), \text{ a unique solution } (x(t), t \geq 0) \text{ of (3.1) indeed exists.}\]
contradiction that \(v^* > V(x^*) \) and hence \(V(x(t)) \geq v^* > V(x^*) \) for all \(t \geq 0 \). Then there is a \(\eta > 0 \) such that \(\|x(t) - x^*\| \geq \eta \) for all \(t \geq 0 \), for otherwise, for every natural number \(k \) there is a \(t_k \geq 0 \) such that \(x(t_k) \in B_{1/k}(x^*) \). This sequence \(x(t_k) \rightarrow x^* \) as \(k \rightarrow \infty \) and since \(V \) is continuous \(V(x(t_k)) \rightarrow V(x^*) \), contradicting \(V(x(t)) \geq v^* > V(x^*) \) for all \(t \geq 0 \).

Then consider the slowest rate of decrease in \(V(x) \) outside \(B_{\eta}(x^*) \):

\[
\alpha := \inf_x -\dot{V}(x) := -\frac{\partial V}{\partial x} f(x) \quad \text{s. t. } \eta \leq \|x - x^*\| \leq \epsilon_0
\]

(3.2)

Since \(V \) is continuously differentiable and \(f \) is locally Lipschitz, \(\dot{V}(x) \) is continuous in \(x \) and hence \(\alpha \) is attained in the compact feasible set \(\{x \mid \eta \leq \|x - x^*\| \leq \epsilon_0\} \); moreover \(\alpha > 0 \) by condition C3.2.

Hence, for \(t \geq 0 \), since \(x(t) \in B_{\epsilon_0}(x^*) \) we have

\[
V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) d\tau \leq V(x(0)) - \alpha t \rightarrow -\infty \quad \text{as } t \rightarrow \infty
\]

contradicting \(v^* > V(x^*) > -\infty \) (condition C3.1). Hence \(V(x(t)) \rightarrow V(x^*) \) as \(t \rightarrow \infty \).

Step 2: We show that \(x(t) \) crosses Lyapunov surfaces, or level sets, with decreasing levels. Specifically, following the construction in part 1, construct the neighborhoods \(B_{\epsilon_1}(x^*) \) and level sets \(\Omega_{v_1} \) as follows. Start with any \(\epsilon_0 > 0 \) such that \(B_{\epsilon_0}(x^*) \) lies in \(D \). Recall the minimum value \(v_0 \) of \(V(x) - V(x^*) \) on the boundary of \(B_{\epsilon_0}(x^*) \):

\[
v_0 := \min_{x : \|x - x^*\| = \epsilon_0} V(x) - V(x^*)
\]

and the level set

\[
\Omega_{v_0/2} := \left\{ x \in B_{\epsilon_0}(x^*) \mid V(x) - V(x^*) \leq \frac{v_0}{2} \right\}
\]

It is important that \(\Omega_{v_0/2} \) is nonempty and in the interior of \(B_{\epsilon_0}(x^*) \). As we argued in part 1 there is a nonempty neighborhood \(B_{\epsilon_1}(x^*) \) in \(\Omega_{v_0/2} \). Define

\[
v_1 := \min_{x : \|x - x^*\| = \epsilon_1} V(x) - V(x^*)
\]

on the boundary of \(B_{\epsilon_1}(x^*) \) and the level set

\[
\Omega_{v_1/2} := \left\{ x \in B_{\epsilon_1}(x^*) \mid V(x) - V(x^*) \leq \frac{v_1}{2} \right\}
\]

which is nonempty and in the interior of \(B_{\epsilon_1}(x^*) \). As before \(\Omega_{v_1/2} \) contains a nonempty neighborhood \(B_{\epsilon_2}(x^*) \), and so on. This collection of sets are nested as shown in Figure 3.4:

\[
B_{\epsilon_0}(v^*) \supset \Omega_{v_0/2} \supset B_{\epsilon_1}(x^*) \supset \Omega_{v_1/2} \supset \cdots \supset x^*
\]
3.1. Lyapunov Stability Theorems

3.1. LYAPUNOV STABILITY THEOREMS

Figure 3.4: Construction of the nested sets \((B_{\epsilon_1}(x^*), \Omega_{\nu_{1/2}}))\).

\[
B\epsilon \subset (x^*) \subset \Omega_{\nu/2} \subset B_n(x^*)
\]

3. GLOBAL STABILITY: LYAPUNOV METHOD

We now argue that since $V(x(t)) \rightarrow V(x^*)$ (step 1), the trajectory $x(t)$ enters levels sets $\Omega_{v_0/2}, \Omega_{v_1/2}, \ldots$ and therefore enters the neighborhoods $B_{v_0}(v^*), B_{v_1}(v^*), \ldots$, i.e., $x(t) \rightarrow x^*$. Specifically the nested set of pairs $(B_{v_i}(x^*), \Omega_{v_i/2})$ has the properties

- If $x(0) \in B_{\delta}(x^*)$ as in part 1 then $x(t) \in B_{\epsilon_0}(x^*)$ for all $t \geq 0$.
- $\Omega_{v_i/2}$ is nonempty and in the interior of $B_{v_i}(x^*)$, i.e., $\phi \notin \Omega_{v_i/2} \subset B_{v_i}(x^*)$.
- The levels $v_0 > v_1 > v_2 > \cdots$ are strictly decreasing with
 \[v_{i+1} \leq \frac{v_i}{2} \]
- The sizes $\epsilon_0 > \epsilon_1 > \epsilon_2 > \cdots$ converge to zero, $\epsilon_i \rightarrow 0$ as $i \rightarrow \infty$ (because $v_i \rightarrow 0$ and $V(x) > V(x^*)$ for all $x \neq x^*$).

Step 1 shows that $x(t)$ will cross the level sets $\Omega_{v_i/2}$, $i = 0, 1, \ldots$.

Step 3: We show that $x(t) \rightarrow x^*$ as $t \rightarrow \infty$, i.e., given any $\epsilon > 0$ there exists T such that $x(t) \in B_{\epsilon}(x^*)$ for all $t > T$. Fix an $\epsilon > 0$. Let $\epsilon_i \leq \epsilon$ and consider $\Omega_{v_i} \subset B_{v_i}(x^*)$. Since $x(t)$ will eventually enter Ω_{v_i}, there exists T such that, for all $t \geq T$, $x(t) \in \Omega_{v_i} \subset B_{v_i}(x^*) \subseteq B_{\epsilon}(x^*)$, as desired.

Part 3. To prove global asymptotic stability we must show that, given any $x_0 \in D = \mathbb{R}^n$ or \mathbb{R}^n_+, $\lim_{t \rightarrow \infty} x(t) = x^*$. Fix an $x_0 \in D$ and consider

\[\Omega_{v_0} := \{ x \in D \mid V(x) - V(x^*) \leq V(x_0) \} \]

The same argument in Step 2 above applies if we can show that Ω_{v_0} is compact, or $\Omega_{v_0} \subseteq B_{R}(x^*)$ for some finite $R > 0$. If no such R exists then, for each $k = 1, 2, \ldots$, there exists an $x_k \in \Omega_{v_0}$ such that $V(x_k) \leq V(x^*) + V(x_0) < \infty$ and $\|x_k - x^*\| > k$. This contradicts condition C3.3. (Also see Exercise 3.2.)

Example 3.4 Bounded level set. Suppose $V : D \rightarrow \mathbb{R}$ is continuously and satisfies C3.1. Prove that there is a level set Ω_c that contains x^*, is bounded, and $V(x) - V(x^*) \leq c$ for all $x \in \Omega_c$, provided c is small enough.

This essentially extracts the first part of the proof of Theorem 3.3. Start with an $\epsilon > 0$ small enough such that $B_{\epsilon}(x^*)$ lies in D. Define

\[v := \min_{x: \|x - x^*\| = \epsilon} V(x) - V(x^*) \]

4 This is the only place where the continuity of $\dot{V}(x)$ in x is used.
3.1. LYAPUNOV STABILITY THEOREMS

Condition C3.1 means that \(v > 0 \) and hence the set with \(c := v/2 \):

\[
\Omega_{v/2} := \left\{ x \in B_\epsilon(x^*) \mid V(x) - V(x^*) \leq \frac{v}{2} \right\}
\]

is nonempty (since \(V \) is continuous). It is in the interior of \(B_\epsilon(x^*) \) since \(V(x) - V(x^*) \) equals \(v/2 \) on the boundary of \(\Omega_{v/2} \) but equals \(v \) on the boundary of \(B_\epsilon(x^*) \).

Note that the choice of \(v \) to be the minimum value of \(V \) on the bounded set \(\|x - x^*\| = \epsilon \) is important. Consider

\[
V(x) := \frac{x_1^2}{1 + x_1^2} + x_2^2
\]

\(x^* = (0, 0) \). Then \(\{ x \in \mathbb{R}^2 \mid V(x) - V(x^*) \leq c \} \) is unbounded if \(c > 1 \) because \((x_1, 0) \) is in the set for arbitrarily large \(|x_1| \). However, the definition of \(v \) ensures that \(v < 1 \) and hence \(\Omega_{v/2} \) is strictly contained in \(B_\epsilon(x^*) \). See Remark 3.7 and Figure 3.5. See also Exercise 3.2.

When (3.1) is a projected dynamics so that \(f(x) \) is discontinuous in \(x \), condition C3.2' needs to be strengthened to C3.2''.

Corollary 3.5 Lyapunov Stability (projected dynamics \(f \)). Suppose \(f(x) = \left(\tilde{f}(x) \right)_+ \) in (3.1) where \(\tilde{f} \) is locally Lipschitz on \(D \). Let \(x^* \in D \) be an equilibrium. Let \(V : D \to \mathbb{R} \) be a continuously differentiable function.

1. If \(V \) satisfies C3.1, C3.2 then \(x^* \) is stable.

2. If \(V \) satisfies C3.1, C3.2'' then \(x^* \) is asymptotically stable.

3. If \(D = \mathbb{R}^n \) or \(D = \mathbb{R}^n_+ \) and \(V \) satisfies C3.1, C3.2'', C3.3 then \(x^* \) is globally asymptotically stable.

Proof. As mentioned before, \(\dot{V}(x) := \frac{\partial V}{\partial x} f(x) \) always exists but is in general not continuous when \(f \) is a projected dynamics. The continuity of \(\dot{V}(x) \) is used only in the proof of part 2 to show that \(\alpha \) in (3.2) is strictly positive. With condition C3.2'' there always exist a \(\delta < \min\{\eta, \delta_0\} \), an \(\epsilon \) with \(\delta < \epsilon < \epsilon_0 \), and an \(\alpha > 0 \) such that \(\dot{V}(x) \leq -\alpha < 0 \) for all \(x \) with \(\delta \leq \|x - x^*\| \leq \epsilon \). Hence \(V(x(t)) \leq V(x(0)) - \alpha t \) as before. The rest of the argument is identical to the proof for Theorem 3.3.

Remark 3.6 Existence and uniqueness of solution. Since \(f \) is assumed to be only locally Lipschitz (or a projection of a locally Lipschitz function), a solution of (3.1) is not a priori guaranteed. The proof of Theorem 3.3.3 (or Corollary 3.5.3) for global stability shows
that, if there is a Lyapunov function V that satisfies C3.1, C3.2 (it is not necessary to satisfy C3.2’ or C3.2”) and C3.3 then, starting from any initial point x_0, the solution trajectory $x(t)$, if exists, will stay entirely in a ball B_R that contains the level set \(\{ x \mid V(x) \leq V(x_0) \} \).

Theorem 1.6 or Theorem 1.9 of Chapter 1.5.1 then implies that a unique solution \((x(t), t \geq 0)\) of (3.1) indeed exists.

Remark 3.7 Radially unbounded. We comment on which part of the proof for Theorem 3.3.2 breaks down if V is not radially unbounded and Ω_{v_0} is not bounded (that for Corollary 3.5.2 is identical). Recall that the proof of part 2 first shows that $V(x(t)) \to V(x^*)$ as $t \to \infty$ and then shows that, since $V(x(t))$ crosses Lyapunov surfaces to enter Ω_{v_i} and $\Omega_{v_i} \subset B_{c_i}$, we must have $x(t) \to x^*$. Both steps require that Ω_{v_0} be contained in B_R for some $R < \infty$.

To see this consider a concrete Lyapunov candidate $V : \mathbb{R}^2 \to \mathbb{R}$ given by

\[
V(x) := x_2^2
\]

and assume the origin is the equilibrium point under study. V is not radially unbounded because $(x_1, 0) \to \infty$ but $V(x_1, 0) = 0$ as $x_1 \to \infty$. But V does not satisfy condition C3.1 since $V(x_1, 0) = V(0, 0)$ (the origin is the equilibrium point by assumption). Hence V is not a valid Lyapunov candidate for us. Consider instead

\[
V(x) := \frac{x_1^2}{1 + x_1^2} + x_2^2
\]

V is not radially unbounded because $(x_1, 0) \to \infty$ but $V(x_1, 0) \leq 1$ as $x_1 \to \infty$. The set \(\{ x \in \mathbb{R}^2 \mid V(x) = c \} \) is unbounded for $c \geq 1$. Suppose the system starts at some $x(0) = (x_1(0), x_2(0))$ with $x_2(0) \geq \sqrt{2}$ so that $V(x(0))/2 \geq 1$ and the set

\[
\left\{ x \in \mathbb{R}^2 \mid V(x) \leq \frac{V(x(0))}{2} \right\}
\]

is unbounded. In an attempt to get a bounded set, suppose we take the intersection of the above set with the ball defined by $x(0)$:

\[
\Omega_{v_0} := \left\{ x \in \mathbb{R}^2 \mid V(x) \leq \frac{V(x(0))}{2} \right\} \cap B_{\|x(0)\|}(0)
\]

As shown in Figure 3.5, $x(0)$ is at the boundary of Ω_{v_0}. Since we only know that $\dot{V} < 0$, starting from $x(0)$ on the boundary, $x(t)$ may leave Ω_{v_0} instead of entering it and therefore the trajectory of $x(t)$ may not stay in a bounded set even as $V(t)$ is strictly decreasing in time; see Figure 3.5(b). This means that the minimum rate α of decrease in (3.2) may be
3.1. LYAPUNOV STABILITY THEOREMS

Figure 3.5: Plots of $V(x) = x_1^2/(1 + x_1^2) + x_2^2$. Starting from an $x(0)$ such that $V(x(0)) > 1$, the trajectory $x(t)$ may not stay in any bounded set even if $\dot{V} < 0$.
3. GLOBAL STABILITY: LYAPUNOV METHOD

0 over the region that the trajectory \(x(t) \) may visit. Hence the proof for \(V(x(t)) \to V(x^*) \) becomes invalid. Moreover since \(\Omega_{\epsilon_1} \) may not be contained in any ball \(B_\epsilon \), \(x(t) \) crossing Lyapunov surfaces does not guarantee that \(x(t) \) will stay in any small ball \(B_\epsilon \) for sufficiently large \(t \). Hence the argument that \(x(t) \to x^* \) becomes invalid.

Example 3.8 Consider

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_2^2 \\
\dot{x}_2 &= x_1 x_2 - 2x_2^3
\end{align*}
\]

with the origin as an equilibrium. Show that the origin is globally asymptotically stable.

Consider the Lyapunov function candidate

\[
V(x) := \frac{1}{2} (x_1^2 + x_2^2)
\]

Clearly \(V \) is continuously differentiable, positive definite (condition C3.1), i.e., \(V(x) > 0 \) for all \(x \neq 0 \), and radially unbounded (C3.3). For condition C3.2' we have

\[
\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2 = -x_1^2 - 2x_2^4 + 2x_1x_2^2 = -\left(x_1 - x_2^2\right)^2 - x_2^4 \leq 0
\]

If \(\dot{V} = 0 \) then \(x_2 = 0 \) and \(x_1 = x_2^2 = 0 \). Hence \(\dot{V} < 0 \) for all \(x \neq 0 \) and satisfies C3.2'. Theorem 3.3 then implies that \(x^* = 0 \) is globally asymptotically stable.

Finding a Lyapunov function is generally difficult. Often a given Lyapunov function has a rate that is negative semidefinite, but not negative definite, i.e., condition C3.2 is satisfied but not C3.2' or C3.2". It still guarantees global asymptotic stability if it satisfies an additional property. By “\(x(t) \equiv a \)” or “\(x \equiv a \)” we mean “\(x(t) = a \) for all \(t \geq 0 \).”

Theorem 3.9 LaSalle’s Invariance Principle. Let \(x^* \in D \) be an equilibrium of (3.1) where \(f \) is either locally Lipschitz or a projection of a locally Lipschitz function. Let \(V : D \to \mathbb{R} \) be a continuously differentiable function. Let \(E := \{ x \in D | \dot{V}(x) = 0 \} \) and suppose no solution of (3.1) can stay identically in \(E \) other than the trivial solution \(x(t) \equiv x^* \).

1. If \(V \) satisfies conditions C3.1, C3.2 then \(x^* \) is asymptotically stable.

2. If \(D = \mathbb{R}^n \) or \(D = \mathbb{R}_+^n \) and \(V \) satisfies C3.1, C3.2, C3.3 then \(x^* \) is globally asymptotically stable.
Note that we allow f in (3.1) to be discontinuous when it is a projected dynamics. When condition C3.2 is replaced by C3.2' or C3.2'', then $E = \{ x^* \}$ and the theorem reduces to Theorem 3.3 and its corollary. Otherwise E generally contains other points $a \neq x^*$ where $\dot{V}(a) = 0$. The condition in Theorem 3.9 requires that no solution trajectory $(x(t), t \geq 0)$ of (3.1) can stay entirely in E except $x(t) \equiv x^*$. For instance E cannot contain a limit cycle, or if $\dot{V}(a) = 0$ with $a \neq x^*$ then $x(t) \equiv a$ cannot be a solution; see Example 3.13. The intuition is that an asymptotically stable system will approach points in E that are on a solution trajectory. If the only solution trajectory in E is $x(t) \equiv x^*$ then the system will approach x^*.

Before proving Theorem 3.9 we need to introduce a few concepts. Consider a general dynamical system

$$\dot{x} = f(x(t)) \quad \text{where } f : D \to \mathbb{R}^n, \ t \geq 0$$

and $D \subseteq \mathbb{R}^n$ is a domain. Given any initial state $x(0) = x_0$ let $\phi(t; x_0)$ denote a solution of (3.3), and $x(t) := \phi(t; x_0)$. A point $x \in D$ is called a positive limit point of $x(t)$ if (given x_0) there is a sequence $\{t_i\}$ with $t_i \to \infty$ as $i \to \infty$ such that $x(t_i) \to x$ as $i \to \infty$. The set of all positive limit points of $x(t)$ (given x_0) is called the positive limit set of $x(t)$. A set $A \subseteq D$ is called a positive invariant set or just an invariant set with respect to (3.3) if

$$x(0) \in A \implies x(t) \in A \quad \forall t \geq 0$$

We say that $x(t)$ approaches a set A as $t \to \infty$ if for all $\epsilon > 0$ there is an T such that

$$\inf_{y \in A} \| x(t) - y \| < \epsilon \quad \forall t > T$$

for some norm $\| \cdot \|$.

We now illustrate these concepts with simple examples. If $\dot{x} = -x(t), \ t \geq 0$, then the origin $\{0\}$ is the only positive limit set of the solution $x(t)$ for any initial state $x(0)$. More generally an asymptotically stable equilibrium point is a positive limit set of every solution starting sufficiently close to the equilibrium point. If $\dot{x} = \sin t, \ t \geq 0$, then $[-1, 1]$ is the positive limit set of the solution $x(t) = -\cos t$ for any initial state $x(0)$. More generally a stable limit cycle is a positive limit set of every solution starting sufficiently close to the limit cycle. In this case, even though a solution $x(t)$ approaches the limit cycle A as $t \to \infty$, $x(t)$ does not converge to any specific point in A. Hence $x(t)$ approaching a set does not imply the existence of $\lim_{t \to \infty} x(t)$. If $x(t)$ is bounded however then there exists a sequence $(t_i, i = 0, 1, \ldots)$ such that $x(t_i)$ converges to a point as $i \to \infty$ by the Bolzano-Weierstrass theorem. An equilibrium point and a limit cycle are invariant sets. Theorem 3.3 implies that the level set $\Omega_c := \{ x \in \mathbb{R}^n | V(x) \leq c \}$ with $\dot{V}(x) \leq 0$ for all $x \in \Omega_c$ is an invariant set. This set is bounded for any $c > 0$ if $V(x)$ is radially unbounded; see Exercise 3.2.

Finally we need the notion of continuity of solution in initial state. Suppose, given any initial state $x_0 \in D$, there is a unique solution to (3.3) in D, denoted by $\phi(t; x_0)$,
3. GLOBAL STABILITY: LYAPUNOV METHOD

$t \geq 0$. Hence $\phi(0; x_0) = x_0$ and $x(t) := \phi(t; x_0)$. We say that the solution $\phi(t; \cdot)$ of (3.3) is \textit{continuous in its initial state} if, given any $x_0 \in D$ and any $\epsilon > 0$, there is an $\delta > 0$ such that for any $y_0 \in D$

$$\|x_0 - y_0\| < \delta \implies \sup_{t \in [0,\infty)} \|\phi(t; x_0) - \phi(t; y_0)\| < \epsilon$$

Hence if $\phi(t; \cdot)$ is continuous then two trajectories that start close to each other will stay close to each other for all $t \geq 0$.

A positive limit set is important because any solution approaches its positive limit set. The next fundamental result does not require f to be continuous and is therefore applicable to projected dynamics. See its proof in Appendix 3.4.\(^5\)

Lemma 3.10 \textit{Consider a compact set $\Omega \subset D$ and suppose, starting from any state in Ω, there is a unique solution to (3.3) and the solution is continuous in the initial state. Given an initial state $x(0) = x_0 \in \Omega$, if the corresponding solution $(x(t), t \geq 0)$ lies entirely in the compact set Ω, then its positive limit set $A^+ := A^+(x_0)$ is in Ω, nonempty, compact and invariant. Moreover $x(t)$ approaches A^+ as $t \to \infty$.}

The lemma only requires that (3.3) have a unique solution over the compact set Ω, but does not require Ω to be invariant because the conclusion is for an individual solution trajectory that lies entirely in Ω.

\textbf{Proof of Theorem 3.9.}

We prove part 1 of the theorem. Since V satisfies conditions C3.1 and C3.2, the stability of x^* follows from Theorem 3.3.1 and Corollary 3.5.1 (if a solution exists). In addition we need to prove that $x(t) \to x^*$ as $t \to \infty$, provided the initial state $x(0)$ is close enough to x^*. We now prove this in three steps. Step 1 shows that we can apply Lemma 3.10 to our system (3.1) and hence any solution $x(t)$ will approach its positive limit set. Step 2 shows that the positive limit set is in E. The final step concludes asymptotic stability since the only point in E a solution $x(t)$ can approach is x^*.

Step 1: We show that the (pre-)conditions in Lemma 3.10 are satisfied.

Lemma 3.11 \textit{Suppose f in (3.1) is either locally Lipschitz or a projection of a locally Lipschitz function. Then there is a unique solution $\phi(t, x_0)$, $t \geq 0$, given any initial state $x(0) = x_0$ and the solution $\phi(t, x_0)$ is continuous in x_0.}

\textbf{Proof of Lemma 3.11.} As at the beginning of the proof for Theorem 3.3, since V satisfies

\(^5\)If the definition of a positive limit point x of a solution $x(t)$ does not require $x \in D$ (so x can be in $\mathbb{R}^n \setminus D$) then the condition in Lemma 3.10 can be relaxed to “$x(t)$ is bounded and lies in D for all $t \geq 0$.”
3.1. LYAPUNOV STABILITY THEOREMS

C3.1 and is continuous, we can find an $\epsilon > 0$ such that the closed-ball $B_1(V^*) \subseteq D$. Let $v := \min_{x_0} V(x) - V(x^*)$ be the minimum value of $V(x) - V(x^*)$ on the boundary of $B_1(V^*)$ and define the level set

$$\Omega_{v/2} := \{ x \in B_1(x^*) | V(x) - V(x^*) \leq v/2 \} \quad (3.4)$$

Then $\Omega_{v/2}$ is bounded and hence compact. Moreover it is invariant, i.e., $x(0) \in \Omega_{v/2}$ implies $x(t) \in \Omega_{v/2}$ for all $t \geq 0$, since $V(x) \leq 0$ over D. This means that, given any initial state $x(0) \in \Omega_{v/2}$, a solution, if exists, lies entirely in the compact set $\Omega_{v/2}$. Then, since f is locally Lipschitz or a projection of a locally Lipschitz function, the existence and uniqueness of the solution $x(t)$ follow from Theorems 1.6 and 1.9.

When f is locally Lipschitz, the continuity of the solution $\phi(t; x_0)$ in its initial state x_0 is a standard result; see e.g. [29, Chapter 3.2]. When $f(x) = (\bar{f}(x))_x^+$ where \bar{f} is locally Lipschitz, the continuity of $\phi(t; \cdot)$ is proved in [20, Lemma 2].

Step 2: We prove LaSalle’s invariance principle. Since $\Omega_{v/2}$ defined in (3.4) is compact and invariant, Lemma 3.10 applies to any solution trajectory $x(t)$ that starts in $\Omega_{v/2}$. In particular $x(t)$ approaches its nonempty, compact, invariant positive limit set $A^+ = A^+(x_0)$. Let

$$E_{v/2} := \{ x \in \Omega_{v/2} | \dot{V}(x) = 0 \} \subseteq E$$

Lemma 3.12. Under the conditions of Theorem 3.9, every solution that starts in $\Omega_{v/2}$ approaches the largest invariant set in $E_{v/2}$ as $t \to \infty$.

Proof of Lemma 3.12. Fix any $x(0) = x_0$ in $\Omega_{v/2}$ and its unique solution $x(t)$ in $\Omega_{v/2}$. Since $\dot{V}(x) \leq 0$ on $\Omega_{v/2}$, $V(x(t))$ is nonincreasing in t and hence $V(x(t))$ approaches a limit v^* as $t \to \infty$. Since $V(x)$ is continuous and $\Omega_{v/2}$ is invariant and compact, v^* is finite. Moreover for any positive limit point $y \in A^+ := A^+(x_0)$ there is a sequence $(t_i, i = 0, 1, \ldots)$ with $t_i \to \infty$ as $i \to \infty$ such that $\lim_{i} x(t_i) = y$. Continuity of V then implies

$$V(y) = V(\lim_{i} x(t_i)) = \lim_{i} V(x(t_i)) = v^*$$

i.e., $V(x) = v^*$ on A^+. Since A^+ is invariant (Lemma 3.10) we have $\dot{V}(x) = 0$ on A^+. This means $A^+ \subseteq E_{v/2}$. If M is the largest invariant set in $E_{v/2}$ then

$$A^+ \subseteq M \subseteq E_{v/2} \subseteq \Omega_{v/2} \subset D$$

Lemma 3.10 implies that $x(t)$ approaches A^+ and hence M as $t \to \infty$.

Step 3: Since the only solution trajectory that can stay entirely in $E_{v/2}$ is $x(t) \equiv x^*$, $M = \{x^*\}$. Lemma 3.12 then implies that $x(t) \to x^*$ as $t \to \infty$.

\[\]
3. GLOBAL STABILITY: LYAPUNOV METHOD

This completes the proof of part 1 of Theorem 3.9.

To prove part 2 of Theorem 3.9, note that condition C3.3 implies that \(\Omega_c := \{ x \in \mathbb{R}^n \mid V(x) - V(x^*) \leq c \} \) is bounded for any \(c > 0 \) (see Exercise 3.2). Hence given any initial state \(x_0 \in D = \mathbb{R}^n \) we can use \(c := V(x(0)) \). The set \(\Omega_c \) will be compact and the argument for part 1 proves that \(x(t) \to x^* \), proving global asymptotic stability.

Example 3.13 LaSalle’s invariance principle Theorem 3.9. Consider

\[
\begin{align*}
\dot{x}_1 &= -2 (x_1(t) - x_2^2(t)) \\
\dot{x}_2 &= (-2x_1(t) - x_2(t) - x_3^2(t))^{+}_{x_2(t)}
\end{align*}
\]

where the domain \(D = \mathbb{R} \times \mathbb{R}_+ \), i.e., \(x_2(t) \geq 0 \) for all \(t \geq 0 \). The equilibrium points are given by

\[
x_1 = x_2^2, \quad (-2x_1 - x_2 - x_3^2)^{+}_{x_2} = 0
\]

The second equality is equivalent to

\[
-2x_1 - x_2 - x_3^2 = 0 \quad \text{or} \quad x_2 = 0, \quad -2x_1 - x_2 - x_3^2 < 0
\]

Substituting \(x_1 = x_2^2 \) we have \(-2x_1 - x_2 - x_3^2 = -x_2(x_2 + 1)^2 \) and hence \(x^* = (0, 0) \) is the unique equilibrium (recall that \(x_2 \geq 0 \)). We now show that the origin is globally asymptotically stable.

Consider the Lyapunov function candidate

\[
V(x) := \frac{1}{2} \left(x_1^2 + x_2^2 \right)
\]

Clearly \(V \) is continuously differentiable, positive definite (condition C3.1) and radially unbounded (C3.3). For condition C3.2 we have

\[
\dot{V} = x_1(t) \dot{x}_1(t) + x_2(t) \dot{x}_2(t)
= -2x_1^2(t) + 2x_1(t)x_2^2(t) + x_2(t) (-2x_1(t) - x_2(t) - x_3^2(t))^{+}_{x_2(t)}
\]

But the last term \(x_2(t) (-2x_1(t) - x_2(t) - x_3^2(t))^{+}_{x_2(t)} = x_2(t) (-2x_1(t) - x_2(t) - x_3^2(t)) \). Hence

\[
\dot{V} = -(x_1 - x_2^2)^2 - (x_1 + x_2)^2 \leq 0
\]

Moreover if \(\dot{V}(x) = 0 \) then \(x_1 = x_2^2 \) and \(x_1 = -x_2 \), i.e., \(x_2(x_2 + 1) = 0 \). Hence

\[
\dot{V}(x) = 0 \quad \text{if and only if} \quad x_2 = 0 \quad \text{or} \quad x_2 = -1
\]
Hence any trajectory \(x(t) \) that lies entirely in the set \(E := \{ x \mid \dot{V}(x) = 0 \} \) must have either \(x_2(t) \equiv 0 \) or \(x_2(t) \equiv -1 \). Even though the latter trajectory lies in \(E \), it is not a system solution because any solution \(x(t) \) must have \(x_2(t) \geq 0 \) for all \(t \geq 0 \). Hence the only solution trajectory \(x(t) \) that stays identically in \(E \) must have \(x_2 \equiv 0 \), and hence, since \(x_1 \equiv x_2^2 \), \(x_1 \equiv 0 \), i.e., it must be the trivial solution \(x(t) \equiv 0 \). The origin is hence globally asymptotically stable by LaSalle’s invariance principle Theorem 3.9.

3.2 STABILITY OF DUAL ALGORITHM

Consider the class of dual algorithms considered in Chapter 2.2.3, reproduced here:

\[
\begin{align*}
\dot{p}_l &= \gamma_l (y_l(t) - c_l)_{p_l(t)}^+ =: g_l(y_l(t), p_l(t)), \quad l = 1, \ldots, L \quad (3.5a) \\
x_i(t) &= \left(U_i^{-1}(q_i(t)) \right)^+, \quad i = 1, \ldots, N \quad (3.5b)
\end{align*}
\]

where for any \(a \in \mathbb{R} \), \([a]^+ := \max\{a, 0\}\) and \(U_i^{-1} \) are the inverses of the derivatives \(U_i' \) of the utility functions \(U_i \). For any \(a \in \mathbb{R} \) and \(b \geq 0 \), \([a]^+ = a\) if \(a > 0 \) or \(b > 0 \) and \([a]^+ = 0\) if \(a \leq 0 \) and \(b = 0 \). We assume \(p(0) \geq 0 \) which guarantees that \((x(t), p(t)) \geq 0, \quad t \geq 0 \). As before,

\[
q_i(t) = \sum_l R_{li} p_l(t) \quad \text{and} \quad y_i(t) = \sum_i R_{li} x_i(t)
\]

Using (3.5b) we write \(x(p) = x(q) \) and \(y(p) \) to mean, componentwise,

\[
x_i(p) := x_i(q_i) := \left(U_i^{-1}(q_i) \right)^+ \quad \text{and} \quad y_i(p) := \sum_i R_{li} x_i(p)
\]

where \(q_i := \sum_l R_{li} p_l \). We call \(p^* \), as opposed to \((x^*, p^*)\), an \textit{equilibrium} of the dual algorithm (3.5) if

\[
g(y(p^*), p^*) = 0
\]

Recall also the network utility maximization:

\[
\max_{x \geq 0} \quad \sum_i U_i(x_i) \quad \text{subject to } Rx \leq c \quad (3.6a)
\]

and its Lagrangian dual:

\[
\min_{p \geq 0} \quad D(p) := \sum_i \max_{x_i \geq 0} (U_i(x_i) - x_i q_i) + \sum_l p_l c_l \quad (3.6b)
\]

The condition C2.1 of Theorem 2.13 (there exists finite \(p \) such that \(\sum_l R_{li} x_i(p) \leq c_l \) for all \(l \)) ensures that there is a feasible solution for the primal problem (3.6a). The condition C2.2
there \((U_i)\) are twice continuously differentiable and strictly concave increasing) in addition ensures that there exists a unique optimal primal solution \(x^*\). If \(R\) has a full row rank and the optimal solution \(x^* = x(p^*) > 0\) then the optimal dual solution \(p^*\) is also unique (see the proof of Theorem 2.13).

Before stating formally the stability property of the dual algorithm (3.5) we first show that LaSalle’s invariance principle Theorem 3.9.2 is applicable to (3.5). The dual algorithm can be expressed in terms of only the price vector \(p(t)\) as:

\[
\dot{p} = \Gamma (\tilde{g}(p(t)))^{\dagger}_{p(t)}, \quad p(0) \geq 0, \ t \geq 0
\]

where \(\tilde{g}(p) := y(p) - c\) and \(\Gamma = \text{diag}(\gamma_i)\) is a diagonal gain matrix. We claim that this is a projected dynamic with a locally Lipschitz \(\tilde{g}(p)\).

Lemma 3.14 If \(U_i\) are twice continuously differentiable then \(\tilde{g}(p)\) is locally Lipschitz.

Proof. Fix any \(p, \hat{p} \geq 0\) that are close enough. We will show that

\[
\|\tilde{g}(p) - \tilde{g}(\hat{p})\| \leq \sum_i R_{ii} |x_i(p) - x_i(\hat{p})| \leq \left(\sum_i R_{ii} L_i \right) \|p - \hat{p}\|
\]

proving that \(\tilde{g}(p)\) is Lipschitz.

Note that \((\cdot)^+\) is nonexpansive: for any \(a, b \in \mathbb{R}\)

\[
|a^+ - b^+| = \begin{cases} |a - b| & \text{if } a > 0, b > 0 \\ a \leq |a - b| & \text{if } a > 0, b \leq 0 \\ b \leq |b - a| & \text{if } a \leq 0, b > 0 \\ 0 \leq |a - b| & \text{if } a \leq 0, b \leq 0 \\ \end{cases}
\]

i.e., \(|a^+ - b^+| \leq |a - b|\). Hence

\[
|x_i(p) - x_i(\hat{p})| = \left| (U_i^\dagger U_i^{-1}(p))^+ - (U_i^\dagger U_i^{-1}(\hat{p}))^+ \right| \leq |U_i^\dagger(p) - U_i^\dagger(\hat{p})|
\]

Since \(U_i\) are twice continuously differentiable, \(U_i^\dagger(p)\) are continuously differentiable with

\[
\frac{\partial}{\partial p_i} U_i^\dagger U_i^{-1}(p) = \frac{R_{ii}}{U_i''(x_i(p))}
\]

Lemma 1.3 then implies that \(U_i^\dagger(p)\) are locally Lipschitz and hence \(|x_i(p) - x_i(\hat{p})| \leq L_i \|p - \hat{p}\|\) locally for some Lipschitz constants \(L_i\). This completes the proof of the lemma.

Hence the dual algorithm (3.5) is a projected dynamical system with an underlying Lipschitz derivative \(\tilde{g}(p)\), to which Theorem 3.9 is applicable for proving stability. This also guarantees the existence and uniqueness of a solution; see Remark 3.17 after the theorem.
3.2. STABILITY OF DUAL ALGORITHM

Theorem 3.15 Suppose the conditions C2.1 and C2.2 hold and R has a full row rank. Then the unique equilibrium p^* of (3.5) is globally asymptotically stable, provided $x(p^*) > 0$.

Proof. Theorem 2.13 proves the existence and uniqueness of the equilibrium p^* and the primal-dual optimality of p^* and the associated source rates $x^* := x(p^*) > 0$. To prove that p^* is globally asymptotically stable we will show that $D(p)$ is continuously differentiable and satisfies conditions C3.1, C3.2, C3.3 and hence is a Lyapunov function for the dual algorithm (3.5). Moreover the only solution of (3.5) that can stay identically in the set $\{ p \mid \hat{D}(p) = 0 \}$ is the trivial solution $p(t) \equiv p^*$. LaSalle’s invariance principle (Theorem 3.9.2) then implies the global asymptotic stability of p^*.

Since U_i are strictly concave in x the dual objective function $D(p)$ is continuously differentiable in p [8, p.669]; moreover its derivatives are

$$\frac{\partial D}{\partial p}(p) = c - Rx(p) = c - y(p)$$

We now prove that $D(p)$ satisfies conditions C3.1, C3.2, C3.3.

C3.1: The strict concavity of U_i and full row rank of R mean that the optimal p^* is unique and hence

$$D(p) > D(p^*) \quad \text{for all } p \neq p^*$$

Moreover $D(p^*)$ is finite by Theorem 2.13.

C3.2: We have for all $p(t) \neq p^*$

$$\hat{D} = \frac{\partial D}{\partial p} g(y(p(t)), p(t)) = (c - y(p(t)))^T (y(p(t)) - c)_p^+$$

$$= - \sum_i (y_i(p(t)) - c_i) (y_i(p(t)) - c_i)_p^+$$

$$= - \sum_i (y_i(p(t)) - c_i)^2 \mathbf{1} (y_i(p(t)) > c_i \text{ or } p_i(t) > 0)$$

where the indicator function $\mathbf{1}(P) := 1$ if P is true and 0 otherwise. Hence $\hat{D} \leq 0$.

C3.3: We have to show that $D(p)$ is radially unbounded, i.e., $D(p) \to \infty$ as $\|p\| \to \infty$, under condition C2.2. For ease of reference in the future, this is proved as Lemma 3.16 below.

This completes the proof that $D(p)$ is a Lyapunov function for the dual algorithm (3.5).

LaSalle’s invariance principle (Lemma 3.12) implies that any solution $p(t)$ of (3.5) will converge to the largest invariant set in

$$E := \{ p \in \mathbb{R}_+^L \mid \hat{D}(p) = 0 \}$$
From the proof above of condition C3.2, $\dot{D}(p) = 0$ if and only if, for each $l = 1, \ldots, L$,

$$p_l \geq 0 \quad \text{and} \quad y_l(p) \leq c_l \quad \text{with equality if } p_l > 0$$

This means that p is an equilibrium point of (3.5). Since the equilibrium is unique we must have $p = p^*$. Hence the only solution $p(t)$ of (3.5) that can stay identically in E is the trivial solution $p(t) \equiv p^*$. Theorem 3.9.2 then implies the global asymptotic stability of p^*.

Lemma 3.16 If U_i are strictly concave and continuously differentiable then the dual objective function $D(p)$ is radially unbounded.

Proof. Since U_i is strictly concave and continuously differentiable, $U_i'(q_i)$ is a strictly decreasing continuous function of q_i. Hence $y_l(p) = \sum_i R_{li} x_i(p) = \sum_i R_{li} (U_i'(q_i))^+ \,$ is strictly decreasing in p_l since $q_i(p)$ is strictly decreasing in p_l if $R_{li} = 1$, unless $y_l(p) = 0$ for large enough p. This means that there is an $\epsilon > 0$ and, for every link $l = 1, \ldots, L$, there is a finite threshold \tilde{p}_l such that for any $p \geq 0$,

$$p_l \geq \tilde{p}_l \implies c_l - y_l(p) > \epsilon, \quad l = 1, \ldots, L \quad (3.7)$$

i.e., the flow rate $y_l(p)$ is smaller than c_l by more than ϵ if $p_l \geq \tilde{p}_l$ even if all other links $k \neq l$ have zero prices. Let $\tilde{p} := (\tilde{p}_l, l = 1, \ldots, L)$. Then (3.7) implies in particular that

$$c_l - y_l(\tilde{p}) > \epsilon, \quad l = 1, \ldots, L \quad (3.8)$$

We will take $\|p\| \to \infty$ and compare the gap $D(p) - D(\tilde{p})$.

$$D(p) - D(\tilde{p}) = \sum_i (U_i(x_i(p)) - U_i(x_i(\tilde{p}))) - \sum_l (p_l y_l(p) - \tilde{p}_l y_l(\tilde{p})) + \sum_l c_l (p_l - \tilde{p}_l)$$

$$\geq \sum_i U_i'(x_i(p)) (x_i(p) - x_i(\tilde{p})) - \sum_l (p_l y_l(p) - \tilde{p}_l y_l(\tilde{p})) + \sum_l c_l (p_l - \tilde{p}_l)$$

$$\geq \sum_i q_i(p) (x_i(p) - x_i(\tilde{p})) - \sum_l (p_l y_l(p) - \tilde{p}_l y_l(\tilde{p})) + \sum_l c_l (p_l - \tilde{p}_l) \quad (3.9)$$

where the first inequality follows from the concavity of U_i. To see the second inequality, note that since $x_i(p) = \arg\max_{x_i \geq 0} U_i(x_i) - x_i q_i(p)$, we have

$$U_i'(x_i(p)) = q_i(p) \quad \text{or} \quad U_i'(x_i(p)) < q_i(p) \quad \text{with } x_i(p) = 0$$

In either case we have, since $x_i(\tilde{p}) \geq 0$,

$$U_i'(x_i(p)) (x_i(p) - x_i(\tilde{p})) \geq q_i(p) (x_i(p) - x_i(\tilde{p}))$$
3.2. STABILITY OF DUAL ALGORITHM

Substitute \(q_i = \sum_l R_{li} p_l \) and \(y_i = \sum_l R_{li} x_i \) into (3.9) to obtain

\[
D(p) - D(\tilde{p}) \geq \sum_l \sum_i R_{li} p_l (x_i(p) - x_i(\tilde{p})) - \sum_l \sum_i R_{li} (p_l x_i(p) - \tilde{p}_l x_i(\tilde{p})) + \sum c_l (p_l - \tilde{p}_l)
\]

\[
= \sum_l (p_l - \tilde{p}_l) \left(c_l - \sum_i R_{li} x_i(\tilde{p}) \right)
\]

(3.10)

Substituting (3.8) into (3.10) we have

\[
D(p) - D(\tilde{p}) \geq \sum_l (p_l - \tilde{p}_l) (c_l - y_l(\tilde{p}))
\]

\[
\geq \epsilon \sum_{l : p_l > \tilde{p}_l} (p_l - \tilde{p}_l) - \sum_{l : p_l \leq \tilde{p}_l} \tilde{p}_l (c_l + y_l(\tilde{p}))
\]

(3.11)

where the last inequality follows from

\[p_l \leq \tilde{p}_l \implies (p_l - \tilde{p}_l) (c_l - y_l(\tilde{p})) \geq -\tilde{p}_l (c_l + y_l(\tilde{p})) \]

The second term on the right-hand side of (3.11) is constant. Hence \(D(p) \to \infty \) as \(\|p\| \to \infty \) as desired.

Remark 3.17 Assumptions C2.1 and C2.2 on dual algorithm. The assumptions C2.1 and C2.2 in Chapter 2.2.3 have implications on the existence and uniqueness of solution trajectory \((p(t), x(p(t)), t \geq 0)\) of the dual algorithm, the existence and uniqueness of the equilibrium point \(p^* \), and its global asymptotic stability. All of these are brought together after completing the proof of Theorem 3.15.

1. **Solution.** The dual algorithm \(g(p) := (\hat{g}(p))_p^+ \) is the projection of \(\hat{g} \). Lemma 3.14 shows that \(\hat{g} \) is locally Lipschitz under C2.2. The proof Theorem 3.15 constructs a Lyapunov function \(V \) that satisfies C3.1, C3.2, C3.3. Then, starting from any initial point \(p_0 \geq 0 \), a solution trajectory \(p(t) \), if exists, lies entirely in the closed set \(\Omega := \{ p \in \mathbb{R}_+^L | V(p) \leq V(p_0) \} \). The radial unboundedness condition C3.3 implies \(\Omega \) is bounded, and hence compact. Therefore a solution indeed exists and is unique (Remark 3.6 and Theorem 1.9.2).

2. **Equilibrium.** C2.1 implies that the network utility maximization problem is feasible and, since \(U_i \) are continuous, an optimal solution exists. C2.2 on the second derivative of \(U_i \) ensures that the primal optimal \(x(p^*) \) is unique and when \(R \) has a full row rank, the dual optimal \(p^* \) is also unique when \(x(p^*) > 0 \).

3. **Stability.** The Lyapunov function \(V \) and LaSalle’s invariance principle prove the global asymptotic stability of the unique equilibrium (Theorem 3.9.2).
3. GLOBAL STABILITY: LYAPUNOV METHOD

3.3 STABILITY OF PRIMAL-DUAL ALGORITHM

We consider a class of primal-dual algorithms of the form

\[\dot{x} = K \left(\frac{\partial L}{\partial x} (x, p) \right)_{x(t)}^+ \]
\[\dot{p} = \Gamma \left(-\frac{\partial L}{\partial p} (x, p) \right)_{p(t)}^+ \]

where \(K \) and \(\Gamma \) are invertible gain matrices. Note that for any \(a, b \in \mathbb{R} \),

\[(-a)^+ b \neq -(a)^+ b \]

Here \(L(x, p) \) is concave in \(x \) and convex in \(p \). Primal-dual algorithms have dynamics in both the source rates \(x \) and congestion prices \(p \). Often the function \(L \) is the Lagrangian of a constrained optimization problem and the algorithm is a first-order saddle point algorithm that iterates on steepest ascent in the \(x \) direction and steepest descent in the \(p \) direction.

For our purposes consider the network utility maximization and its dual problem (3.6). Its Lagrangian is

\[L(x, p) := \sum_i U_i(x_i) - p^T (Rx - c) \quad (3.12) \]

Then the primal-dual algorithm takes a decentralized form

\[\dot{x}_i = \kappa_i (U_i'(x_i(t)) - q_i(t))_{x_i(t)}^+ =: f_i(x_i(t), q_i(t)), \quad i = 1, \ldots, N \quad (3.13a) \]
\[\dot{p}_l = \gamma_l (y_l(t) - c_l)_{p_l(t)}^+ =: g_l(y_l(t), p_l(t)), \quad l = 1, \ldots, L \quad (3.13b) \]

When \(U_i \) are twice continuously differentiable the dynamics of (3.13) are defined by the projection of locally Lipschitz functions. We assume \((x(0), p(0)) \geq 0 \). A point \((x^*, p^*)\) is an equilibrium of the primal-dual algorithm (3.13) if \(f(x^*, p^*) = 0, g(x^*, p^*) = 0 \), i.e.,

\[U'(x^*) \leq q^*, \quad x^* \geq 0, \quad (x^*)^T (U'(x^*) - q^*) = 0 \]
\[y^* = Rx^* \leq c, \quad p^* \geq 0, \quad (p^*)^T (y^* - c) = 0 \]

As shown in Theorem 2.13 this means \((x^*, p^*)\) is an equilibrium of (3.13) if and only if \(x^* \) is an optimal solution of the network utility maximization (3.6a) and \(p^* \) is an optimal solution of its dual (3.6b). Moreover when \(U_i \) are twice continuously differentiable and strictly concave increasing (condition C2.2), \(x^* \) is unique. When \(R \) has a full row rank and \(x^* > 0, p^* \) is also unique.

The same conditions that guarantee the global asymptotic stability of dual algorithms also guarantee that of the primal-dual algorithm. We start with a simple lemma that will be repeatedly used to remove the projection operation.
3.3. Stability of Primal-Dual Algorithm

Lemma 3.18 For any scalars $a \geq 0, b \geq 0$ and $c \in \mathbb{R}$, we have

\[
(a - b)(c)_a^+ \leq (a - b)c \\
(a - b)(c)_b^+ \geq (a - b)c
\]

where $(c)_a^+ := c$ if $a > 0$ or $c > 0$ and 0 otherwise. If $a := (a_i, i = 1, \ldots, n)$, $b := (b_i, i = 1, \ldots, n)$, $c := (c_i, i = 1, \ldots, n)$ are vectors in \mathbb{R}^n then the following inequalities hold:

\[
(a - b)^T(c)_a^+ \leq (a - b)^Tc \\
(a - b)^T(c)_b^+ \geq (a - b)^Tc
\]

with the interpretation $(a - b)^T(c)_a^+ := \sum_i (a_i - b_i)(c_i)_i^+$ and likewise for $(a - b)^T(c)_b^+$.

Proof. We will prove the case when a, b, c are scalars; it implies the vector case. The first inequality is an equality if $a > 0$ or $c > 0$. When $a = 0$ and $c < 0$, the left-hand side is zero but the right-hand side is nonnegative. The second inequality is proved similarly.

While the dual objective function $D(p)$ serves as a Lyapunov function for proving the global asymptotic stability of the dual algorithm, the Lagrangian $L(x, p)$ cannot serve as a Lyapunov function for the primal-dual algorithm because the algorithm attempts to maximize L over x but minimize L over p.

Theorem 3.19 Suppose the conditions C2.1 and C2.2 hold and R has a full row rank. Then the unique equilibrium (x^*, p^*) of (3.13) is globally asymptotically stable, provided $x^* > 0$.

Proof. The discussion preceding Lemma 3.18 shows that there exists a unique equilibrium $z^* := (x^*, p^*)$ that is primal-dual optimal for (3.6) since U_i are strictly concave and R has a full row rank. Let $z := (x, p)$ and consider the quadratic Lyapunov function candidate

\[
V(z) := \frac{1}{2} (z - z^*)^T \begin{bmatrix} K^{-1} & 0 \\ 0 & \Gamma^{-1} \end{bmatrix} (z - z^*)
\]

where $K := \text{diag}(\kappa_i, i = 1, \ldots, N)$ and $\Gamma := \text{diag}(\gamma_l, l = 1, \ldots, L)$. Hence $V(z) = 0$ if and only if $z = z^*$. Since $K > 0, \Gamma > 0$, $V(z)$ is positive definite (i.e., $V(z) > 0$ for all $z \neq z^*$) and radially unbounded. Hence $V(z)$ is continuously differentiable and satisfies conditions C3.1 and C3.3. To prove the global asymptotic stability of z^* we now show that $\dot{V}(z) \leq 0$ for all $z \neq z^*$ (condition C3.2) and that the only solution to (3.13) that can maintain $\dot{V}(z) \equiv 0$ is the equilibrium trajectory $z(t) \equiv z^*$. LaSalle’s Theorem 3.9.2 then implies the global asymptotic stability of z^*.

Write the primal-dual algorithm (3.13) in terms of the Lagrangian:

\[
\dot{z} = \begin{bmatrix} K & 0 \\ 0 & \Gamma \end{bmatrix} \begin{bmatrix} \left(\frac{\partial L}{\partial x}(x(t), p(t)) \right)_{x(t)}^+ \\ 0 \\ \left(-\frac{\partial L}{\partial p}(x(t), p(t)) \right)_{p(t)}^+ \end{bmatrix}
\]
Then
\[
\dot{V} = (z(t) - z^*)^T \left[K^{-1} \begin{bmatrix} 0 \\ \Gamma^{-1} \end{bmatrix} \right] \dot{z} \\
= (x(t) - x^*)^T \left(\frac{\partial L}{\partial x}(x(t), p(t)) \right)_{x(t)}^+ + (p(t) - p^*)^T \left(-\frac{\partial L}{\partial p}(x(t), p(t)) \right)_{p(t)}^+
\]

where the inequality follows from Lemma 3.18. Since \(L \) is strictly concave in \(x \) and convex (linear) in \(p \), we have, for \(z \neq z^* \),
\[
\begin{align*}
(x - x^*)^T \frac{\partial L}{\partial x}(x, p) &< L(x, p) - L(x^*, p) \quad \text{(3.14)} \\
(p - p^*)^T \frac{\partial L}{\partial p}(x, p) &\geq L(x, p) - L(x, p^*)
\end{align*}
\]

Hence
\[
\dot{V} \leq L(x(t), p^*) - L(x^*, p(t))
\]
\[
= (L(x(t), p^*) - L(x^*, p^*)) + (L(x^*, p^*) - L(x^*, p(t))) \leq 0 \quad \text{(3.15)}
\]

where the second inequality follows from the saddle-point property of the optimal point \((x^*, p^*)\):
\[
L(x, p^*) \leq L(x^*, p^*) \leq L(x^*, p) \quad \forall (x, p)
\]

This completes the proof that \(V(z) \) satisfies condition condition C3.2 and is hence a Lyapunov function.

To use LaSalle’s Theorem 3.9 it suffices to show that only the equilibrium trajectory \(z(t) \equiv z^* \) of (3.13) can stay identically in the set
\[
E := \{ z \geq 0 \mid \dot{V}(z) = 0 \}
\]

From (3.15) and the saddle-point property of \(z^* \) we have \(\dot{V}(z(t)) \equiv 0 \) (i.e., \(\dot{V}(z(t)) = 0 \) for all \(t \geq 0 \)) if and only if
\[
L(x(t), p^*) \equiv L(x^*, p^*) \quad \text{and} \quad L(x^*, p(t)) \equiv L(x^*, p^*). \quad \text{(3.16)}
\]

The strict concavity of \(U \) and hence \(L \) means that the maximizer \(x^* \) of \(L(\cdot, p^*) \) is unique and therefore we must have \(x(t) \equiv x^* \) from the first equivalence in (3.16). In particular \(\dot{x} \equiv 0 \). Hence we have from (3.13a)
\[
U'(x^*) \leq q(p(t)), \quad x^* \geq 0, \quad (x^*)^T (U'(x^*) - q(p(t))) = 0, \quad t \geq 0 \quad \text{(3.17a)}
\]

Even though \(L \) is strictly concave in \(x \) and strict inequality holds in (3.14), the inequality on \(\dot{V} \) is non-strict because \(\dot{V} \leq 0 \) for \(z(t) \neq z^* \) with \(z(t) = (x^*, p(t)) \).
We now argue that \((x(t) \equiv x^*, p(t))\) also satisfies
\[
y^* = Rx^* \leq c, \quad p(t) \geq 0, \quad (p(t))^T (y^* - c) = 0, \quad t \geq 0 \quad (3.17b)
\]
But (3.17) implies that \((x(t), p(t))\) are equilibrium points of (3.13) for all \(t \geq 0\). Since the equilibrium is unique we must have \((x(t), p(t)) \equiv (x^*, p^*)\). Hence we have shown that if \(z(t)\) stays identically in \(E\) then \(z(t) \equiv z^*\) is the equilibrium trajectory. The theorem then follows from Theorem 3.9.2.

Therefore the proof is complete if we can establish (3.17b). The first condition \(Rx^* \leq c\) holds since \(x^*\) is a primal feasible point for (3.6a). The second condition \(p(t)^T (y^* - c) = 0\) holds since \((x(t), p(t))\) is a solution of (3.13). Finally substitute (3.12) into the second equivalence in (3.16) to obtain
\[
(p(t))^T (y^* - c) \equiv (p^*)^T (y^* - c) = 0
\]
Hence \((x^*, p)\) satisfies (3.17b) and the proof is complete.

3.4 APPENDIX: PROOF OF LEMMA 3.10

Fix an initial state \(x(0) = x_0\) in the compact set \(\Omega\) and consider the unique solution \(x(t), t \geq 0\). We first prove that its positive limit set \(A^+ := A^+(x_0)\) is nonempty, compact, and invariant.

The Bolzano-Weierstrass theorem states that every bounded sequence in \(\mathbb{R}^n\) has a convergent subsequence. Since \(x(t)\) is bounded there is a sequence \((t_i, i = 0, 1, \ldots)\) with \(t_i \to \infty\) as \(i \to \infty\) such that \(\lim_{i \to \infty} x(t_i) = x\) for some \(x\) in \(\mathbb{R}^n\). Since \(x(t)\) lies entirely in the compact set \(\Omega, x \in \Omega \subset D\) and is hence a positive limit point of \(x(t)\), proving that \(A^+\) is nonempty.

Since all positive limit points lie in \(\Omega, A^+ \subseteq \Omega\) and is bounded. To show that \(A^+\) is compact, we will show that \(A^+\) is also closed, i.e., if \(y^n \in A^+, n = 0, 1, \ldots\) and \(\lim_n y^n = y\), then \(y \in A^+\). For each \(n\) there is a sequence \((t^n_i, i = 0, 1, \ldots)\) such that the solution \(x(t)\) satisfies \(\lim_i x(t^n_i) = y^n\). We now construct a sequence \(\left(t^n_{i(n)}, n = 0, 1, \ldots\right)\) and prove that the solution \(x(t)\) on this sequence converges to \(y\) as \(n \to \infty\), certifying that \(y \in A^+\). For each \(n\), since \(\lim_i x(t^n_i) = y^n\), there is an \(i(n)\) such that \(i(n) \geq n\) and
\[
\left\|x\left(t^n_{i(n)}\right) - y^n\right\| < \frac{1}{n}
\]
By construction, \(i(n) \to \infty\) as \(n \to \infty\). Moreover given any \(\delta > 0\) we have
\[
\left\|x\left(t^n_{i(n)}\right) - y^n\right\| < \delta \quad \forall n > \frac{1}{\delta}
\]
To show that \(x(t^n_i) \) converges to \(y \), fix an \(\epsilon > 0 \). Since \(\lim_n y^n = y \) there is an \(N_y \) such that \(\| y^n - y \| < \epsilon/2 \) for all \(n > N_y \). Let \(N := \max\{N_y, 2/\epsilon\} \). We have for any \(n > N \)

\[
\|x(t^n_i) - y\| \leq \|x(t^n_i) - y^n\| + \|y^n - y\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
\]
as desired. This proves that \(A^+ \) is closed and bounded, and hence compact.

We now prove that \(A^+ \) is invariant. Note that \(A^+ := A^+(x_0) \) is the positive limit set of the unique solution \(x(t) \) with the given initial state \(x(0) = x_0 \). Suppose the system starts in state \(y \in A^+ \subseteq \Omega \). Denote the unique solution by \(\phi(t; y) \). Hence \(\phi(0; y) = y \) and \(x(t) = \phi(t; x_0) \). We will show that \(\phi(t; y) \in A^+ \) for all \(t \geq 0 \), by exhibiting a sequence of times \((\tau_i, i = 0, 1, \ldots) \) for each \(t \geq 0 \) such that \(x(\tau_i) = \phi(\tau_i; x_0) \rightarrow \phi(t; y) \) as \(i \rightarrow \infty \). Since \(y \in A^+ \) there is a sequence \((t_i, i = 0, 1, \ldots) \) such that \(x(t_i) = \phi(t_i; x_0) \rightarrow y \) as \(i \rightarrow \infty \). Hence for sufficiently large \(i \), \(x(t_i) \) is close to \(y \). Compare two solution trajectories at different times: the state \(\phi(t; y) \) reached at time \(t \) starting from the initial state \(y \), and the state \(\phi(t_i + t; x_0) \) reached at time \(t_i + t \) starting from the initial state \(x_0 \). We have, for any \(t \geq 0 \),

\[
\lim_i \|\phi(t + t_i; x_0) - \phi(t; y)\| = \lim_i \|\phi(t; x(t_i)) - \phi(t; y)\| = \|\phi(t; \lim_i x(t_i)) - \phi(t; y)\|
\]
where the first equality follows from the uniqueness of solution trajectory, and the second equality follows from the continuity of \(\phi(t, \cdot) \) in its initial state. Since \(\lim_i x(t_i) = \lim_i \phi(t_i; x_0) = y \), we have

\[
\lim_i \|\phi(t + t_i; x_0) - \phi(t; y)\| = 0 \quad \forall t \geq 0
\]
Since \(x(t + t_i) = \phi(t + t_i; x_0) \) stays in \(\Omega \) for all time, we have shown that, for each \(t \geq 0 \), \(\phi(t; y) \) is a positive limit point of the solution \(x(t) \). Hence \(\phi(t; y) \in A^+ \) for all \(t \geq 0 \) if \(y \in A^+ \), i.e., \(A^+ \) is invariant.

Finally, we prove that \(x(t) \), corresponding to the given initial state \(x_0 \in \Omega \), approaches \(A^+ \) as \(t \rightarrow \infty \). Suppose not and there is an \(\epsilon > 0 \) such that for all integer \(k \geq 0 \) there is a time \(t_k \geq k \) such that

\[
\inf_{y \in A^+} \|x(t_k) - y\| \geq \epsilon
\]
Since \(x(t) \) stays entirely in \(\Omega \), the sequence \((x(t_k), k = 0, 1, \ldots) \) has a subsequence \((x(t_{k_j}), j = 0, 1, \ldots) \) that converges to a positive limit point \(x^* \in A^+ \). Hence

\[
\lim_j \|x(t_{k_j}) - x^*\| = 0
\]
This contradicts (3.18) since \(x(t_{k_j}) \) is a subsequence of \(x(t_k) \). Hence \(x(t) \) approaches \(A^+ \) as \(t \rightarrow \infty \).

This completes the proof of Lemma 3.10.
3.5 BIBLIOGRAPHICAL NOTES

There are many excellent texts on nonlinear systems and Lyapunov stability theory. We have included detailed proofs of these results for smooth systems, largely following [29], because we need to extend these results to discontinuous projected dynamics. For our purposes it suffices to still use a Lyapunov functions $V(x)$ that is continuously differentiable, but its rate $\dot{V}(x) := \frac{\partial V}{\partial x}(x) f(x)$ is generally discontinuous when f is projected dynamics. It turns out that continuity of $\dot{V}(x)$ is crucial only for the proof of the asymptotic stability in Theorem 3.3.2. It seems that the existence, uniqueness and continuity with respect to initial condition of solutions to projected dynamics are first established in [20], where projection is to a closed convex set in \mathbb{R}^n. Lyapunov stability theorems and LaSalle’s invariance principle are extended in [6] to a more general setting (than what we use here) of differential equations with discontinuous right-hand side and nonsmooth Lyapunov functions. Our proofs in Chapter 3.1 are simple extensions of the classical result to projected dynamics. Strictly speaking, LaSalle’s invariance principle is Lemma 3.12. Theorem 3.9 are due to Barbashin and Krasovskii who proved it before LaSalle’s invariance principle. Some of the applications of these stability results to congestion control algorithms modeled by projected dynamics are new.

The dual algorithms in Chapter 3.2 is introduced in [35] to model TCP congestion control. Global stability proof of the primal-dual algorithm in Chapter 3.3 is adapted from [21] which also uses Krasovskii’s method [29] for stability analysis. Unlike [21] that treats a projected dynamical system as a hybrid dynamical system where discontinuity is captured by transitions of discrete states, we prove stability directly using stability theorems for projected dynamics. See also [15] for proofs that build on results in [6]. The proof in [21] does not provide a complete argument why the Lagrange multiplier $p(t)$ converges to a point (instead of approaching the set of optimal p^*) when p^* is nonunique. We bypass this issue by assuming that the routing matrix R is of full row rank and $x^* > 0$, guaranteeing the uniqueness of p^*. See [54, 33] for a convergence argument using a quadratic Lyapunov function in the presence of multiple equilibrium points. Quadratic Lyapunov functions are first used to study primal-dual algorithms in [3]. See also [40, 42] for the analysis of various congestion control algorithms.

3.6 PROBLEMS

Exercise 3.1 (Global asymptotic stability). Show that if x^* is globally asymptotically stable then it is the unique equilibrium.

Exercise 3.2 (Level sets). Consider a continuous function $V : D \to \mathbb{R}$ where D is a domain (open connected set in \mathbb{R}^n).
3. Global Stability: Lyapunov Method

1. Suppose V satisfies condition C3.1: $V(x^*)$ is finite and $V(x) > V(x^*)$ for all $x \neq x^*$ in D. Is the level set $\Omega_c := \{x \in \mathbb{R}^n | V(x) - V(x^*) \leq c\}$ always bounded for sufficiently small $c > 0$? Prove or give a counterexample.

2. Suppose V satisfies C3.1. Does there exist a level set Ω_c that contains x^*, is bounded, and $V(x) - V(x^*) \leq c$ for all $x \in \Omega_c$, for sufficiently small $c > 0$? Prove or give a counterexample.

3. Suppose V is radially unbounded: $V(x) \to \infty$ as $\|x\| \to \infty$. Show that the level set $\Omega_c := \{x \in \mathbb{R}^n | V(x) - V(x^*) \leq c\}$ is bounded for all $c > 0$.

Exercise 3.3 (Asymptotic stability). Consider the dynamical system

$$\dot{x}_1 = -x_2 - x_1 \sin(x_1^2 + x_2^2)$$
$$\dot{x}_2 = x_1 - x_2 \sin(x_1^2 + x_2^2).$$

Prove that the origin is asymptotically stable for $\|x\|_2 < \pi$.

Exercise 3.4. Consider the linear system $\dot{x} = Ax$ where $x \in \mathbb{R}^n$. Prove that A is asymptotically stable if and only if there is there is a positive definite matrix $P > 0$ that solves

$$A^TP + PA = -Q$$

for any positive definite matrix $Q > 0$.

Exercise 3.5 (Stability of TCP). Consider the network in Fig. 3.6. Suppose the TCP algorithms are given by

$$x_1(t) = \frac{1}{p_1(t)},$$
$$x_2(t) = \frac{1}{\sqrt{p_2(t)}},$$
$$x_3(t) = \frac{2}{(p_1(t) + p_2(t))^{1/3}}$$

Figure 3.6: The network in P3.5.
3.6. PROBLEMS

and the queue management algorithms are given by

\[
\frac{d}{dt} p_1(t) = \gamma(x_1(t) + x_3(t) - c_1),
\]

\[
\frac{d}{dt} p_2(t) = \gamma(x_2(t) + x_3(t) - c_2).
\]

1. Find the utility functions of the 3 flows and write down the network utility maximization problem implicitly solved by this algorithm. [Hint: Write down the equilibrium condition and interpret that as the optimality condition of a network utility maximization problem.]

2. Is the equilibrium point \((x^*, p^*)\) unique? Explain.

3. Prove that the equilibrium point \((x^*, p^*)\) is asymptotically stable. [Hint: Try the dual objective function as a candidate Lyapunov function.]

Exercise 3.6 (Lyapunov stability of primal algorithms [28]). Consider the class of algorithms:

\[
\dot{x}_i = \kappa_i (a_i - x_i(t) q_i(t)) =: f_i(x_i(t), q_i(t)) \tag{3.19a}
\]

\[
p_i(t) = g_i(y_i(t)) \tag{3.19b}
\]

Primal algorithms have dynamics only in the source rates, not in the congestion prices. As before,

\[
q_i(t) = \sum_l R_{li} p_l(t) \quad \text{and} \quad y_i(t) = \sum_l R_{li} x_i(t)
\]

Since \(p(t)\), and hence \(q(t)\), are statically determined by \(x(t)\) through (3.19b), we will call \(x^*\), as opposed to \((x^*, p^*)\), an equilibrium of the primal algorithm if \(f(x^*) = f(x^*, q(x^*)) = 0\) where \(q(x^*) := (q_i(x^*), i \in N)\) is given by

\[
q_i(x^*) := \sum_l R_{li} p_l(x^*) := \sum_l R_{li} g_i(y_i^*), \quad i = 1, ..., N
\]

and \(y_i^* := \sum_l R_{li} x_i^*\). Suppose \(g_l\) are nonnegative, continuous, increasing functions that are not identically zero.

Prove:

1. The primal algorithm (3.19) has a unique equilibrium \(x^*\) that is the unique solution of

\[
\max_{x \in \mathbb{R}^N} V(x) := \sum_i a_i \log x_i - \sum_l \int_0^{y_l^*} g_l(z) \, dz
\]
2. Moreover x^* is globally asymptotically stable.

The exercise implies that the primal algorithm (3.19) solves a relaxation of the network utility maximization with log utility functions, where the capacity constraint $Rx \leq c$ is replaced by the penalty function $\int_0^y g_l(z)dz$ in the objective. The reason that the primal algorithm does not solve the exact network utility maximization problem with log utility function is that the functions $g_l(y_l)$ are independent of p_l and hence do not satisfy condition C2.5 in Chapter 2.2.4. This condition is required to ensure the complementary slackness condition of network utility maximization. As the function $g_l(z)$ is chosen to impose heavier penalty on violating the constraint, the equilibrium x^* will approach the solution of the network utility maximization.
In this chapter we explain the concept of passive systems and how to use passivity theorems to prove the stability of congestion control algorithms. One of the most important features of passivity theory is that it allows us to study the stability of an interconnected system in terms of the passivity properties of its component systems.

4.1 PASSIVE SYSTEM

Memoryless systems. We start with a memoryless system \(y = h(u) \) where \(h : \mathbb{R}^p \to \mathbb{R}^p \). The number \(p \) of inputs is equal to the number of outputs. We say that a (time-invariant)\(^1\) memoryless system \(y = h(u) \) is passive if \(u^T y \geq 0 \).

For a scalar system with \(p = 1 \), the graph of \(h \) only appears in the first and third quadrants, as shown in Figure 4.1. Hence a very useful property of a scalar passive system

\[
y = h(u) \text{ where } u h(u) \geq 0 \text{ is: } \int_0^u h(\sigma) \, d\sigma \geq 0, \quad u \in \mathbb{R}
\]

\(^1\)All results extend to a time-varying system \(y = h(t, u) \) where \(h : \mathbb{R} \times \mathbb{R}^p \to \mathbb{R}^p \).
We will use this property below in constructing what are called storage functions. Suppose a memoryless system \(y = h(u) \) satisfies
\[
 u^T y \geq u^T \varphi(u) \quad \forall u \in \mathbb{R}^p
\]
for some function \(\varphi \), i.e., the input-output product is greater than a function that depends only on the input \(u \). Then
\[
 u^T \tilde{y} := u^T (y - \varphi(u)) \geq 0 \quad \forall u \in \mathbb{R}^p
\]
i.e., by subtracting from the output \(y \) the feedforward term \(\varphi(u) \), the new system \(\tilde{y} := h(u) - \varphi(u) \) is passive; see Figure 4.2(a). Note that neither \(h(u) \) nor \(\varphi(u) \) need to be passive themselves. If \(u^T \varphi(u) > 0 \) then there is “excess” passivity; otherwise there is “shortage” of passivity. Hence a system \(h \) that satisfies \(u^T h(u) \geq u^T \varphi(u) \) can be transformed into a passive system through input feedforward. Such a system \(h \) is called input-feedforward passive. If \(u^T \varphi(u) > 0 \) for all \(u \neq 0 \) then \(h \) is called input strictly passive because passivity is strict in the sense that \(u^T y = u^T \varphi(u) = 0 \) only if \(u = 0 \).

Similarly a system \(h \) that satisfies
\[
 u^T y \geq y^T \rho(y), \quad \forall u \in \mathbb{R}^p
\]
for some function \(\rho \), i.e., the input-output product is greater than a function that depends only on the output \(y \). Then
\[
 \tilde{u}^T y := (u - \rho(y))^T y \geq 0, \quad \forall u \in \mathbb{R}^p
\]
i.e., by subtracting from the input \(u \) the feedback term \(\rho(y) \) to obtain the new input \(\tilde{u} := u - \rho(y) \), the system is made passive; see Figure 4.2(b). Such a system \(h \) is called output-feedback passive. If \(y^T \rho(y) > 0 \) for all \(y \neq 0 \) then \(h \) is called output strictly passive.

Dynamical systems. Consider:
\[
\begin{align*}
 \dot{x} &= f(x, u) \quad (4.1a) \\
 y &= h(x, u) \quad (4.1b)
\end{align*}
\]
4.1. PASSIVE SYSTEM

where \(f : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^n \) is locally Lipschitz or \(f(x, u) := \left(\tilde{f}(x, u) \right)_x^+ \) with a locally Lipschitz \(\tilde{f} : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^n \), \(h : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^p \) is continuous, \(f(0, 0) = 0 \), and \(h(0, 0) = 0 \). Hence the origin is an equilibrium point without input \((u \equiv 0) \). The system has the same number \(p \) of inputs and outputs.

Definition 4.1 The system (4.1) is passive if there exists a continuously differentiable positive semidefinite function \(V(x) \) such that

\[
 u^Ty \geq \dot{V} := \frac{\partial V}{\partial x}(x, u)f(x, u) \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^p
\]

Moreover it is said to be

1. **lossless** if \(u^Ty = \dot{V} \).
2. **input-feedforward passive** if \(u^Ty \geq \dot{V} + u^T \varphi(u) \) for some function \(\varphi \).
3. **input strictly passive** if \(u^Ty \geq \dot{V} + u^T \varphi(u) \) and \(u^T \varphi(u) > 0 \) for all \(u \neq 0 \).
4. **output-feedback passive** if \(u^Ty \geq \dot{V} + y^T \rho(y) \) for some function \(\rho \).
5. **output strictly passive** if \(u^Ty \geq \dot{V} + y^T \rho(y) \) and \(y^T \rho(y) > 0 \) for all \(y \neq 0 \).
6. **strictly passive** if \(u^Ty \geq \dot{V} + \psi(x) \) for some positive definite function \(\psi \).

In all cases the inequalities should hold for all \((x, u) \in \mathbb{R}^{n+p} \). The function \(V \) is called a storage function.

These definitions reduce to those for memoryless systems \(y = h(u) \) with \(V(x) \equiv 0 \). We emphasize that the inequalities in Definition 4.1 need to hold not just on the solution-control trajectories of (4.1), but on all \((x, u) \in \mathbb{R}^{n+p} \). Even though \(V(x) \) is a function of the state \(x \), its rate \(\dot{V}(x, u) \) is a function of both state \(x \) and input \(u \).

To simplify notation we often write \(y, V, \dot{V} \) for \(y(x, u), V(x), \dot{V}(x, u) \) or for \(y(x(t), u(t)), V(x(t)), \dot{V}(x(t), u(t)) \) when there is no risk of confusion. We also write \(x \equiv a \) or \(x(t) \equiv a \) for \(x(t) = a, \forall t \geq 0 \); similarly for other functions such as \(u, h, y \), etc.

Example 4.2 In this example we illustrate different passivity concepts.

1. **Integrator.** Consider

\[
 \dot{x} = u, \quad y = x
\]
4. GLOBAL STABILITY: PASSIVITY METHOD

To show that an integrator is passive consider the candidate storage function

\[V(x) := \frac{1}{2} x^2 \]

Clearly \(V \) is continuously differentiable and positive semidefinite \(V(x) \geq 0 \). Furthermore

\[\dot{V} = \frac{\partial V}{\partial x} \dot{x} = x \dot{x} = uy \]

Hence an integrator is lossless.

2. Integrator in cascade with a memoryless passive system. Consider

\[\dot{x} = u, \quad y = h(x) \]

where \(h \) is continuous and passive. See Figure 4.3(a). Consider the candidate storage function

\[V(x) := \int_0^x h(\sigma) d\sigma \]

Since \(h \) is continuous, \(V \) is continuously differentiable. Since \(h \) is passive \(x h(x) \geq 0 \), \(\int_0^x h(\sigma)d\sigma \geq 0 \), i.e. \(V \) is positive semidefinite. Furthermore

\[\dot{V} = \frac{\partial V}{\partial x} \dot{x} = h(x) \dot{x} = uy \]

i.e., the system is lossless.

Figure 4.3: (a) Integrator in cascade with a memoryless passive system is passive with the storage function \(V(x) := \int_0^x h(\sigma)d\sigma \). (b) First-order system in cascade with a memoryless passive system is passive with the storage function \(V(x) := \int_0^x ah(\sigma)d\sigma \).
3. \textit{First-order system in cascade with a memoryless passive system.} Suppose the integrator is replaced by the transfer function (see Chapter 6.2.1 for more discussion of transfer functions of linear time-invariant systems)

\[H(s) = \frac{1}{as + 1}, \quad a > 0 \]

This transfer function can be implemented by a first-order system as shown in Figure 4.3(b):

\[a \dot{x} = -x + u, \quad y = h(x) \]

Consider the candidate storage function

\[V(x) := \int_{0}^{x} a h(\sigma) d\sigma \]

which is continuously differentiable and positive semidefinite since \(h \) is continuous and passive. Furthermore

\[\dot{V} = \frac{\partial V}{\partial x} \dot{x} = h(x) a \dot{x} = h(x) (-x + u) = uy - xh(x) \]

i.e., \(uy = \dot{V} + xh(x) \). Since \(h \) is passive, \(xh(x) \geq 0 \) and hence the system is passive. If \(xh(x) > 0 \) for \(x \neq 0 \) then the system is strictly passive.

\[\square \]

\textbf{Example 4.3 Input-feedforward and output-feedback passivity.} Like the memoryless systems in Figure 4.3, the dynamical systems with memoryless input feedforward or output feedback as shown in Figure 4.4 are passive if the memoryless function \(h \) is passive. Indeed the system in Figure 4.4(a) is

\[\dot{x} = u, \quad y = x + h(u) \]

Consider the continuously differentiable positive definite function

\[V(x) := \frac{1}{2} x^2 \]

We have

\[\dot{V} = x \dot{x} = u(y - h(u)) \]

Hence \(uy = \dot{V} + uh(u) \). Therefore the system is passive if \(h \) is (i.e., \(uh(u) \geq 0 \)) and the system is input strictly passive if \(uh(u) > 0 \) for \(u \neq 0 \).
4. GLOBAL STABILITY: PASSIVITY METHOD

Figure 4.4: (a) Integrator + memoryless input feedforward
h is passive with the storage function $V(x) := \frac{1}{2}x^2$. (b) Integrator + memoryless output feedback
h is passive with the storage function $V(x) := \frac{1}{2}x^2$.

(a) Integrator + memoryless input feedforward
(b) Integrator + memoryless output feedback
4.1. PASSIVE SYSTEM

The system in Figure 4.4(b) is

\[\dot{x} = u - h(y), \quad y = x \]

Use the same storage function \(V \) as above we have

\[\dot{V} = x \dot{x} = y(u - h(y)) \]

Hence \(uy = \dot{V} + yh(y) \). Therefore the system is passive if \(h \) is (i.e., \(yh(y) \geq 0 \)) and the system is output strictly passive if \(yh(y) > 0 \) for \(y \neq 0 \).

The following properties of storage functions are key for proving Lyapunov stability below as they pertain to the properties C3.1, C3.2, C3.2', C3.2'' of a Lyapunov function. The system (4.1) is called zero-state observable if no solution of (4.1) can stay identically in \(\{ x \mid y = h(x; 0) = 0 \} \) except \(x(t) \equiv 0 \), i.e., if the state \(x \) must stay identically zero when both input \(u \) and output \(y \) are identically zero.

Lemma 4.4

1. If the system (4.1) is strictly passive, i.e., \(u^T y \geq \dot{V} + \psi(x) \), with a storage function \(V \) and a positive definite function \(\psi \), then we have without loss of generality

\[
\begin{align*}
V(x) &> 0 \quad \text{for all } x \neq 0 \quad \text{and} \quad V(0) = 0 \\
\dot{V}(x, 0) &< 0 \quad \text{for all } x \neq 0
\end{align*}
\]

If \(\psi \) is continuous then, for all \(0 < \delta < \epsilon \), there exists \(\alpha > 0 \) such that

\[\dot{V}(x, 0) \leq -\alpha < 0 \quad \forall x \text{ with } \delta \leq \|x\| \leq \epsilon \]

2. If the system (4.1) is output strictly passive and zero-state observable with a storage function \(V \) then we have without loss of generality

\[
\begin{align*}
V(x) &> 0 \quad \text{for all } x \neq 0 \quad \text{and} \quad V(0) = 0 \\
\dot{V}(x, 0) &\leq 0 \quad \text{for all } x
\end{align*}
\]

Moreover the only solution of \(\dot{x} = f(x(t), 0) \) with zero input \(u \equiv 0 \) that can stay identically in the set \(E := \{ x \mid \dot{V}(x) = 0 \} \) is the trivial solution \(x \equiv 0 \).

Proof. Suppose the system (4.1) is strictly passive, i.e.,

\[u^T h(x, u) \geq \dot{V}(x, u) + \psi(x) \quad \text{for all } (x, u) \in \mathbb{R}^{n+p} \]
for some positive semidefinite storage function \(V(x) \) and positive definite function \(\psi(x) \). Take \(u \equiv 0 \) and we have
\[
\dot{V}(x, 0) \leq -\psi(x) \tag{4.3}
\]
Since \(\psi(x) > 0 \) for all \(x \neq 0 \), (4.3) implies the second assertion:
\[
\dot{V}(x) < 0 \quad \text{for all } x \neq 0
\]
For the third assertion note that
\[
\sup_{x; \delta \leq \|x\| \leq \epsilon} \dot{V}(x) \leq -\inf_{x; \delta \leq \|x\| \leq \epsilon} \psi(x) =: -\alpha
\]
Since \(\psi(x) \) is continuous, \(\alpha \) is attained and is strictly positive, proving the third assertion.

We now use (4.3) to prove \(V(x) > 0 \) for all \(x \neq 0 \). Since \(f \) is locally Lipschitz or a projection of a locally Lipschitz function \(\tilde{f} \), for any \(x_0 \in \mathbb{R}^n \) the autonomous system \(\dot{x} = f(x, u) \) with zero input \(u \equiv 0 \) has a solution, denoted by \(\phi(t; x_0) \) at time \(t \), starting from \(x_0 \) at time 0, over some interval \([0, \delta]\). Then (4.3) implies
\[
V(\phi(\tau; x_0)) - V(x_0) \leq -\int_0^\tau \psi(\phi(t; x_0)) \, dt \quad \forall \tau \in [0, \delta]
\]
Since \(V(\phi(\tau; x_0)) \geq 0 \) and \(\psi \) is positive definite we have for any \(x_0 \in \mathbb{R}^n \)
\[
V(x_0) \geq \int_0^\tau \psi(\phi(t; x_0)) \, dt \geq 0 \quad \forall \tau \in [0, \delta] \tag{4.4}
\]
Consider any \(x_0 \neq 0 \). Suppose \(V(x_0) = 0 \). Then (4.4) implies
\[
\psi(\phi(t; x_0)) \equiv 0 \quad \text{(for all } t \in [0, \delta])
\]
\[\Rightarrow \quad \phi(t; x_0) \equiv 0 \quad \text{(}\psi \text{ is positive definite)}
\]
\[\Rightarrow \quad x_0 = 0 \quad \text{(} \phi(0; x_0) = x_0 \text{)}
\]
contradicting \(x_0 \neq 0 \). Hence \(V(x_0) > 0 \) for every \(x_0 \neq 0 \). Finally we must have \(V(0) \geq 0 \) by the continuity of \(V \). Indeed we can assume without loss of generality that \(V(0) = 0 \). Otherwise replace \(V(x) \) by \(\tilde{V}(x) := V(x) - V(0) \). The above argument applies to the storage function \(\tilde{V} \) with \(\tilde{V}(0) = 0 \). This completes the proof of part 1.

For part 2, suppose (4.1) is output strictly passive and zero-state observable. We have
\[
u^T y \geq \tilde{V} + y^T \rho(y)
\]
for some positive semidefinite storage function \(V \) and some function \(\rho \) such that \(y^T \rho(y) > 0 \) for all \(y \neq 0 \). With \(u \equiv 0 \) we have the second assertion:
\[
\dot{V}(x, 0) \leq -h^T(x, 0)\rho(h(x, 0)) \leq 0 \quad \forall x \in \mathbb{R}^n
\]
The proof of $V(x) > 0$ for $x \neq 0$ follows a similar argument (substituting $y(t) \equiv h(\phi(t;x_0),0)$ with $u \equiv 0$):

$$V(\phi(\tau;x_0)) - V(x_0) \leq -\int_0^\tau h^T(\phi(t;x_0),0) \rho(h(\phi(t;x_0),0)) \, dt \quad \forall \tau \in [0, \delta]$$

and hence for all $x_0 \in \mathbb{R}^n$

$$V(x_0) \geq \int_0^\tau h^T(\phi(t;x_0),0) \rho(h(\phi(t;x_0),0)) \, dt \geq 0 \quad \forall \tau \in [0, \delta]$$

Consider any $x_0 \neq 0$. Suppose $V(x_0) = 0$. Then for $t \in [0, \delta]$ we have

$$h^T(\phi(t;x_0),0) \rho(h(\phi(t;x_0),0)) \equiv 0 \Rightarrow h(\phi(t;x_0),0) \equiv 0 \Rightarrow \phi(t;x_0) \equiv 0$$

where the last implication follows from zero-state observability. Hence $x_0 = \phi(0;x_0) = 0$. This is a contradiction and therefore $V(x_0) > 0$ for any $x_0 \neq 0$. As in part 1 we can assume without loss of generality that $V(0) = 0$.

Finally consider any solution $x(t)$ of $\dot{x} = f(x,0)$ with zero input $u \equiv 0$ that stays identically in the set $E := \{x | \dot{V}(x) = 0\}$. Since

$$\dot{V}(x,0) \leq -y^T \rho(y) \leq 0 \quad \forall x \ (\text{and } y = h(x,0))$$

$\dot{V}(x(0),0) \equiv 0$ implies $y^T(t)\rho(y(t)) \equiv 0$. But $y^T \rho(y) > 0$ for $y \neq 0$, and hence $y(t) \equiv 0$. Zero-state observability then implies that $x(t) \equiv 0$.

This completes the proof of the lemma.

Passivity ensures stability and strict passivity ensures asymptotic stability. Consider the dynamical system (4.1) reproduced here for convenience:

$$\begin{align*}
\dot{x} & = f(x,u) \\
y & = h(x,u)
\end{align*}$$

where $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is locally Lipschitz or $f(x,u) := \left(\bar{f}(x,u)\right)_x^+$ with a locally Lipschitz $\bar{f} : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$, $h : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$ is continuous. We assume $f(0,0) = 0$, and $h(0,0) = 0$, i.e., the origin $x = 0$ is an equilibrium at zero input $u \equiv 0$.

Theorem 4.5 Consider the system (4.5). The origin of $\dot{x} = f(x,0)$ is

1. stable if the system is passive with a positive definite storage function V;

2. asymptotically stable if the system is

 - strictly passive $u^T y \geq \dot{V} + \psi(x)$ with a continuous positive definite function ψ,
4. GLOBAL STABILITY: PASSIVITY METHOD

- output strictly passive and zero-state observable, i.e., \(y(t) \equiv h(x(t), 0) \equiv 0 \Rightarrow x(t) \equiv 0 \).

3. globally asymptotically stable if the system is

- strictly passive \(u^T y \geq \dot{V} + \psi(x) \) with a continuous positive definite function \(\psi \),
or
- output strictly passive and zero-state observable, i.e., \(y(t) \equiv h(x(t), 0) \equiv 0 \Rightarrow x(t) \equiv 0 \).

and the storage function is radially unbounded.

Proof.

1. Let \(V \) be the (continuously differentiable) storage function of the system (4.5) with \(u^T y(x, u) \geq \dot{V}(x, u) \) for all \((x, u) \in \mathbb{R}^{n+p}\). By assumption \(V \) is positive definite. Hence \(V \) is a Lyapunov function for the zero-input system \((u \equiv 0)\) as it satisfies conditions C3.1 (\(V(x) > 0 \), for all \(x \neq 0 \)) and C3.2 (\(\dot{V}(x, 0) \leq 0 \)).

2. Lemma 4.4.1 shows that if the system (4.5) is strictly passive with a continuous \(\psi \) then its storage function \(V \) satisfies conditions C3.1, C3.2' and C3.2". \(V \) is therefore a Lyapunov function. The claim then follows from Theorem 3.3.2 for locally Lipschitz \(f \) or from Corollary 3.5.2 for projected dynamics.

Lemma 4.4.2 shows that if the system (4.5) is output strictly passive and zero-state observable then its storage function \(V \) satisfies conditions C3.1 and C3.2 (but not necessarily C3.2' or C3.2") and is therefore a Lyapunov function. LaSalle’s invariance principle then implies that the solution \(x \) of \(\dot{x} = f(x, 0) \) will converge to the largest invariance set in \(\{x \mid \dot{V}(x) = 0\} \). But the only solution of \(\dot{x} = f(x, 0) \) that can stay identically in the set \(\{x \mid \dot{V}(x) = 0\} \) is the trivial solution \(x \equiv 0 \) by Lemma 4.4.2. Hence (4.5) is asymptotically stable by Theorem 3.9.1.

3. When \(V \) is radially unbounded Theorem 3.9.2 implies that the system (4.5) is globally asymptotically stable.

4.2 FEEDBACK SYSTEM

A main advantage of the passivity method is the important property that feedback connection preserves passivity. It allows us to analyze the stability of a feedback system through
the passivity analysis of its (open-loop) components. We explain this property in this section.

Consider the feedback connection in Figure 4.5 where each of the components H_1 and H_2 is either a time-invariant dynamical system represented by the state space model

$$\dot{x}_i = f_i(x_i, e_i), \quad y_i = h_i(x_i, e_i)$$

or a (possibly time-varying) memoryless function represented by

$$y_i = h_i(t, e_i)$$

where

$$e_1 := u_1 - y_2, \quad e_2 := u_2 + y_1$$

Suppose H_1 and H_2 are dynamical systems. If the set of equations

$$\begin{align*}
e_1 &= u_1 - h_2(x_2, e_2) \\
e_2 &= u_2 + h_1(x_1, e_1)
\end{align*}$$

has a unique solution for (e_1, e_2) for every (x_1, x_2, u_1, u_2) then we can write (e_1, e_2) in terms of (x_1, x_2, u_1, u_2) and represent the feedback system by a state space model of the form

$$\dot{x} = f(x, u), \quad y = h(x, u)$$

for some functions f, h where

$$x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad u := \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad y := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

We assume for the closed-loop system (4.7) that the function f is locally Lipschitz or $f(x, u) = \left(\hat{f}(x, u)\right)_x^+$ with a locally Lipschitz \hat{f}, h is continuous, $f(0, 0) = 0$ and $h(0, 0) = 0$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{feedback_connection.png}
\caption{Feedback connection.}
\end{figure}
The functions f, h describing the closed-loop system (4.7) may not be easy to derive explicitly from the open-loop components $f_i, h_i, i = 1, 2$. If however h_1 is independent of e_1 or h_2 is independent of e_2 then it is easy to write down explicitly the unique solution for (e_1, e_2) in terms of (x_1, x_2, u_1, u_2). In this case the functions f and h of the closed-loop system are locally Lipschitz if f_i and h are.

If one component, say H_1, is a time-invariant dynamical system and the other H_2 is a time-varying memoryless function:

$$
\dot{x}_1 = f_1(x_1, e_1), \quad y_1 = h_1(x_1, e_1), \quad y_2 = h_2(t, e_2)
$$

then the closed-loop state space model takes the form

$$
\dot{x} = f(t, x, u), \quad y = h(t, x, u)
$$

(4.8)

for some functions f, h where

$$
x := x_1, \quad u := \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad y := \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
$$

provided the system of equations

$$
e_1 = u_1 - h_2(t, e_2) \\
e_2 = u_2 + h_1(x_1, e_1)
$$

has a unique solution for (e_1, e_2) for every (x_1, t, u_1, u_2). Even though the open-loop component f_1 is time-invariant the closed-loop system (4.8) becomes time-varying if the memoryless system h_2 is time-varying. We assume for the closed-loop system (4.8) that the function f is piecewise continuous in t and locally Lipschitz in (x, u), or $f(t, x, u) = \left(\hat{f}(t, x, u)\right)_x^+$

where \hat{f} is piecewise continuous in t and locally Lipschitz in (x, u). We also assume h is piecewise continuous in t and continuous in (x, u), $f(t, 0, 0) = 0$ and $h(t, 0, 0) = 0$.

Again the functions f, h describing the closed-loop system (4.8) may not be easy to derive explicitly from the open-loop components f_1, h_1, h_2, unless h_1 is independent of e_1 or h_2 is independent of e_2.

The next result says that if both open-loop systems H_i are passive with storage functions V_i then the closed-loop system is passive with the storage function $V_1 + V_2$. Furthermore if H_i are stable with V_i as their Lyapunov functions then the closed-loop system is stable with $V_1 + V_2$ as its Lyapunov function. Note that a positive definite storage function of a passivity system implies stability of its equilibrium by Theorem 4.5.1.

Theorem 4.6 Consider the feedback connection shown in Figure 4.5 and suppose the origin is an equilibrium of the closed-loop system (4.7) (or (4.8)) when input $u \equiv 0$, i.e., $f(0, 0) = 0$ (or $f(t, 0, 0) = 0$).
1. If both open-loop components H_1 and H_2 are passive then the feedback connection from (u_1, u_2) to (y_1, y_2) is passive.

2. Furthermore, if the storage functions of H_1 and H_2 are positive definite, then the origin is stable.

Proof. Since H_i are passive we have

$$e_i^T y_i \geq \dot{V}_i, \quad i = 1, 2$$

for some storage functions V_i that are continuously differentiable and positive semidefinite (V_i is taken to be zero for a memoryless system). Then $V := V_1 + V_2$ is continuously differentiable and positive semidefinite. Moreover

$$\dot{V}_1 + \dot{V}_2 \leq \sum_i e_i^T y_i = (u_1 - y_2)^T y_1 + (u_2 + y_1)^T y_2 = u_1^T y_1 + u_2^T y_2$$

Hence V is a storage function for the feedback system, proving the passivity of the feedback connection. If V_i are positive definite then V is positive definite and Theorem 4.5.1 implies the stability of the origin.

Passivity of components H_1 and H_2 with positive definite storage functions ensures the passivity and stability of the feedback connection. For asymptotic stability we consider first the case where both components are time-invariant dynamical systems and then the case where one of the components is a dynamical system and the other a memoryless function. The first case will be useful for proving the asymptotic stability of primal-dual algorithms where both the sources and the links have dynamics. The second case will be useful for primal or dual algorithms where there is dynamics in the sources or the links, but not both.

Consider the feedback connection of two time-invariant dynamical components H_i:

$$\dot{x}_i = f_i(x_i, e_i), \quad i = 1, 2 \quad (4.9a)$$

$$y_i = h_i(x_i, e_i), \quad i = 1, 2 \quad (4.9b)$$

whose closed-loop system is described by (4.7). The next result extends Theorem 4.5 from open-loop systems to closed-loop systems.

Theorem 4.7. Consider the feedback system consisting of open-loop components specified by (4.9) with a closed-loop description (4.7). The origin of the closed-loop system (when $u \equiv 0$) is asymptotically stable if any one of the following holds:

1. both open-loop components H_1 and H_2 are strictly passive so that $e_i^T y_i \geq \dot{V}_i + \psi_i(x_i), \quad i = 1, 2$, with continuous positive definite functions ψ_i.

2. both open-loop components H_1 and H_2 are output strictly passive and zero-state observable $(y_i(t) \equiv h(x_i(t), 0) \equiv 0 \Rightarrow x_i(t) \equiv 0)$.

3. one of the feedback components is strictly passive and the other is output strictly passive and zero-state observable.

Furthermore if the storage function of each component is radially unbounded then the origin is globally asymptotically stable.

Proof. The proof follows a similar argument as in the proof of Theorem 4.5, using the function $V(x) := V_1(x_1) + V_2(x_2)$ as the candidate Lyapunov function for the closed-loop system (4.7) where $V_i(x_i)$ are storage functions of components H_i.

When both H_i are strictly passive with storage functions V_i, Lemma 4.4.1 implies that they satisfy the following conditions for Lyapunov function

\[
\begin{align*}
C3.1: & \quad V_i(x_i) > 0 \quad \text{for all } x_i \neq 0 \quad \text{and} \quad V_i(0) = 0 \\
C3.2': & \quad \dot{V}_i(x_i) < 0 \quad \text{for all } x_i \neq 0
\end{align*}
\]

This implies that $V(x) := V_1(x_1) + V_2(x_2)$ for the closed-loop system (4.7) also satisfies conditions C3.1 and C3.2'. Theorem 3.3.2 then implies that the origin of the closed-loop system is asymptotically stable if f in (4.7) is locally Lipschitz. If f is a projection of a locally Lipschitz \tilde{f} then, since ψ_i are continuous, Lemma 4.4.1 implies that V satisfies C3.1 and C3.2'. Corollary 3.5.2 then implies the asymptotic stability of the origin for the closed-loop system.

When both H_i are output strictly passive and zero-state observable with storage functions V_i, Lemma 4.4.2 implies that they satisfy the following conditions for Lyapunov function

\[
\begin{align*}
C3.1: & \quad V_i(x_i) > 0 \quad \text{for all } x_i \neq 0 \quad \text{and} \quad V_i(0) = 0 \\
C3.2: & \quad \dot{V}_i(x_i) \leq 0 \quad \text{for all } x_i
\end{align*}
\]

This implies that $V(x) := V_1(x_1) + V_2(x_2)$ also satisfies conditions C3.1 and C3.2. LaSalle’s invariance principle then implies that the solution x of $\dot{x} = f(x, 0)$ converges to the largest invariance set in $E := \{x \mid \dot{V}(x) = 0\}$. We now argue that the only solution that can stay identically in E is the equilibrium solution $x \equiv 0$. Since H_i are output strictly passive we have $e_i^T y_i \geq \dot{V}_i(x_i, e_i) + y_i^T \rho_i(y_i)$ for some function ρ_i such that $y_i^T \rho_i(y_i) > 0$ for $y_i \neq 0$. Taking $u_i \equiv 0$ we have $e_1 = -y_2, e_2 = y_1$, and hence

\[
\dot{V}(x, e) := \dot{V}_1(x_1, e_1) + \dot{V}_2(x_2, e_2) \leq -y_1^T \rho_1(y_1) - y_2^T \rho_2(y_2) \leq 0
\]

where $y_i = h_i(x_i, e_i)$. Hence the only solutions to $\dot{x} = f(x, 0)$ that can stay identically in E are those such that the resulting $y_i \equiv h_i(x_i, e_i) \equiv 0$. But $y_1 \equiv 0$ implies $e_2 \equiv 0$ and $y_2 \equiv 0$.
0 implies \(e_1 \equiv 0 \) (since \(u_i \equiv 0 \)). Thus \(y_i \equiv h_i(x_i, 0) \equiv 0 \) implies \(x_i \equiv 0 \) by the zero-state observability of \(H_i \). Theorem 3.9.1 then implies that the origin of the closed-loop system (4.7) is asymptotically stable.

In the third case where \(H_1 \) is strictly passive and \(H_2 \) is output strictly passive we have (taking \(u_i \equiv 0 \))

\[
\dot{V}(x) \leq -\psi_1(x_1) - y_2\rho_2(y_2) \leq 0 \quad \text{for all } x
\]

for some positive definite function \(\psi_1 \) and some function \(\rho_2 \) such that \(y_2^T \rho_2(y_2) > 0 \) for all \(y_2 \neq 0 \). A similar argument as in the proof of Lemma 4.4 shows that \(V(0) = 0 \) and \(V(x) > 0 \) for all \(x \neq 0 \). Hence LaSalle’s invariance principle implies that the solution \(x \) of \(\dot{x} = f(x, 0) \) will converge to the largest invariance set in the set \(E := \{ x \mid \dot{V}(x) = 0 \} \). We now argue that the only solution that can stay identically in \(E \) is the equilibrium solution \(x \equiv 0 \).

Finally if \(V_i(x_i) \) are radially unbounded so is \(V(x) \). The origin is globally asymptotically stable by Theorem 3.9.2.

Consider next the feedback connection of a dynamical system \(H_1 \):

\[
\begin{align*}
\dot{x}_1 &= f_1(x_1, e_1) \\
y_1 &= h_1(x_1, e_1)
\end{align*}
\]

and a time-invariant memoryless system \(H_2 \):

\[
y_2 = h_2(e_2)
\]

whose closed-loop system is described by (the time-invariant version of) (4.8).

Theorem 4.8 Consider the feedback system consisting of open-loop components specified by (4.10) with a closed-loop description (4.8). Suppose

- \(H_1 \) is output-feedback passive, i.e.,

\[
e_1^Ty_1 \geq \dot{V}_1 + y_1^T\rho_1(y_1)
\]

for some \(\rho_1 \) and a positive definite storage function \(V_1 \), \(H_1 \) is zero-state observable (i.e., \(y_1 \equiv h_1(x_1, 0) \equiv 0 \Rightarrow x_1 \equiv 0 \)); and
4. GLOBAL STABILITY: PASSIVITY METHOD

- H_2 is input-feedforward passive, i.e.,
 \[e_2^T y_2 \geq e_2^T \varphi_2(e_2) \] \hspace{1cm} (4.12)

for some φ_2.

Then the origin of the closed-loop system (when $u \equiv 0$) is asymptotically stable if
\[v^T [p_1(v) + \varphi_2(v)] > 0 \quad \text{for all } v \neq 0 \] \hspace{1cm} (4.13)

Furthermore, if V_1 is radially unbounded, then the origin is globally asymptotically stable.

Even though, being memoryless, $y_2 = h_2(e_2)$ is trivially input-feedforward passive (by setting $\varphi_2 = h_2$), h_2 may not satisfy (4.13) but there may be some other function φ_2 that satisfies both (4.12) and (4.13).

Proof. Use the storage function of H_1 as a Lyapunov function candidate. Since $u \equiv 0$ we have $e_1 \equiv -y_2$ and $y_1 \equiv e_2$. Substituting into (4.11) yields
\[\dot{V}_1 \leq e_1^T y_1 - y_1^T p_1(y_1) = -e_2^T y_2 - y_1^T p_1(y_1) \]

Combining with (4.12) we have
\[V_1 \leq -y_1^T (\varphi_2(y_1) + p_1(y_1)) < 0 \quad \forall y_1 \neq 0 \]

where the last inequality follows from (4.13). Hence LaSalle’s invariance principle implies that the trajectory will converge to the largest invariant set in $E := \{ x_1 \mid \dot{V}(x_1) = 0 \}$. When $\dot{V}(x_1) \equiv 0$ we have $y_1 \equiv 0$, implying $e_2 \equiv 0$ and hence $y_2 \equiv h_2(0) \equiv 0$. This means $e_1 \equiv 0$ and hence zero-state observability of H_1 implies $x_1 \equiv 0$ since $y_1 \equiv h_1(x_1, 0) \equiv 0$. Asymptotic stability of the origin then follows from Theorem 3.9.1. Global asymptotic stability when V_1 is radially unbounded follows from Theorem 3.9.2.

4.3 STABILITY OF PRIMAL ALGORITHM

Consider the set of primal algorithms
\[
\begin{align*}
\dot{x}_i &= \kappa_i (U_i(x_i(t)) - q_i(t)) x_i(t) , & i = 1, \ldots, N \\
p_l(t) &= p_l(y_l(t)), & l = 1, \ldots, L
\end{align*}
\]

where $p_l : \mathbb{R}_+ \to \mathbb{R}_+$ is a function that models AQM at link l. Hence there is dynamics in the sources but not in the links. Here
\[
q_i(t) := \sum_l R_{li} p_l(t) \quad \text{and} \quad y_l(t) := \sum_i R_{li} x_i(t)
\]
In vector form they are

\begin{align*}
\dot{x} &= K \left(U'(x) - q(t) \right)_{x(t)}^+ \\
p(t) &= p(y(t)) \\
q(t) &= R^T p(t), \quad y(t) = Rx(t)
\end{align*}

(4.14a) (4.14b) (4.14c)

where \(K := \text{diag}(\kappa_i, i = 1, \ldots, N) \). Since \(p(t) \), and hence \(q(t) = R^T p(t) \), are statically determined by \(x(t) \) through (4.14b)(4.14c) we may write \(p(x(t)) = p(Rx(t)) \) in place of \(p(t) \) and \(q(t) \) respectively. We call \(x^* \), as opposed to \((x^*, p^*) \), an equilibrium of the primal algorithm (4.14) if \((U'(x^*) - q(x^*))^+ = 0 \) which is equivalent to:

\[U'_i(x_i^*) \leq q_i(x^*) \quad \text{with equality if} \quad x_i^* > 0, \quad i = 1, \ldots, N \]

We will assume that conditions C2.1 and C2.2 hold. Then (4.14) has a unique solution \((x(t), t \geq 0)\) for every initial point \(x(0) \geq 0 \); see Remark 3.17 in Chapter 3.2. Moreover a unique equilibrium point \(x^* \) exists since \(U_i \) are strictly concave. The equilibrium link prices \(p(Rx^*) \) are also unique since they are determined by \(x^* \) (regardless of the row rank of the routing matrix \(R \)). Finally \((x^*, p(x^*))\) is primal-dual optimal for a network utility maximization problem and its dual (see Chapter 2.2). We now use Theorem 4.8 to study the asymptotic stability of \(x^* \).

For simplicity we assume \(U_i'(x_i) \to \infty \) as \(x_i \to 0 \) (e.g., \(U_i(x_i) = \log x_i \)) so that the projection is never active, i.e., \((U'(x) - q(x))^+ = U'(x) - q(x) \). The result can be easily extended to the general case with projection; see Chapter 4.4.

It is convenient to shift the equilibrium point of the primal algorithm to the origin. Define the perturbed variables (dropping \(t \) to simplify notation)

\[\tilde{x} := x - x^* \quad \Rightarrow \quad x = x^* + \tilde{x} \]

Then

\[\tilde{y} := R \tilde{x} = R(x - x^*) = y - y^* \]

and

\[\tilde{p} := p(y) - p(y^*) = p(y^* + \tilde{y}) - p(y^*) =: \tilde{p}(\tilde{y}) \]
\[\tilde{q} := R^T \tilde{p} = R^T (p(y) - p(y^*)) = q - q^* \]

Then the perturbed source rates satisfy (since \(U'(x^*) = q^* \))

\[\dot{\tilde{x}} = K \left(U'(x^* + \tilde{x}) - q \right) = K \left(\underbrace{U'(x^* + \tilde{x}) - U'(x^*)}_{\tilde{U}'(\tilde{x})} - (q - q^*) \right) =: K \left(\tilde{U}'(\tilde{x}) - \tilde{q} \right) \]
4. GLOBAL STABILITY: PASSIVITY METHOD

We will prove that the origin of the following perturbed system is globally asymptotically stable:

\[
\begin{align*}
\dot{\tilde{x}} &= K \left(\tilde{U}'(\tilde{x}) - \tilde{q} \right) \quad =: f(\tilde{x}, -\tilde{q}) \quad (4.15a) \\
\tilde{p} &= \tilde{p}(\tilde{y}) \quad (4.15b)
\end{align*}
\]

where \(\tilde{q} = R^T \tilde{p} \) and \(\tilde{y} = R \tilde{x} \). It is treated as a feedback connection of a time-invariant dynamical system and a time-invariant memoryless system, as shown in Figure 4.6. Note that the second argument of \(f \) in (4.15a) is negative because the input to the upper component in Figure 4.6 is the error term \(u_1 - q = -q \) with zero input \(u_1 \equiv 0 \).

\[\text{Figure 4.6: The primal algorithm (4.15) is modeled as a feedback connection of a dynamical system and a memoryless system.}\]

Theorem 4.9 Suppose conditions C2.1 and C2.2 hold, the utility functions \(U_i \) satisfy \(U_i'(x_i) \to \infty \) as \(x_i \to \infty \), and the price functions \(p_i(\cdot) \) are locally Lipschitz and nondecreasing. Then the origin of the primal algorithm (4.15) is globally asymptotically stable.

Proof. As discussed above the conditions in the theorem guarantee that (4.15) has a unique solution \((x(t), t \geq 0) \) and the origin is its unique equilibrium. The closed-loop system of (4.15a) is the following system of differential equations in \(\tilde{x} \):

\[
\dot{\tilde{x}} = K \left(\tilde{U}'(\tilde{x}) - \tilde{q}(\tilde{x}) \right) \quad (4.16)
\]

We first show that the right-hand side is locally Lipschitz so that Theorem 4.8 is applicable. We claim that the function \(\tilde{q}(\tilde{x}) \) is locally Lipschitz in \(\tilde{x} \). To see this, fix any \(\tilde{x} \). Consider any \(\tilde{x} \) close enough to \(\tilde{x} \) so that the corresponding \(R\tilde{x} \) and \(R\tilde{x} \) are close enough. Then since
4.3. STABILITY OF PRIMAL ALGORITHM 125

$p(\cdot)$ is locally Lipschitz, we have $\|p(R(x^* + \tilde{x})) - p(R(x^* + \bar{x}))\| \leq L_{\tilde{x}}\|R\tilde{x} - R\bar{x}\|$ for some finite constant $L_{\tilde{x}}$. Hence

$$\|\tilde{q}(\tilde{x}) - \tilde{q}(\bar{x})\| = \|R^T(\tilde{p}(R\tilde{x}) - \tilde{p}(R\bar{x}))\| \leq \|R^T\| \|R\| \|p(R(x^* + \tilde{x})) - p(R(x^* + \bar{x}))\| \leq L_{\tilde{x}}\|R\|\|\tilde{x} - \bar{x}\|$$

i.e., the function $\tilde{q}(\tilde{x})$ is locally Lipschitz in \tilde{x}. Hence the right-hand side of the closed-loop system (4.16) is locally Lipschitz in \tilde{x} ($U'(\tilde{x})$ is also locally Lipschitz since U_i are twice continuously differentiable), and we can apply Theorem 4.8.

Consider the following positive definite candidate storage function for the open-loop dynamical system f in (4.15a):

$$V_1(\tilde{x}) := \frac{1}{2} \sum_i \tilde{x}_i^2$$

with

$$\dot{V}_1 = \sum_i \tilde{x}_i \dot{\tilde{x}}_i = \sum_i \tilde{x}_i \left(\tilde{U}'(\tilde{x}_i) - \tilde{q}_i \right)$$

(4.17)

Since the input to the open-loop system f is $-\tilde{q}$ and the output is the state \tilde{x}, (4.17) implies that f is output-feedback passive:

$$(-\tilde{q})^T\tilde{x} = \dot{V}_1 + \tilde{x}^T(\tilde{U}'(\tilde{x}))$$

and zero-state observable. The function ρ_1 in Theorem 4.8 is $-\tilde{U}'$. The lower component of Figure 4.6 is memoryless with \tilde{x} at the input and \tilde{q} at the output:

$$\tilde{q} = R^T\tilde{p}(R\tilde{x})$$

and hence automatically input-feedforward passive since

$$\tilde{x}^T\tilde{q} = \tilde{x}^T(R^T\tilde{p}(R\tilde{x}))$$

The function φ_2 in Theorem 4.8 can be taken as $R^T\tilde{p}(R\tilde{x})$.

We are left to prove condition (4.13) in Theorem 4.8 which translates to:

$$\tilde{x}^T\left(-\tilde{U}'(\tilde{x}) + R^T\tilde{p}(R\tilde{x})\right) = -\tilde{x}^T\tilde{U}'(\tilde{x}) + \tilde{y}^T\tilde{p}(\tilde{y}) > 0 \quad \text{for all } \tilde{x} \neq 0$$

We first claim that $-\tilde{x}^T\tilde{U}'(\tilde{x}) = -\sum_i \tilde{x}_i \tilde{U}'(\tilde{x}_i) > 0$ for all $\tilde{x} \neq 0$. By definition

$$\tilde{U}'(\tilde{x}_i) = U'_i(x_i^* + \tilde{x}_i) - U'_i(x_i^*)$$
Since U_i is strictly concave, $-\tilde{U}_i'(\tilde{x}_i)$ is strictly increasing in \tilde{x}_i. Moreover $-\tilde{U}_i'(0) = 0$ and hence the graph of $-\tilde{U}_i'(\tilde{x}_i)$ lies in the first and third quadrants (\tilde{x} can be negative). Therefore $-\tilde{x}^T U'(\tilde{x}) > 0$ as long as $\tilde{x} \neq 0$. Similarly

$$\tilde{y}^T \tilde{p}(\tilde{y}) = \sum_l \tilde{y}_l (p_l(y^*_l + \tilde{y}_l) - p_l(y^*_l)) \geq 0$$

where the last inequality follows because p_l is nondecreasing and hence $\tilde{y}_l (p_l(y^*_l + \tilde{y}_l) - p_l(y^*_l)) \geq 0$.

Hence all conditions of Theorem 4.8 are satisfied, including the radial unboundedness of V_1. The origin is therefore globally asymptotically stable.

4.4 STABILITY OF PRIMAL-DUAL ALGORITHM

We now discuss the stability of the following class of primal-dual algorithms:

$$\dot{x}_i = \kappa_i (U'_i(x_i(t)) - q_i(t))_{x_i(t)}^+$$

$$\dot{p}_l = \gamma_l(y_l(t) - c_l)_{p_l(t)}^+$$

where $(a)_b^+ = a$ if $a > 0$ or $b > 0$ and 0 otherwise. This is in vector form:

$$\dot{x} = K (U'(x(t)) - q(t))_{x(t)}^+$$

$$\dot{p} = \Gamma (y(t) - c)_{p(t)}^+$$

where $K := \text{diag}(\kappa_i, i = 1, \ldots, N)$ and $\Gamma := \text{diag}(\gamma_l, l = 1, \ldots, L)$. A point (x^*, p^*) is an equilibrium of the primal-dual algorithm (4.18) if

$$(U'_i(x^*_i) - q^*_i)_{x^*_i}^+ = 0 \quad \text{and} \quad (y^*_l - c_l)_{p^*_l}^+ = 0$$

As for the primal algorithms we assume that conditions C2.1 and C2.2 hold and the routing matrix R has a full row rank. Then (4.18) has a unique solution $(x(t), p(t), t \geq 0)$ for every initial point $(x(0), p(0)) \geq 0$ (see Chapter 1.5). Moreover a unique equilibrium point (x^*, p^*) exists, if $x^* > 0$, and is primal-dual optimal for a network utility maximization problem and its dual (see Chapter 2.2).

As in Chapter 4.3 we shift the equilibrium point to the origin by working with the perturbed variables defined as (dropping t to simplify notation):

$$\tilde{x} := x - x^* \quad \text{and} \quad \tilde{p} := p - p^*$$

Then

$$\tilde{y} := R \tilde{x} = R(x - x^*) = y - y^* \quad \text{and} \quad \tilde{q} := R^T \tilde{p} = R^T(p - p^*) = q - q^*$$
In terms of the perturbed variables the primal-dual algorithm is:

\[
\begin{align*}
\dot{\tilde{x}} &= \dot{x} = K \left(U'(x^* + \tilde{x}) - R^T p^* - R^T \tilde{p} \right)_{x^* + \tilde{x}}^+ =: f(\tilde{x}, -\tilde{p}) \quad (4.19a) \\
\dot{\tilde{p}} &= \dot{p} = \Gamma (y^* - c + \tilde{y})_{p^* + \tilde{p}}^+ =: g(\tilde{p}, \tilde{y}) \quad (4.19b)
\end{align*}
\]

It can be treated as a zero-input feedback connection shown in Figure 4.7.

Figure 4.7: The primal-dual algorithm (4.19) is modeled as a feedback connection of two time-invariant dynamical systems.

Compare the primal iterations (4.19a) with (4.15a): since we ignore the projection to nonnegative \(x_i(t)\) in (4.15a) the equilibrium for (4.15a) has a simple characterization: \(\tilde{U}'(\tilde{x}) = \tilde{q}\) which, since \(\tilde{x} = 0, \tilde{q} = 0\), is equivalent to

\[
U'(x^*) = q^*
\]

In contrast the equilibrium of (4.19a) is characterized by \(U'_i(x_i^* + \tilde{x}_i) \leq q_i^* + \tilde{q}_i\) with equality if \(x_i^* + \tilde{x}_i > 0\), which is equivalent to

\[
U'_i(x_i^*) \leq q_i^* \quad \text{with equality if } x_i^* > 0, \quad i = 1, \ldots, N
\]

Lemma 4.10 Suppose the utility functions \(U_i\) are strictly concave.

1. The open-loop forward system from \(-\tilde{p}\) to \(\tilde{y}\) is strictly passive.

\(^2\)Note that the second argument of \(f\) in (4.19a) is negative because the input to the integrator in the forward path in Figure 4.7 is \(-q\).
2. The open-loop backward system from \(\tilde{y} \) to \(\tilde{p} \) is passive.

Proof of Lemma 4.10.

1. Consider the candidate storage function

\[
V_1(\tilde{x}) := \frac{1}{2} \tilde{x}^T K^{-1} \tilde{x}
\]

Clearly \(V_1 \) is continuously differentiable, positive definite and radially unbounded. Moreover we have from (4.19a)

\[
\dot{V}_1(\tilde{x}) = \tilde{x}^T K^{-1} \tilde{x} = \tilde{x}^T (U'(x^* + \tilde{x}) - R^T p^* - R^T \tilde{p})
\]

where the inequality follows from Lemma 3.18 and \(\tilde{x} = x - x^* \). Hence, using \(x^* + \tilde{x} = x \) and \(R^T p^* + R^T \tilde{p} = R^T p = q \) to simplify notation, we have

\[
\dot{V}_1(\tilde{x}) \leq \tilde{x}^T (U'(x) - q) = \tilde{x}^T (U'(x) - q) - \tilde{x}^T (U'(x^*) - q^*)
\]

where the equality follows because \((U'(x^*) - q^*)' = 0 \). Lemma 3.18 implies

\[
0 = \tilde{x}^T (U'(x^*) - q^*)
\]

and hence

\[
\dot{V}_1(\tilde{x}) \leq \tilde{x}^T (U'(x) - U'(x^*)) - \tilde{x}^T R^T \tilde{p} - \tilde{x}^T R^T \tilde{y}
\]

yielding

\[
-\tilde{p}^T \tilde{y} \geq \dot{V}_1(\tilde{x}) + \psi(\tilde{x})
\]

where \(\psi(\tilde{x}) := -\tilde{x}^T \tilde{U}'(\tilde{x}) \). We now claim that \(\psi(\tilde{x}) > 0 \) for all \(\tilde{x} \neq 0 \) (as also proved in Theorem 4.9), implying that the (open-loop) forward path is strictly passive. To see this note that

\[
-\tilde{x}^T \tilde{U}'(\tilde{x}) = -\sum_i \tilde{x}_i \tilde{U}'_i(\tilde{x}_i)
\]

where by definition

\[
\tilde{U}'_i(\tilde{x}_i) = U'_i(x_i^* + \tilde{x}_i) - U'_i(x_i^*)
\]

Since \(U_i \) is strictly concave, \(-\tilde{U}'_i(\tilde{x}_i) \) is strictly increasing in \(\tilde{x}_i \). Moreover \(-\tilde{U}'_i(0) = 0 \) and hence the graph of \(-\tilde{U}'_i(\tilde{x}_i) \) lies in the first and third quadrants (\(\tilde{x} \) can be negative). Therefore \(-\tilde{x}^T \tilde{U}'(\tilde{x}) > 0 \) as long as \(\tilde{x} \neq 0 \). This completes the proof that the open-loop forward system from \(-\tilde{p} \) to \(\tilde{y} \) is strictly passive.
2. Consider the candidate storage function

\[V_2(\tilde{p}) := \frac{1}{2} \tilde{p}^T \Gamma^{-1} \tilde{p} \]

Clearly \(V_2 \) is continuously differentiable, positive definite and radially unbounded. Moreover

\[\dot{V}_2(\tilde{p}) = \tilde{p}^T \Gamma^{-1} \dot{\tilde{p}} = \tilde{p}^T (y - c)_p^+ \leq \tilde{p}^T (y - c) \]

where the inequality follows from Lemma 3.18 and \(\tilde{p} := p - p^* \). Hence

\[\dot{V}_2(\tilde{p}) \leq \tilde{p}^T (y - y^* + (y^* - c)) = \tilde{p}^T \check{y} + \tilde{p}^T (y^* - c) \]

Using Lemma 3.18 again we have \(\tilde{p}^T (y^* - c) \leq \tilde{p}^T (y^* - c)_p^+ = 0 \) and hence

\[\tilde{y}^T \tilde{p} \geq V_2(\tilde{p}) \]

i.e., the backward system from \(\tilde{y} \) to \(\tilde{p} \) is passive.

We cannot apply Theorem 4.7 because the backward system is neither strictly passive nor output strictly passive (though it is zero-state observable). However, since \(V_1 \) and \(V_2 \) are both positive definite, we will prove that \(V(\tilde{x}, \tilde{p}) := V_1(\tilde{x}) + V_2(\tilde{p}) \) is indeed a Lyapunov function for the primal-dual algorithm (4.19) and apply LaSalle’s invariance principle Theorem 3.9.2.

Theorem 4.11 Suppose conditions C2.1 and C2.2 hold, the routing matrix \(R \) has a full row rank, and the equilibrium \(x^* > 0 \). Then the origin of the primal-dual algorithm (4.19) is globally asymptotically stable.

Proof. As discussed above (after (4.18)), the conditions in the theorem guarantee that (4.19) has a unique solution \((x(t), p(t), t \geq 0) \) and the origin is its unique equilibrium. Moreover condition C2.2 implies that the dynamics of (4.19) are the projections of locally Lipschitz functions as Theorem 3.9.2 requires (this can be proved in a similar manner as Lemma 3.14).

Consider the candidate Lyapunov function consisting of the sum of the storage functions \(V_1, V_2 \) defined in the proof of Lemma 4.10:

\[V(\tilde{x}, \tilde{p}) := \frac{1}{2} (\tilde{x}^T K^{-1} \tilde{x} + \tilde{p}^T \Gamma^{-1} \tilde{p}) = V_1(\tilde{x}) + V_2(\tilde{p}) \]

Clearly \(V \) is continuously differentiable, positive definite, and radially unbounded. The proof of Lemma 4.10 shows that

\[\dot{V}_1(\tilde{x}) \leq \tilde{x}^T \tilde{U}'(\tilde{x}) - \tilde{p}^T \check{y} \quad \text{and} \quad \dot{V}_2(\tilde{p}) \leq \tilde{y}^T \tilde{p} \]
and hence
\[\dot{V}(\tilde{x}, \tilde{p}) \leq \tilde{x}^T \tilde{U}'(\tilde{x}) \]

It is also proved there that
\[\tilde{x}^T \tilde{U}'(\tilde{x}) := \tilde{x}^T (U'(x^* + \tilde{x}) - U'(x^*)) < 0, \quad \tilde{x} \neq 0 \]

Hence we have \(\dot{V}(\tilde{x}, \tilde{p}) \leq 0 \). Hence \(V \) satisfies conditions C3.1, C3.2, and C3.3. \((V \) does not satisfy \(\dot{V}(\tilde{x}, \tilde{p}) < 0 \) for \((\tilde{x}, \tilde{p}) \neq 0 \) because \(\dot{V}(0, \tilde{p}) = 0 \) for any \(\tilde{p} \). LaSalle's invariance principle implies that the trajectory \((x(t), p(t))\) will converge to the largest invariance set in

\[E := \{ (\tilde{x}, \tilde{p}) | \dot{V}(\tilde{x}, \tilde{p}) = 0 \} \]

We now prove that the only solution to (4.19) that can stay identically in \(E \) is the equilibrium solution \((\tilde{x}, \tilde{p}) \equiv 0 \). Theorem 3.9.2 then implies the global asymptotic stability of the origin.

Since \(\tilde{x}^T \tilde{U}'(\tilde{x}) < 0 \) for all \(\tilde{x} \neq 0 \), \(\tilde{V} \equiv 0 \) implies \(\tilde{x}^T \tilde{U}'(\tilde{x}) \equiv 0 \) and hence \(\tilde{x} \equiv 0 \). From this and (4.19a) we have (since \(p(t) = p^* + \tilde{p}(t) \))

\[(U'(x^*) - R^T p(t))^+_x = 0 \quad (4.20) \]

Since

\[\begin{align*}
\dot{V}(\tilde{x}, \tilde{p}) &= \tilde{x}^T K^{-1} \dot{\tilde{x}} + \tilde{p}^T \Gamma^{-2} \dot{\tilde{p}} = \tilde{x}^T (U'(x(t)) - R^T p(t))^+_x + \tilde{p}^T (y(t) - c)^+_p \\
(4.20) \text{and} \quad \tilde{x} \equiv 0 \text{ imply} \quad y(t) \equiv y^* \quad \text{and} \quad \dot{V}(\tilde{x} \equiv 0, \tilde{p}) = \tilde{p}^T (y^* - c)^+_p(t)
\end{align*} \]

Suppose now \((0, \tilde{p}(t)) \in E \) for all \(t \geq 0 \). Then \(\dot{V} \equiv 0 \) implies

\[\sum_l \tilde{p}_l(t) (y^*_l - c^*_l)^{+_p}_l(t) = 0 \quad (4.21) \]

We claim that this implies, for each \(t \) and each \(l \),

\[\tilde{p}_l(t) (y^*_l - c^*_l)^{+_p}_l(t) = 0 \quad (4.22) \]

To see this, fix any time \(t \) and any link \(l \). Clearly (4.22) holds if \(\tilde{p}_l(t) = 0 \). If \(\tilde{p}_l(t) < 0 \) then \(p^*_l > p_l(t) \geq 0 \) and hence \(y^*_l = c_l \) since \((x^*, p^*)\) is the (unique) equilibrium point, implying (4.22). On the other hand if \(\tilde{p}_l(t) > 0 \) then \(p_l(t) > p^*_l \geq 0 \) and hence \(\tilde{p}_l(t) (y^*_l - c^*_l)^{+_p}_l(t) = \tilde{p}_l(t) (y^*_l - c_l) \leq 0 \). Therefore every term on the left-hand side of (4.21) is nonpositive, and therefore every term must itself be zero.
If $\tilde{p}_l(t) \neq 0$ then (4.22) implies $(y_l^* - c_l)_{p_i(t)}^+ = 0$, whereas if $\tilde{p}_l(t) = 0$ then

$$(y_l^* - c_l)_{p_i(t)}^+ = (y_l^* - c_l)_{p^*}^+ = 0$$

where the last equality follows because (x^*, p^*) is the equilibrium point of (4.18). Hence, for all $\tilde{p}_l(t)$, we have

$$(y_l^* - c_l)_{p_i(t)}^+ = 0 \quad \text{for all } l, t \quad (4.23)$$

But (4.20)-(4.23) means that $(x^*, p(t))$ is an equilibrium point of the primal-dual algorithm (4.18) for every t. Since the equilibrium of (4.18) is unique under assumptions of the theorem we must have $p(t) \equiv p^*$ and $\tilde{p}(t) \equiv 0$. This shows that the only solution trajectory that can stay identically in E is the equilibrium solution $(\tilde{x}, \tilde{p}) = (0, 0)$.

The global asymptotic stability of the origin then follows from Theorem 3.9.2.

4.5 BIBLIOGRAPHICAL NOTES

The passivity theorems in Chapter 4.1 following [29]. Passivity theory is first applied to congestion control in [51]. The stability proofs here for congestion control modeled by projected dynamics are new.
CHAPTER 5

Global stability: gradient projection method

In this chapter we introduce another approach to proving stability of congestion control algorithms. Using a discrete-time model this approach regards the dynamics of the closed-loop system as a gradient projection algorithm for the Lagrangian dual problem of network utility maximization. We derive sufficient conditions for this algorithm to converge to dual-optimal link prices, from which primal-optimal rates can be recovered.

5.1 CONVERGENCE THEOREMS

Consider the problem

\[\min_x f(x) \quad \text{subject to} \quad x \in X \quad (5.1) \]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable and \(X \subseteq \mathbb{R}^n \) is nonempty, closed and convex. Let the column vector \(\nabla f(x) \) denote the gradient of \(f \) evaluated at \(x \), i.e., \([\nabla f(x)]_i := \partial f/\partial x_i, \ i = 1, \ldots, n \). Recall that a point \(x^* \) is a local minimizer if \(f(x^*) \) is minimum on a neighborhood of \(x^* \), i.e., there exists \(r > 0 \) such that \(f(x^*) \leq f(x) \) for all \(x \in B_r(x^*) \cap X \). A necessary optimality condition for general \(f \) is: if \(x^* \in X \) is a local minimizer for (5.1) then there is a neighborhood \(B_r(x^*) \) for some \(r > 0 \) such that

\[\nabla^T f(x^*)(x - x^*) \geq 0 \quad \forall x \in B_r(x^*) \cap X \quad (5.2) \]

i.e., moving away from \(x^* \) to any other feasible point \(x \) in \(B_r(x^*) \) can only increase the function value \(f \). If \(f \) is a convex function (\(X \) is assumed convex) then this is both necessary and sufficient for \(x^* \) to be a global minimum\(^1\) of (5.1). This is illustrated in Figure 5.1.

The steepest descent (first-order gradient) algorithm for solving (5.1) is given by the following iteration: starting from an initial point \(x(0) = x_0 \),

\[x(t + 1) = \left[x(t) - \gamma \nabla f(x(t)) \right]_X \quad (5.3) \]

where \(\gamma > 0 \) is a stepsize. Here \([x]_X \) denotes the projection of \(x \) onto \(X \), i.e., for any \(x \in \mathbb{R}^n \),

\[[x]_X := \arg \min_{y \in X} \| x - y \|_2 \quad (5.4) \]

\(^1\)For a proof see the discussion after Theorem 2.10.
Figure 5.1: Moving away from an optimal point x^* to any other feasible point x can only locally increase the cost.
where $\| \cdot \|_2$ is the Euclidean norm. Hence $[x]_X$ is the point in X that is closest to $x \in \mathbb{R}^n$ in the Euclidean norm. To prove the convergence of the gradient projection algorithm (5.3), we need the following properties of the projection operation. They are illustrated in Figure 5.2.

![Figure 5.2](image)

Figure 5.2: The point $z := [x]_X$ is the unique closest point to x in the convex set X under the Euclidean norm. For all other points $y \in X$, the inner product of $y - z$ and $x - z$ is nonpositive.

Lemma 5.1 Projection Theorem. Suppose $X \subseteq \mathbb{R}^n$ is a nonempty, closed and convex set.

1. For every $x \in \mathbb{R}^n$ there exists a unique $[x]_X$ defined by (5.4).

2. For every $x \in \mathbb{R}^n$, $z = [x]_X$ if and only if $z \in X$ and $(y - z)^T (x - z) \leq 0$ for all $y \in X$.

3. The projection mapping $T : \mathbb{R}^n \to X$ defined by $T(x) := [x]_X$ is continuous and non-expansive under the Euclidean norm, i.e.,

$$\| [y]_X - [x]_X \|_2 \leq \| y - x \|_2 \quad \forall x, y \in \mathbb{R}^n$$

Note that Lemma 5.1 does not require X to be bounded (compact), only closed. This is because since X is nonempty there is an $w \in X$. Hence the minimization in the projection (5.4) can be equivalently restricted to the compact set $\{ y \in X \mid \| x - y \|_2 \leq \| x - w \|_2 \}$.

We assume:

C5.1: The objective function f is lower bounded on X, continuously differentiable and convex. The feasible set X is nonempty, closed and convex.
5.1. CONVERGENCE THEOREMS

C5.1 guarantees that (5.1) is feasible and the gradient projection algorithm (5.3) is well defined. Since X is not necessarily compact (bounded), the optimal may not be attained (e.g., $X = \mathbb{R}$ and $f(x) = e^{-x}$). Moreover the sequence $(x(t), t = 0, 1, \ldots)$ generated by the gradient projection algorithm (5.3) may not stay bounded and hence may not have any convergent subsequence (the Bolzano-Weierstrass theorem states that a sequence $(x(t), t = 0, 1, \ldots)$ has a convergent subsequence if it is bounded).

To guarantee that the gradient projection algorithm makes progress towards minimizing f, we need:

C5.2: The gradient of f is Lipschitz continuous with a Lipschitz constant K, i.e.,

$$
\|\nabla f(y) - \nabla f(x)\|_2 \leq K \|y - x\|_2 \quad \forall x, y \in \mathbb{R}^n
$$

Note that the norm is Euclidean. C5.2 implies the following useful result, proved in Appendix 5.3.

Lemma 5.2 Descent Lemma. If $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and satisfies C5.2 then

$$
f(x + y) \leq f(x) + y^T \nabla f(x) + \frac{K}{2} \|y\|_2^2 \quad \forall x, y \in \mathbb{R}^n
$$

The main result on the gradient projection algorithm (5.3) is the following characterization. Conditions C5.1 and C5.2 do not guarantee that the sequence $(x(t), t = 0, 1, \ldots)$ generated by the gradient projection algorithm has any convergent subsequence, but if it does then it converges to an optimal point x^* of (5.1) provided the stepsize γ is sufficiently small.

This implies that, when f is strictly convex so that the optimal point x^* is unique, then $(x(t), t = 0, 1, \ldots)$ itself converges to x^*.

Theorem 5.3 Suppose conditions C5.1 and C5.2 hold, and suppose $0 < \gamma < 2/K$. If the sequence $(x(t), t = 0, 1, \ldots)$ produced by the gradient projection algorithm (5.3) has a convergent subsequence $(x(t_k), k = 1, 2, \ldots)$ then its limit x^* is an optimal solution of (5.1).

Proof. We prove the theorem in three steps. First we show the sequence $(f(x(t)), t = 0, 1, \ldots)$ of objective values converges monotonically. Moreover the difference sequence

2In contrast, the norm that defines a contraction mapping can be arbitrary (see Definition 5.5 below).
(x(t + 1) - x(t), t = 0, 1, . . .) converges to zero. Specifically, by the Descent Lemma 5.2, we have
\[
f(x(t + 1)) \leq f(x(t)) + (x(t + 1) - x(t))^T \nabla f(x(t)) + \frac{K}{2} \|x(t + 1) - x(t)\|^2_2 \tag{5.5}
\]
Lemma 5.1.2 implies that for all t
\[
(y - x(t + 1))^T (x(t) - \gamma \nabla f(x(t)) - x(t + 1)) \leq 0 \quad \forall y \in X \tag{5.6}
\]
In particular let y = x(t) and we have, after rearranging,
\[
(x(t + 1) - x(t))^T \nabla f(x(t)) \leq -\frac{1}{\gamma} \|x(t + 1) - x(t)\|^2_2
\]
Substituting into (5.5) we have
\[
f(x(t + 1)) \leq f(x(t)) - \left(\frac{1}{\gamma} - \frac{K}{2}\right) \|x(t + 1) - x(t)\|^2_2 \tag{5.7}
\]
Hence the sequence (f(x(t)), t = 0, 1, . . .) is strictly decreasing as long as x(t + 1) \neq x(t) provided \(\gamma < 2/K\). Since f is lower bounded on X (condition C5.1), the sequence (f(x(t)), t = 0, 1, . . .) is bounded and monotone and thus converges. Rearranging (5.7), we also have
\[
\|x(t + 1) - x(t)\|^2_2 \leq \left(\frac{1}{\gamma} - \frac{K}{2}\right)^{-1} (f(x(t)) - f(x(t + 1)))
\]
Since f(x(t)) converges this means that the differences x(t + 1) - x(t) converge to zero (though this does not guarantee that x(t) itself converges).

Second suppose there is a subsequence (x(t_k), k = 1, 2, . . .) that converges to x^*. Consider the sequence (x(t_k + 1), k = 1, 2, . . .). By Lemma 5.1.3, x(t + 1) = T(x(t)) as a function T of x(t) defined by (5.3) is a continuous function. Hence the sequence (x(t_k + 1), k = 1, 2, . . .), being the image of a continuous function on x(t_k), also converges. We now show that it converges to x^* as k \to \infty. Fix any \(\varepsilon > 0\). We have to show that there exists an K such that
\[
\|x(t_k + 1) - x^*\|_2 < \varepsilon \quad \forall k > K
\]
Since x(t_k) \to x^* there exists an K' such that
\[
\|x(t_k) - x^*\|_2 < \frac{\varepsilon}{2} \quad \forall k > K' \tag{5.8a}
\]
Step 1 above shows that x(t_k + 1) - x(t_k) converges to zero and hence there exists K'' such that
\[
\|x(t_k + 1) - x(t_k)\|_2 < \frac{\varepsilon}{2} \quad \forall k > K'' \tag{5.8b}
\]
5.1. CONVERGENCE THEOREMS

Combining (5.8) we have for \(k > K := \max \{ K', K'' \} \)
\[
\| x(t_k + 1) - x^* \|_2 \leq \| x(t_k + 1) - x(t_k) \|_2 + \| x(t_k) - x^* \|_2 < \varepsilon
\]
as desired.

Finally note that (5.6) holds for all \(t \). In particular consider \(t = t_k, k = 1, 2, \ldots \). Taking
\(k \to \infty \), (5.6) yields
\[
\left(y - \lim_{k} x(t_k + 1) \right)^T \left(\lim_{k} x(t_k) - \gamma \lim_{k} \nabla f(x(t_k)) + \lim_{k} x(t_k + 1) \right) \leq 0, \quad \forall y \in X
\]
Since \(f \) is continuously differentiable and \(\lim_k x(t_k) = \lim_k x(t_k + 1) = x^* \), we have
\[
\gamma (y - x^*)^T \nabla f(x^*) \geq 0 \quad \forall y \in X
\]
Hence \(x^* \) satisfies the optimality condition (5.2) and is globally optimal since \(f \) is a convex function over a convex set \(X \).

When \(f \) satisfies a stronger form of convexity then the gradient projection algorithm indeed converges and does so geometrically. Suppose \(f \) is twice continuously differentiable (not just continuously differentiable as guaranteed by condition C5.1). Then \(f \) is strictly convex if and only if \(\nabla^2 f(x) > 0 \) (positive definite) for all \(x \). If, for some \(\alpha > 0 \), \(\nabla^2 f(x) \succeq \alpha I \) for all \(x \in \mathbb{R}^n \) then the gradient projection algorithm (5.3) is a contraction mapping and \(x(t) \) converges geometrically to the unique optimal solution \(x^* \) of (5.1) with rate \(\alpha \). We now make this precise.

Consider:

C5.3: For some \(\alpha > 0 \), \(f \) satisfies
\[
(\nabla f(y) - \nabla f(x))^T (y - x) \geq \alpha \| y - x \|_2 \quad \forall x, y \in \mathbb{R}^n
\]
We say \(f \) is strongly convex if it satisfies condition C5.3. The next result shows that it is stronger than strict convexity. It is proved in Appendix 5.4.

Lemma 5.4 Strong convexity. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be continuously differentiable. If \(f \) satisfies C5.3 then \(f \) is strictly convex. Indeed (5.9) is equivalent to \(\nabla^2 f(x) \succeq \alpha I \) for all \(x \in \mathbb{R}^n \) when \(f \) is twice continuously differentiable.

A key implication of Lemma 5.4 is that the gradient projection algorithm (5.3) is a contraction mapping, as we now explain.
5. GLOBAL STABILITY: GRADIENT PROJECTION METHOD

Definition 5.5 Contraction. Consider a function $T : X \to X$ from a subset X of \mathbb{R}^n into itself. T is called a contraction mapping or simply a contraction if there exists an $\alpha \in [0, 1)$ such that

$$\|T(y) - T(x)\| \leq \alpha \|y - x\| \quad \forall x, y \in X$$

for an arbitrary norm $\| \cdot \|$.

A function T can be a contraction under a certain norm, but not under a different norm, so the proper choice of norm is critical.

Theorem 5.6 Contraction theorem. Suppose $T : X \to X$ is a contraction mapping on a closed subset X of \mathbb{R}^n. Then

1. There exists a unique fixed point x^* such that $x^* = T(x^*)$.

2. Starting from any initial point $x(0) \in X$, the contraction iteration $x(t + 1) := T(x(t))$ converges geometrically to x^*; in particular

$$\|x(t) - x^*\| \leq \alpha^t \|x(0) - x^*\| \quad \forall t \geq 0$$

Proof. Consider the contraction iteration $x(t + 1) := T(x(t))$. Definition 5.5 implies

$$\|x(t + 1) - x(t)\| \leq \alpha \|x(t) - x(t - 1)\| \leq \cdots \leq \alpha^t \|x(1) - x(0)\|$$

Hence, for all $t \geq 0$ and $s \geq 1$, we have

$$\|x(t + s) - x(t)\| = \left\| \sum_{m=0}^{s-1} (x(t + m + 1) - x(t + m)) \right\|$$

$$\leq \sum_{m=0}^{s-1} \|x(t + m + 1) - x(t + m)\| \leq \|x(1) - x(0)\| \alpha^t \sum_{m=0}^{s-1} \alpha^m$$

$$\leq \frac{\alpha^t}{1 - \alpha} \|x(1) - x(0)\|$$

Since $\alpha \in [0, 1)$, $x(t)$ is a Cauchy sequence and hence must converge to a point x^* in \mathbb{R}^n. Since X is closed, $x^* \in X$. Since T is continuous,

$$x^* = \lim_{t \to \infty} x(t + 1) = \lim_{t \to \infty} T(x(t)) = T(\lim_{t \to \infty} x(t)) = T(x^*)$$

and hence x^* is a fixed point of T. Moreover, the fixed point is unique for, otherwise, if x^* and y^* are both fixed points then

$$\|y^* - x^*\| = \|T(y^*) - T(x^*)\| \leq \alpha \|y^* - x^*\|$$
5.1. CONVERGENCE THEOREMS

implying $y^* = x^*$ since $\alpha \in [0, 1)$. This completes the proof of part 1.

For part 2, we have for all $t \geq 1$,

$$\|x(t) - x^*\| = \|T(x(t-1)) - T(x^*)\| \leq \alpha \|x(t-1) - x^*\|$$

Hence $\|x(t) - x^*\| \leq \alpha^t \|x(0) - x^*\|$.

Consider the mapping defined by the gradient projection algorithm (5.3):

$$T(x) := [x - \gamma \nabla f(x)]_X$$

The key observation is that, if f is strongly convex then T is a contraction. Theorem 5.6 then implies that the gradient projection algorithm converges geometrically to the unique optimal solution of (5.1). In particular condition C5.2 (Lipschitz continuity of ∇f) guarantees strict descent for sufficiently small stepsize $\gamma > 0$ and condition C5.3 (strong convexity of f) guarantees geometric convergence.

Theorem 5.7 Suppose conditions C5.1–C5.3 hold. Then there is a unique optimal solution x^* for (5.1) and the gradient projection algorithm (5.3) converges geometrically to x^*, provided the stepsize γ satisfies:

if $\alpha < K$: $0 < \gamma < \frac{2\alpha}{K^2}$

if $\alpha \geq K$: $0 < \gamma < \frac{\alpha}{K^2} - d$ or $\frac{\alpha}{K^2} + d < \gamma < \frac{2\alpha}{K^2}$

where $d := \sqrt{\alpha^2 - K^2}/K^2$. Then

$$\|x(t) - x^*\| \leq \beta^t \|x(0) - x^*\| \quad \forall t \geq 0$$

where $\beta := \sqrt{K^2\gamma^2 - 2\alpha\gamma + 1} \in (0, 1)$.

Proof. The gradient project algorithm (5.3) is the following iteration $x(t+1) = T(x(t))$ where $T : X \to X$ is defined by $T(x) := [x - \gamma \nabla f(x)]_X$. We will show that T is a contraction under conditions C5.2 and C5.3. Then the assertions follow from Theorem 5.6.

We have under the Euclidean norm

$$\|T(y) - T(x)\|_2^2 = \| [y - \gamma \nabla f(y)]_X - [x - \gamma \nabla f(x)]_X \|_2^2 \leq \| (y - x) - \gamma (\nabla f(y) - \nabla f(x)) \|_2^2$$

$$= \| y - x \|_2^2 - 2\gamma (\nabla f(y) - \nabla f(x))^T (y - x) + \gamma^2 \| \nabla f(y) - \nabla f(x) \|_2^2$$

where the inequality above follows from the fact that the projection operation is nonexpansive (Lemma 5.1.3). Conditions C5.3 and C5.2 guarantee that $(\nabla f(y) - \nabla f(x))^T (y - x) \geq \alpha \| y - x \|_2^2$ and $\| \nabla f(y) - \nabla f(x) \|_2^2 \leq K^2 \| y - x \|_2^2$ respectively. Hence

$$\|T(y) - T(x)\|_2^2 \leq (1 - 2\alpha\gamma + \gamma^2 K^2) \| y - x \|_2^2$$
Figure 5.3: The function $\beta^2(\gamma)$. (a) If $\alpha < K$ then T is a contraction for any stepsize $\gamma \in (0, 2\alpha/K^2)$. (b) If $\alpha \geq K$ then T is a contraction if $\gamma \in (0, \alpha/K^2 - d)$ or if $\gamma \in (\alpha/K^2 + d, 2\alpha/K^2)$ where $d := \sqrt{\alpha^2 - K^2}/K^2$.
Hence T is a contraction if and only if $\beta^2(\gamma) := 1 - 2\alpha\gamma + \gamma^2 K^2 \in [0, 1)$. The function $eta^2(\gamma)$ is shown in Figure 5.3. Hence the condition on the stepsize γ in the theorem guarantees T is a contraction with parameter $\beta(\gamma) \in (0, 1)$. The assertions then follow from Theorem 5.6.

If any subsequence of $x(t)$ converges then Theorem 5.3 guarantees that it converges to an optimal solution x^*. Theorem 5.7 guarantees that, indeed, $x(t)$ converges to the unique optimal x^* and does so geometrically. The bound $2/K$ on the stepsize γ in Theorem 5.3 depends only on the first-order information (the Lipschitz constant K of the gradient ∇f of the objective function). The bound $2\alpha/K^2$ on the stepsize γ in Theorem 5.7 depends also on the second-order information α, the strength of the convexity of f.

5.2 STABILITY OF DUAL ALGORITHM

We now apply Theorems 5.3 and 5.7 to prove the stability of dual algorithms. Dual algorithms have dynamics only in the congestion prices, but not in the source rates. They take the form, in discrete time,

$$
x_i(t) = U_i'^{-1}(q_i(t)) \tag{5.10a}
$$

$$
p_l(t + 1) = (p_l(t) + \gamma(y_l(t) - c_l))^+ = g_l(y_l(t), p_l(t)) \tag{5.10b}
$$

where $(z)^+ := \max\{z, 0\}$. Here $q_i(t) := \sum_l R_{li} p_l(t)$ and $y_l(t) := \sum_i R_{li} x_i(t)$. Since x is statically determined by p through (5.10a) we abuse notation and often write $x(p)$ and $y(p) = Rx(p)$. We say p^* is an equilibrium (fixed point) if $g(p^*) = g(y(p^*), p^*) = p^*$.

We make the following assumptions on the utility functions U_i:

C5.4:

(a) The utility functions U_i are increasing, strictly concave, and twice continuously differentiable. Moreover $U_i'(x_i) \to \infty$ as $x_i \to 0$ for all i. Suppose the routing matrix R has a full row rank.

(b) The curvatures of U_i are bounded away from zero uniformly: $-U_i''(x_i) \geq 1/\pi > 0$ for all i, $x_i \geq 0$.

(c) The curvatures of U_i are bounded above uniformly: $0 < -U_i''(x_i) \leq 1/\pi$ for all i, $x_i \geq 0$.

Condition C5.4(a) implies that the utility of flow i strictly increases as the sending rate increases, but there is a strictly diminishing return. The assumption $U_i'(x_i) \to \infty$ as $x_i \to 0$ means that the sending rate decreases to zero as the congestion price q_i increases without bound. This assumption is only for convenience so that $U_i'^{-1}(q_i) \geq 0$ for all $q_i \geq 0$ and hence we do not need projection in (5.10a) and the dual objective function $D(p)$ below is strictly convex. It can be relaxed without affecting the main results. These are reasonable
assumptions satisfied by practical algorithms (e.g., Reno, Vegas, FAST). The other conditions are technical and required for the convergence proof. As we will see below, conditions C5.4(a)(b) guarantee that the dual algorithm (5.10) converges to the unique optimal solution of the dual problem (5.11b). Condition C5.4(c) further implies that the dual algorithm is a contraction mapping and hence converges geometrically to the optimal solution.

Consider the network utility maximization:

\[
\max_{x \geq 0} \sum_i U_i(x_i) \quad \text{subject to} \quad Rx \leq c \tag{5.11a}
\]

and its Lagrangian dual:

\[
\min_{p \geq 0} D(p) := \sum_i \left(U_i(x_i(p)) - x_i(p) \sum_l R_{li} p_l \right) + \sum_l p_l c_l \tag{5.11b}
\]

The dual objective function \(D(p)\) is convex and, since \(U_i\) are strictly concave (condition C5.4(a)), \(D(p)\) is also continuously differentiable. By the KKT Theorem 2.12 of Chapter 2.1.2, the necessary and sufficient condition for a point \((x^* := x(p^*), p^*)\) to be optimal is:

\[
p^* \geq 0, \quad x^* = \left(U_i^{-1}(R^T p^*) \right)^+, \quad Rx^* \leq c \quad \text{with} \sum_l R_{li} x_i^* = c_l \quad \text{if} \quad p_l^* > 0
\]

This coincides with the equilibrium condition for the dual algorithm (5.10) since condition C5.4(a) means that the projection on \(x^*\) is never active. Hence \((x(p^*), p^*)\) is an equilibrium point of the dual algorithms (5.10) if and only if it solves the network utility maximization (5.11a) and its dual (5.11b). The equilibrium prices \(p^*\) are generally nonunique, but the equilibrium rates \(x(p^*)\) are unique (for any \(p^*\)) since the utility functions \(U_i\) are strictly concave under condition C5.4(a). When \(R\) has full row rank then \(p^*\) is unique as well (since \(x^* > 0\)).

Define \(L := \max_{i \in N} \sum_l R_{li}\) and \(N := \max_{l \in L} \sum_i R_{li}\). In words \(L\) is the length of a longest path used by the sources, \(N\) is the number of sources sharing a most crowded link. Conditions C5.4(a)-(c) ensures that the algorithm (5.10) defines a contraction mapping, and hence converges geometrically to the unique equilibrium.

Theorem 5.8
Suppose conditions C5.4(a)(b) hold.

1. The dual algorithm (5.10) has a unique equilibrium \(p^*\) that is the unique minimizer of the dual problem (5.11b); moreover \(x(p^*)\) is the unique maximizer of the primal (5.11a).

2. Starting from any initial point \(p(0) \geq 0\), \(p(t)\) converges to \(p^*\), provided

\[
\gamma < \frac{2}{\alpha LN}
\]
3. If, in addition, C5.4(c) holds then \(p(t) \) converges geometrically to \(p^* \) provided \(\gamma > 0 \) is sufficiently small.

Proof.

Part 1. The discussion preceding the theorem proves part 1.

Part 2. We will prove in Lemmas 5.9 and 5.10 that the dual objective function \(D(p) \) satisfies conditions C5.1 and C5.2. Then Theorem 5.3 implies that any limit point \(\tilde{p} \) of the sequence \((p(t), t = 0, 1, \ldots) \) generated by the dual algorithm (5.10), if exists, is optimal, and hence it must be equal to the unique optimal point \(p^* \). Moreover it means that, provided the stepsize satisfies

\[
0 < \gamma < \frac{2}{\alpha LN}
\]

\((D(p(t)), t = 0, 1, \ldots) \) is a decreasing sequence (see the proof of Theorem 5.3). Since, from Lemma 3.16, \(D(p) \) is radially unbounded under condition C5.4(a), this implies that the sequence \(p(t) \) stays in the compact set \(\{p \mid D(p) \leq D(p(0))\} \) (see Exercise 3.2). Hence the sequence \(p(t) \) has a convergent subsequence by the Bolzano-Weierstrass theorem. Since all such subsequences converge to \(p^* \), the sequence \((p(t), t = 0, 1, \ldots) \) itself converges to the optimal point \(p^* \).

Hence we are left with verifying C5.1 and C5.2. For C5.1 the key observation is that (5.10) is a gradient projection algorithm for solving the dual problem (5.11b) with the nonempty, closed and convex feasible set \(\{p \in \mathbb{R}^L \mid p \geq 0\} \).

Lemma 5.9 Under condition C5.4(a) the dual objective function \(D(p) \) is lower bounded, continuously differentiable, and strictly convex.

Proof of Lemma 5.9. By duality \(D(p) \) is lower bounded by the optimal primal objective value which is clearly attained. Since \(U_i \) are strictly concave, \(x_i(p) \) is unique for each \(p \geq 0 \). The assumption \(\lim_{x_i \to 0} U_i'(x_i) = \infty \) implies that the maximizer \(x_i(p) \) satisfies

\[
U_i'(x_i(p)) = q_i(p)
\]

for all \(p \geq 0 \). Hence \(D(p) \) in (5.11b) is differentiable with \(\nabla D(p) = c - y(p) \). Moreover the derivative \(\nabla D(p) \) is continuous since \(U_i \) are continuously differentiable. Hence the dual algorithm (5.10) is equivalent to the gradient projection (steepest descent) algorithm

\[
p(t + 1) = [p(t) - \gamma \nabla D(p(t))]^+
\]

for solving the dual problem (5.11b).
5. GLOBAL STABILITY: GRADIENT PROJECTION METHOD

Taking the derivative of \(r_D(p) = c - y(p) \) yields the Hession of \(D \) as:

\[
\nabla^2 D(p) = -R \left[\frac{\partial x}{\partial p} (p) \right] = RB(p)R^T
\]

where \(B(p) = \text{diag}(\beta_i(p), i \in N) \) is an \(N \times N \) diagonal matrix with diagonal elements

\[
\beta_i(p) = \frac{1}{-U''_i(x_i(p))} > 0
\]

(S.12)

Since \(R \) is of full row rank, \(\nabla^2 D(p) = RB(p)R^T > 0 \) for all \(p \geq 0 \). Hence \(D(p) \) is strictly convex.

The following result shows that \(D(p) \) satisfies condition C5.2.

Lemma 5.10 Under conditions C5.4(a)(b), \(\nabla D \) is Lipschitz with

\[
\| \nabla D(p) - \nabla D(\hat{p}) \|_2 \leq \alpha LN \| p - \hat{p} \|_2
\]

for all \(p, \hat{p} \geq 0 \).

Proof of Lemma 5.10. We will show that

\[
\| \nabla D(p) - \nabla D(\hat{p}) \|_2 \leq \| \nabla^2 D(p) \|_2 \| p - \hat{p} \|_2 \leq \alpha LN \| p - \hat{p} \|_2
\]

Now

\[
\| RB(p)R^T \|_2^2 \leq \| RB(p)R^T \|_\infty \cdot \| RB(p)R^T \|_1
\]

i.e., \(\| RB(p)R^T \|_2^2 \) is upper bounded by the product of the maximum row sum and the maximum column sum of the \(L \times L \) matrix \(RB(p)R^T \). Since \(RB(p)R^T \) is symmetric, \(\| RB(p)R^T \|_1 = \| RB(p)R^T \|_\infty \), and hence

\[
\| RB(p)R^T \|_2 \leq \| RB(p)R^T \|_\infty = \max_i \sum_{l'} |RB(p)R^T|_{il'} = \max_i \sum_{l'} \beta_i(p)R_{li}
\]

Indeed, for all \(p \geq 0, w \geq 0 \), we have, for \(w \neq 0 \),

\[
w^T \nabla^2 D(p)w = w^T RB(p)R^T w \geq \left(\min_i \beta_i(p) \right) \| R^T w \|_2^2 > 0
\]

where the last inequality follows because \(U_i \) are strictly concave and \(R^T w \) is nonzero for a nonzero \(w \) since \(R \) has a full row rank.
By definition, $(\sum_i R_{ri}) \leq L$ and $\beta_i(p) \leq \alpha$. Hence

$$||RB(p)R^T||_2 \leq \alpha L \max_i \left(\sum_i R_{ri}\right) \leq \alpha LN$$

as desired. \hfill \Box

This completes the proof of part 2 of the theorem.

Part 3. We first show that $D(p)$ is not only strictly convex, but also strongly convex and hence satisfies condition C5.3. Since R has a full row rank the minimum eigenvalue λ of RR^T is positive.

Lemma 5.11 Conditions C5.4(a) and (c) imply that

$$(\nabla D(p) - \nabla D(\hat{p}))(p - \hat{p})^T \geq \alpha \lambda ||p - \hat{p}||_2^2, \quad \forall p, \hat{p} \geq 0$$

where $\lambda > 0$ is the minimum eigenvalue of RR^T.

Proof of Lemma 5.11. We claim that $\nabla^2 D(p) - \alpha \lambda I \succeq 0$ for all $p \geq 0$. Fix any $p \geq 0$.

For all $w \in \mathbb{R}^L$ we have

$$w^T \nabla^2 D(p) w = w^T RB(p)R^T w \geq \min_i \beta_i(p) w^T RR^T w \geq \alpha w^T RR^T w$$

where the second last inequality follows since $\min_i \beta_i(p) \geq \alpha$ for all $p \geq 0$ by condition C5.4(c), and the last inequality follows since $\lambda > 0$ is the smallest eigenvalue of the positive definite matrix RR^T.

Lemmas 5.11 and 5.4 imply that $D(p)$ is strongly convex. Since $D(p)$ satisfies conditions C5.1-C5.3, Theorem 5.7 implies part 3 of Theorem 5.8. This completes the proof. \hfill \Box

5.3 APPENDIX: PROOF OF LEMMA 5.2

We estimate the difference $f(x + y) - f(x)$ by considering the scalar function $g(s)$ defined by the intersection of the $f(x)$ surface with the vertical plane at x in the direction y. Fix any $x, y \in \mathbb{R}^n$ and define

$$g(s) := f(x + sy) \quad \text{for } s \in [0, 1]$$

Then

$$f(x + y) - f(x) = g(1) - g(0) = \int_0^1 g'(s)ds$$
Using
\[g'(s) = y^T \nabla f(x + sy) \]
we have
\[
\begin{align*}
 f(x + y) - f(x) &= \int_0^1 y^T \nabla f(x + sy) \, ds \\
 &= \int_0^1 (y^T \nabla f(x) + y^T (\nabla f(x + sy) - \nabla f(x))) \, ds \\
 &\leq y^T \nabla f(x) + \int_0^1 \|y\|_2 \|\nabla f(x + sy) - \nabla f(x)\|_2 \, ds \\
 &\leq y^T \nabla f(x) + \|y\|_2 \int_0^1 K \|sy\|_2 \, ds \\
 &= y^T \nabla f(x) + \frac{K}{2} \|y\|_2^2
\end{align*}
\]
where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows from condition C5.2. This proves the descent lemma.

5.4 APPENDIX: PROOF OF LEMMA 5.4

We first prove the following characterization of convex functions.

Lemma 5.12 Consider a differentiable function \(f : \mathbb{R}^n \to \mathbb{R} \).

1. \(f \) is convex if and only if for all \(x, y \in \mathbb{R}^n \)
\[
f(y) \geq f(x) + \frac{\partial f}{\partial x}(x)(y - x)
\]
(5.14)

2. If strictly inequality holds above for \(x \neq y \) then \(f \) is strictly convex.

Proof of Lemma 5.12.

1. Recall that \(f \) is convex if, given any \(x, y \in \mathbb{R}^n \) and any \(\alpha \in [0, 1] \), we have
\[
f((1 - \alpha)x + \alpha y) \leq (1 - \alpha)f(x) + \alpha f(y)
\]
Fix any \(x, y \) and \(z := x + \alpha(y - x) \). Suppose \(f \) is convex. Then for all \(\alpha \in [0, 1] \)
\[
\lim_{\alpha \downarrow 0} \frac{f(x + \alpha(y - x)) - f(x)}{\alpha} \leq \frac{\alpha(f(y) - f(x))}{\alpha} \leq f(y) - f(x)
\]
Since \(f \) is differentiable the left-hand side equals \((\nabla f(x))^T (y - x)\) and hence we have (5.14). Conversely suppose (5.14) holds. Compare the function values at the two end points \(x, y \) with that at the intermediate point \(z \):

\[
\begin{align*}
 f(x) & \geq f(z) + (\nabla f(z))^T (x - z) \\
 f(y) & \geq f(z) + (\nabla f(z))^T (y - z)
\end{align*}
\]

Multiply the first inequality by \((1 - \alpha)\), the second inequality by \(\alpha\), and sum them to get

\[
(1 - \alpha)f(x) + \alpha f(y) \geq f(z) + (\nabla f(z))^T ((1 - \alpha)(x - z) + \alpha(y - z))
\]

But \(z - x = \alpha(y - x) \) and \(y - z = (1 - \alpha)(y - x) \) and hence

\[
(1 - \alpha)(x - z) + \alpha(y - z) = -(1 - \alpha)\alpha(y - x) + \alpha(1 - \alpha)(y - x) = 0
\]

yielding

\[
(1 - \alpha)f(x) + \alpha f(y) \geq f(z)
\]

i.e., \(f \) is convex.

2. If (5.14) holds with strict inequality whenever \(x \neq y \) then the argument above goes through with strict inequalities to show strict convexity of \(f \). The converse does not hold because of the step that takes \(\lim_{\alpha \to 0} \).

\[\square\]

Proof of Lemma 5.4. We first use Lemma 5.12.2 to prove that if \(f \) satisfies condition C5.3 then \(f \) is strictly convex. As in the proof of Lemma 5.3, fix any \(x, y \in \mathbb{R}^n \) and consider the (scalar) function along the path from \(x \) to \(y \):

\[
g(s) := f(x + sy) \quad \text{for} \ s \in [0,1]
\]

Then

\[
f(x + y) - f(x) = \int_0^1 g'(s)ds = \int_0^1 y^T \nabla f(x + sy)ds
\]

\[
= \int_0^1 (y^T \nabla f(x) + y^T (\nabla f(x + sy) - \nabla f(x)))ds
\]

\[
\geq y^T \nabla f(x) + \int_0^1 \frac{1}{s} \alpha \|sy\|_2^2 ds
\]

\[
= y^T \nabla f(x) + \frac{\alpha}{2} \|y\|_2^2
\]
5. GLOBAL STABILITY: GRADIENT PROJECTION METHOD

where the inequality follows from C5.3. Since \(\alpha > 0 \), Lemma 5.12.2 implies the strict convexity of \(f \). \(^4\)

We now show that if \(\nabla^2 f(x) \succeq \alpha I \) for all \(x \in \mathbb{R}^n \) then \(f \) is strongly convex, i.e., \(f \) satisfies C5.3. Fix any \(x, y \) and let

\[
h(s) := \nabla f(x + s(y - x))^T (y - x)
\]

Then

\[
h'(s) = (y - x)^T \nabla^2 f(x + s(y - x)) (y - x)
\]

and

\[
(y - x)^T \nabla^2 f(x) (y - x) = \int_0^1 h'(s) ds
\]

\[
\geq \alpha \|y - x\|^2_2
\]

where the inequality follows from \(\nabla^2 f(x) \succeq \alpha I \). Hence \(f(x) \) is strongly convex.

Conversely suppose \(f \) is strongly convex. To estimate \(\nabla^2 f(x) \) we have for any \(x, y \in \mathbb{R}^n \)

\[
y^T \nabla^2 f(x) y = \lim_{\lambda \to 0} \frac{1}{\lambda} \left(\frac{\partial f}{\partial x} (x + \lambda y) - \frac{\partial f}{\partial x} (x) \right) y
\]

\[
\geq \lim_{\lambda \to 0} \frac{1}{\lambda^2} (\alpha \|\lambda y\|^2_2) = \alpha \|y\|^2_2
\]

where the inequality follows from the strong convexity of \(f \). Hence \(\nabla^2 f(x) \succeq \alpha I \) as desired. This completes the proof of Lemma 5.4.

\[\square\]

5.5 BIBLIOGRAPHICAL NOTES

Materials in Chapter 5.1 on convergence theorems are mainly taken from [8]. The application of these results to proving the convergence of the dual algorithm (Theorem 5.8.1 and 2) is from [35]; the extension to gradient projection algorithm as a contraction mapping (Theorem 5.8.3) is new. We only consider the synchronous case here, but the results extend to the asynchronous case where sources and links may update at different times with different frequencies and where packets may be lost, experience different delays, or arrive out of order; see [35].

\(^4\)If \(f \) satisfies both C5.2 (Lipschitz \(\nabla f \) with parameter \(K \)) and C5.3 (strong convexity with parameter \(\alpha \)) then the proof here and that of Lemma 5.2 show that

\[
y^T \nabla f(x) + \frac{\alpha}{2} \|y\|^2_2 \leq f(x + y) - f(x) \leq y^T \nabla f(x) + \frac{K}{2} \|y\|^2_2
\]
CHAPTER 6

Local stability with delay

In Chapters 3 to 5 we study global stability of congestion control algorithms assuming there is no feedback delay, i.e., when a source changes its sending rate the effect immediately reaches all the links in its path, and when a link updates its congestion price the new price is immediately sensed at all sources using that link. This is of course unrealistic. In this chapter we incorporate feedback delay into our model and study the stability of the closed-loop system. Global stability of nonlinear systems in the presence of feedback delay is generally very difficult. Our goal is more modest: we will study local stability around the equilibrium point in the presence of feedback delay using a linearized model.

6.1 LINEAR MODEL WITH FEEDBACK DELAY

We are interested in the stability of the primal algorithm or the dual algorithm specified as follows:

Primal algorithm: \(\dot{x} = f(x(t), q(t)), \quad p = g(y(t)) \) (6.1a)

Dual algorithm: \(\dot{p} = g(y(t), p(t)), \quad x = f(q(t)) \) (6.1b)

where

\[q(t) := R^T p(t) \quad \text{and} \quad y(t) := Rx(t) \] (6.1c)

Hence there is dynamics either in the sources or in the links, but not both. Suppose \((x^*, p^*)\) is an equilibrium point for the primal or dual algorithm, i.e.

Primal algorithm: \(0 = f(x^*, q^*), \quad p^* = g(y^*) \)

Dual algorithm: \(0 = g(y^*, p^*), \quad x^* = f(q^*) \)

where \(q^* = R^T p^*\) and \(y^* = Rx^*\). In terms of the perturbation variables

\[\bar{x}(t) := x(t) - x^* \quad \text{and} \quad \bar{p}(t) := p(t) - p^* \]

the linearized model of the primal algorithm (6.1a) around the equilibrium \((x^*, p^*)\) is:

\[\dot{x} = \frac{\partial f}{\partial x}(x^*, q^*) \bar{x}(t) + \frac{\partial f}{\partial q}(x^*, q^*) \bar{q}(t), \quad \bar{p} = \frac{\partial g}{\partial y}(y^*) \bar{y}(t) \] (6.2a)
150 6. LOCAL STABILITY WITH DELAY

The linearized model of the dual algorithm (6.1b) around the equilibrium \((x^*, p^*)\) is:

\[
\dot{\tilde{p}} = \frac{\partial g}{\partial y}(y^*, p^*) \tilde{y}(t) + \frac{\partial g}{\partial p}(y^*, p^*) \dot{\tilde{p}}(t), \quad \dot{x} = \frac{\partial f}{\partial x}(x^*) \tilde{x}(t) \tag{6.2b}
\]

Note that the updates in (6.2) only involve local variables and hence the equations contain no feedback delay. The feedback delay is modeled by replacing (6.1c) with:

\[
\tilde{q}_i(t) := \sum_l R_{li} \tilde{p}_l(t - \tau^b_{li}) \quad \text{and} \quad \tilde{y}_i(t) := \sum_i R_{li} \tilde{x}_i(t - \tau^f_{li})
\]

or in vector form:

\[
\tilde{q}(t) := R^T \tilde{p}(t - \tau^b) \quad \text{and} \quad \tilde{y}(t) := R \tilde{x}(t - \tau^f) \tag{6.2c}
\]

Here \(\tau^b_{li}\) models the backward delay from link \(l\) to source \(i\) and means that a change in link price \(p_l\) at time \(t - \tau^b_{li}\) is sensed at source \(i\) only at time \(t\). Similarly \(\tau^f_{li}\) models the forward delay from source \(i\) to link \(l\) and means that a change in sending rate \(x_i\) at time \(t - \tau^f_{li}\) affects the input traffic at link \(l\) only at time \(t\). These feedback delays are assumed constant. We will make use of a key assumption that for all sources \(i\)

\[\tau^f_{li} + \tau^b_{li} = \tau_i \quad \text{for all links} \ l \ \text{in} \ i\text{'s path}
\]

i.e., for each source \(i\), the sum of forward delay to a link in its path and the backward delay from that link is the same for every link in its path. This sum is the round-trip time \(\tau_i\) and depends only on the source \(i\). This assumption holds, e.g., if all the data packets and their ack packets of a TCP connection follow the same path and the congestion level on the path remains unchanged over the timescale of interest.

We are interested in the stability of the linear delayed system (6.2). To this end we will first explain the Nyquist stability theory of linear time-invariant system with delay and then apply the theory to study the local stability of (6.2).

6.2 NYQUIST STABILITY THEORY

We will model congestion control algorithm as a feedback system with time delay consisting of interconnection of component systems each characterized by a transfer function, as shown in Figure 6.1. We will derive sufficient conditions in terms of protocol parameters and network delays that guarantee the asymptotic stability of the closed-loop system. The main tool is the Nyquist stability theory that expresses the stability condition of a closed-loop system in terms of properties of its open-loop component systems. In this section we summarize various concepts and linear system results that lead to the Nyquist stability criterion for linear time-invariant (LTI) multi-input-multi-output systems without time delay. The stability criterion however extends to LTI multi-input-multi-output system with time delay though its proof is beyond the scope of this monograph.
6.2. NYQUIST STABILITY THEORY

\[
y(t) = G(s)x(t) + R(s)\tilde{p}(s) - H(s)x(t) - Kq(t) - q(t)H(s)
\]

Figure 6.1: A delayed linear system model of a congestion control algorithm.
6. LOCAL STABILITY WITH DELAY

6.2.1 LTI SYSTEM, TRANSFER FUNCTION AND REALIZATION

An multi-input multi-output (MIMO) LTI system can be specified by its input-output behavior through a function (operator) that maps an input signal to an output signal. Such a function can be realized by a state-space implementation. In this subsection we summarize these concepts.

We start with the input-output description. An m-input p-output LTI system can be specified by an operator h that maps an input signal u in an appropriate space to an output signal y in an appropriate space according to:

$$y(t) = \int_0^t h(\tau)u(t-\tau)d\tau, \quad t \geq 0$$

Here, for each $t \geq 0$, the matrix $h(t) \in \mathbb{R}^{p \times m}$, input $u(t) \in \mathbb{R}^m$, and output $y(t) \in \mathbb{R}^p$. Note that the output $y(t)$ at time t depends not just on the input value $u(t)$ at time t, but the function $u(\tau)$ over $[0, t]$. Indeed the output $y(t)$ is the weighted sum (integral) of the past input $u(t-\tau)$, with input that is τ time in the past weighted by the matrix $h(\tau)$. The function h is called an impulse response of the LTI system because of the following reason. Consider an input signal with a single impulse in the jth component, i.e., $u(t) := \delta(t)e_j$ where $\delta(t)$ is the delta function and e_j is the unit vector with an 1 at the jth place and 0 everywhere else. The ith component $y_i(t)$ of the output at time t is:

$$y_i(t) = \int_0^t h_{ij}(\tau)\delta(t-\tau)d\tau = \int_0^t h_{ij}(\tau)\delta(\tau-t)d\tau = h_{ij}(t)$$

i.e., $h_{ij}(t)$ is the system response (output) $y_i(t)$ to an impulse at input u_j.

An equivalent specification of the LTI system is the Laplace transform matrix $H(s) \in \mathbb{C}^{p \times m}$ of its impulse response $h(t)$. We call $H(s)$ its transfer function. It maps the Laplace transform $u(s) \in \mathbb{C}^m$ of the input $u(t)$ to the Laplace transform $y(s) \in \mathbb{C}^p$ of its output $y(t)$ over its region of convergence:

$$y(s) = H(s)u(s)$$

We will model below congestion control by interconnection of transfer functions. Henceforth we will focus on transfer functions $H(s)$ rather than its impulse response $h(t)$.

1In general

$$y(t) = \int_{-\infty}^\infty h(\tau)u(t-\tau)d\tau, \quad t \geq 0$$

If the LTI system is causal, i.e., $h(t) = 0$ for $t < 0$, then $y(t) = \int_0^\infty h(\tau)u(t-\tau)d\tau$. If the input signal $u(t)$ is also causal, i.e., $u(t) = 0$ for $t < 0$, then $y(t) = \int_0^t h(\tau)u(t-\tau)d\tau$.

2We abuse notation to use u, y to denote both the signals in the time domain and their Laplace transforms.
A transfer function $H(s)$ can be realized by a state-space implementation of the form:

\begin{align}
\dot{x} &= Ax(t) + Bu(t), \quad t \geq 0 \\
y &= Cx(t), \quad t \geq 0
\end{align}

where $x(t) \in \mathbb{R}^n$ is the state of the system, and $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$ are real matrices. We refer to such a realization by its matrices (A, B, C). A transfer function $H(s)$ can be realized by different state-space implementations with different matrices (A, B, C). These realizations have the same input-output behavior but can have different internal behavior (see examples below). For a realization (A, B, C) the impulse response $h(t)$ and its transfer function $H(s)$ are

$$h(t) = Ce^{At}B \quad \text{and} \quad H(s) = C(sI - A)^{-1}B$$

Example 6.1 Single integrator. A single integrator $\dot{y} = u(t)$ has a transfer function $H(s) = 1/s$. Its impulse response is the step function $h(t) = 1$ for $t \geq 0$ and 0 for $t < 0$. It can be realized by the following state-space implementation:

$$\dot{x} = u(t), \quad y(t) = x(t)$$

In the Laplace domain this is $sx(s) = u(s)$ and $y(s) = x(s)$, yielding the transfer function $H(s) = 1/s$. The same transfer function can also be realized by a different implementation:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(t), \quad y = [1 \ 0] x(t)$$

In Laplace domain this is

$$sx(s) = Ax(s) + Bu(s), \quad y(s) = Cx(s)$$

where

$$x(s) := \begin{bmatrix} x_1(s) \\ x_2(s) \end{bmatrix}, \quad A := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad B := \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad C := [1 \ 0]$$

yielding the transfer function

$$H(s) = y(s)/u(s) = C(sI - A)^{-1}B = \frac{1}{s}$$

Even though both realizations have the same input-output behavior they have different internal properties. We will comment on this later.
Example 6.2 Single-input single-output (SISO) system. Consider the transfer function of a single-input single-output system

\[H(s) := \frac{y(s)}{u(s)} = \frac{s - 1}{(s + 1)(s + 2)} \]

Since \((s^2 + 3s^2 + 2)y(s) = (s - 1)u(s)\), this represents the following LTI system in the time domain:

\[\ddot{y} + 3\dot{y} + 2y(t) = \dot{u} - u(t) \]

Choose a realization \((A, B, C)\) with \(n = 2\) states:

\[A := \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B := \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad C := \begin{bmatrix} c_1 & c_2 \end{bmatrix} \]

Then

\[\frac{s - 1}{(s + 1)(s + 2)} = C(sI - A)^{-1}B = \frac{1}{\det(sI - A)} \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} s - a_{22} & -a_{12} \\ -a_{21} & s - a_{11} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \]

where

\[\det(sI - A) = s^2 - (a_{11} + a_{22})s + (a_{11}a_{22} - a_{12}a_{21}) = (s + 1)(s + 2) \]

Hence \(a_{11} + a_{22} = -3, a_{11}a_{22} - a_{12}a_{21} = 2\) and, for \(s\) not equal to the eigenvalues of \(A\),

\[\begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} s - a_{22} & -a_{12} \\ -a_{21} & s - a_{11} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = s - 1 \]

There are many choices of \((A, B, C)\) that satisfy these conditions. Here is one example

\[A := \begin{bmatrix} -4 & -2 \\ 3 & 1 \end{bmatrix}, \quad B := \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C := \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{6.4} \]

with the state-space implementation:

\[
\begin{align*}
\dot{x}_1 &= -4x_1(t) - 2x_2(t) + u(t) \\
\dot{x}_2 &= 3x_1(t) + x_2(t) \\
y(t) &= x_1(t)
\end{align*}
\]

\[\square \]

Example 6.3 Proper transfer functions. Consider again the transfer function in Example 6.2:

\[H(s) := \frac{y(s)}{u(s)} = \frac{s - 1}{(s + 1)(s + 2)} \]
Another method to design a state-space realization is to observe that the transfer function $H(s)$ is strictly proper, i.e., the degree of the numerator is less than that of the denominator. Then we can always write $H(s)$ as two integrators:

$$H(s) = \frac{s - 1}{(s + 1)(s + 2)} = \frac{-2}{s + 1} + \frac{3}{s + 2}$$

as shown in the block diagram in Figure 6.2(a). This can be implemented in state space as:

$$\begin{align*}
\dot{x}_1 &= -x_1(t) - 2u(t) \\
\dot{x}_2 &= -2x_2(t) + 3u(t) \\
y(t) &= x_1(t) + x_2(t)
\end{align*}$$

Notice that $y(t)$ depends only on the state $(x_1(t), x_2(t))$, not directly on the input $u(t)$. This is the consequence of the transfer function $H(s)$ being strictly proper. When $H(s)$ is proper but not strictly proper, i.e., when the numerator and denominator of $H(s)$ have the same degree, then $y(t)$ depends on $u(t)$ directly, as the next example shows.

Consider the transfer function

$$H(s) = \frac{c(s - b_1)(s - b_2)}{(s - a_1)(s - a_2)}$$

where $a_i \neq b_j$, i.e., the numerator and the denominator are co-prime. Decompose the rational function:

$$H(s) = \frac{c((s - a_1) + \Delta_1)((s - a_2) + \Delta_2)}{(s - a_1)(s - a_2)} = c + \frac{c\Delta_1}{s - a_1} + \frac{c\Delta_2}{s - a_2} + \frac{c\Delta_1\Delta_2}{(s - a_1)(s - a_2)}$$
where $\Delta_1 := a_1 - b_1$ and $\Delta_2 := a_2 - b_2$. Hence $H(s)$ can be represented by the block diagram in Figure 6.2(b). The last block is second-order, corresponding to

\[\ddot{x}_3 - (a_1 + a_2)x_3 + a_1a_2x_3(t) = c\Delta_1\Delta_2u(t) \]

and requires two states (x_3, x_4) to implement:

\[
\begin{align*}
\dot{x}_3 &= x_4(t) \\
\dot{x}_4 &= (a_1 + a_2)x_4(t) - a_1a_2x_3(t) + c\Delta_1\Delta_2u(t)
\end{align*}
\]

Hence a state-space realization of $H(s)$ is:

\[
\dot{x} = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

where $x(t) := (x_1(t), x_2(t), x_3(t), x_4(t))$ and

\[
A := \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -a_1a_2 & a_1 + a_2 \end{bmatrix}, \quad B := \begin{bmatrix} \Delta_1 \\ \Delta_2 \\ 0 \\ \Delta_1\Delta_2 \end{bmatrix}, \quad C^T := \begin{bmatrix} c \\ c \\ c \end{bmatrix}, \quad D := c
\]

The impulse response is

\[h(t) = Ce^{At}B + D\delta(t), \quad t \geq 0 \]

where $\delta(t)$ is the delta function.

\[\square \]

Example 6.4 MIMO system. Consider the transfer function of a 2-input 2-output system:

\[
H(s) := \begin{bmatrix} \frac{s-1}{(s+1)(s+2)} & \frac{s+1}{(s-1)(s+2)} \\ 0 & \frac{s-1}{s} \end{bmatrix}
\]

The input-output relation in the Laplace domain is

\[
\begin{align*}
y_1(s) &= \frac{s-1}{(s+1)(s+2)} u_1(s) + \frac{s+1}{(s-1)(s+2)} u_2(s) \\
y_2(s) &= \frac{s-1}{s} u_2(s)
\end{align*}
\]

or equivalently

\[
\begin{align*}
(s^3 + 2s^2 - s - 2) y_1(s) &= (s^2 - 2s + 1) u_1(s) + (s^2 + 2s + 1) u_2(s) \\
(\frac{1}{s^2} - 2s + 1) y_2(s) &= u_2(s)
\end{align*}
\]
This is in the time domain

\[
\begin{align*}
\ddot{y}_1 + 2\dot{y}_1 - \dot{y}_1 - 2y_1(t) &= \ddot{u}_1 - 2\dot{u}_1 + u_1(t) + \ddot{u}_2 + 2\dot{u}_2 + u_2(t) \\
\dot{y}_2 &= u_2(t)
\end{align*}
\]

It can be implemented in state space using the same method in Example 6.3 (see Exercise 6.5).

6.2.2 STABILITY OF LTI SYSTEM

In this subsection we discuss two notions of stability and explain their relationship. The first one is associated with a state-space realization \((A, B, C)\) and the second with an input-output description through a transfer function \(H(s)\). Both will be used later in analyzing the stability of congestion control algorithms.

Given a realization \((A, B, C)\) of an LTI system we are interested in the asymptotic stability of the origin (equilibrium) when the input is zero, i.e., the asymptotic stability of the equilibrium point of the autonomous (undriven) system:

\[
\dot{x} = Ax(t), \quad t \geq 0 \quad (6.5)
\]

We say that the origin of (6.5) is **exponentially stable** if, there exist \(\alpha > 0\) and \(\beta \geq 0\) such that, for any initial point \(x(0) := x_0\), the solution \((x(t), t \geq 0)\) of (6.5) satisfies

\[
\|x(t)\| \leq \beta e^{-\alpha t} \|x_0\|, \quad t \geq 0
\]

i.e., the trajectory \(x(t)\) converges exponentially (geometrically) to the origin. For LTI systems the origin is exponentially stable if and only if it is asymptotically stable as defined in Definition 3.1 of Chapter 3.\(^3\) We will hence use either stability notion interchangeably for LTI systems.

Theorem 6.5 Asymptotic stability. *The origin of (6.5) is asymptotically stable if and only if all eigenvalues \(\lambda(A)\) of the system matrix \(A\) are in the open left-half plane (LHP).*

In this case we say that the system matrix \(A\) is **stable** or **Hurwitz**.

Example 6.6 For the first realization \(\dot{x} = u(t)\) of the integrator in Example 6.1 the undriven system is \(\dot{x} = 0 = Ax(t)\) with \(A = 0\). Its eigenvalue is 0 and hence the origin is not

\(^3\)If an LTI system is asymptotically stable then it is globally asymptotically stable. We will use asymptotic stability instead of global asymptotic stability because our linear system originates from the linearization of a nonlinear system and therefore describes local behavior around an equilibrium.
6. LOCAL STABILITY WITH DELAY

asymptotically stable \((x(t) = x(0)\) for all \(t \geq 0\)). For the second realization the undriven system \(\dot{x} = Ax(t)\) has a system matrix

\[
A = \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}
\]

with eigenvalues 0 and 1, and hence not asymptotically stable either. For the realization \((A, B, C)\) in Example 6.2, the eigenvalues of the system matrix \(A\) are \(-1\) and \(-2\). Hence the origin is asymptotically stable.

Asymptotic stability is an internal property about the state \(x(t)\) of the system in terms of the system matrix \(A\). In contrast the second stability notion pertains to the input-output behavior in terms of the transfer function \(H(s)\), as we now explain.

For any signal \(u : [0, \infty) \to \mathbb{R}^m\) we define its \(p\)-norm for \(p = 1, 2, \infty\) as:

\[
\|u\|_1 := \int_0^\infty \|u(t)\|_1 dt = \int_0^\infty \sum_i |u_i(t)| dt
\]

\[
\|u\|_2 := \left(\int_0^\infty \|u(t)\|_2^2 dt \right)^{1/2} = \left[\int_0^\infty \sum_i u_i^2(t) dt \right]^{1/2}
\]

\[
\|u\|_\infty := \sup_{t \geq 0} \|u(t)\|_\infty = \sup_{t \geq 0} \max_i |u_i(t)|
\]

Note that \(\|u(t)\|_p\) is a norm of a vector in \(\mathbb{R}^m\) while \(\|u\|_p\) is norm of a signal in an appropriate function space.

Consider a causal LTI system specified by its impulse response

\[
y(t) = \int_0^t h(\tau) u(t - \tau) d\tau, \quad t \geq 0 \quad (6.6a)
\]

or its transfer function

\[
y(s) = H(s)u(s) \quad (6.6b)
\]

Definition 6.7 The LTI system (6.6) is \(L_p\)-stable for \(p = 1, 2, \infty\), if there exists a finite \(\gamma \in \mathbb{R}\) such that

\[
\|y\|_p \leq \gamma \|u\|_p
\]

for every input \(u\).

Hence an LTI system is \(L_p\)-stable if an input of finite \(p\)-norm \(\|u\|_p\) produces an output
of finite p-norm $\|y\|_p$. In particular the case with $p = \infty$ is referred to as bounded input bounded output (BIBO) stability. For LTI systems of finite dimension, BIBO stability is equivalent to L_p-stability.

Consider again the following LTI system in state-space form:

$$
\dot{x} = Ax(t) + Bu(t), \quad t \geq 0 \tag{6.7a}
$$

$$
y = Cx(t), \quad t \geq 0 \tag{6.7b}
$$

with impulse response $h(t)$ and transfer function $H(s)$ given by

$$
h(t) = Ce^{At}B \quad \text{and} \quad H(s) = C(sI - A)^{-1}B \tag{6.7c}
$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$. Before we characterize BIBO stability in terms of the transfer function $H(s)$, we need to define poles of a transfer function matrix.

Consider first SISO systems with $p = m = 1$. Without time delay, an LTI system is finite dimensional and its transfer function $H(s)$ is a rational function (for s in its region of convergence in \mathbb{C}):

$$
H(s) = \frac{N(s)}{D(s)}
$$

where $N(s)$ and $D(s)$ are polynomials of s without common factors (co-prime). $H(s)$ is called proper if the degree of $N(s)$ is no more than the degree of $D(s)$; it is called strictly proper if the degree of $N(s)$ is smaller than that of $D(s)$. See Example 6.3. The transfer function of a delayed linear system is infinite dimensional and its transfer function $H(s)$ is not a rational function. $H(s)$ is called proper if there exists $\alpha > 0$ such that

$$
\sup \{ H(s) \mid s \in \mathbb{C}, \ Re \ s > \alpha \} < \infty
$$

$H(s)$ is called strictly proper if

$$
\lim_{\alpha \to \infty} \sup \{ H(s) \mid s \in \mathbb{C}, \ Re \ s > \alpha \} = 0
$$

An LTI system is causal if and only if it is proper. For instance $H(s) = e^{-\tau s}$ is a transfer function of the time-delay system $y(t) = u(t - \tau)$ and it is strictly proper.

For a SISO system in (6.7) with $p = m = 1$ we have

$$
H(s) = \frac{C \text{adj}(sI - A)B}{\det(sI - A)} =: \frac{N(s)}{D(s)}
$$

where $\text{adj}(sI - A)$ is the adjoint matrix and $N(s), D(s)$ are co-prime. The determinant $\det(sI - A)$ in the denominator is a polynomial of degree n (the coefficient of s^n is 1). All entries of the adjoint matrix $\text{adj}(sI - A)$ are polynomials of degree less than n. Hence the numerator of $H(s)$ is a polynomial of degree less than n, and $H(s)$ is strictly proper.
implies in particular that $H(s) \to 0$ as $|s| \to \infty$. A pole of $H(s)$ is a root of its denominator $D(s)$, i.e., a solution of $D(s) = 0$. A zero of $H(s)$ is a root of its numerator $N(s)$.

For an MIMO system (6.7) without time delay, with $m \geq 1$ inputs and $p \geq 1$ outputs, the transfer function is an $p \times m$ complex matrix

$$H(s) = \frac{1}{\det(sI - A)} \text{adj}(sI - A)B$$

(6.8)

where each entry of $H(s)$ is a rational function of the form:

$$H_{ij}(s) = \frac{\prod_{k=1}^{l}(s - z_k)}{\prod_{k=1}^{n}(s - \lambda_k)}$$

where λ_k are all eigenvalues of A, counting multiplicity. As explained above each entry of the matrix $\text{adj}(sI - A)B$ is a polynomial of degree less than n, i.e., $l < n$. Hence every entry $H_{ij}(s)$ is a strictly proper rational function. This implies that $H(s)$ converges to the zero matrix as $|s| \to \infty$.\(^4\) Let

$$H_{ij}(s) = \frac{N_{ij}(s)}{D_{ij}(s)}$$

where $N_{ij}(s)$ and $D_{ij}(s)$ are co-prime, i.e., all common factors $s - z_{k_1} = s - \lambda_{k_2}$ have been canceled (pole-zero cancellation).

Definition 6.8 The transfer function matrix $H(s)$ in (6.8) has a pole at $s = \lambda$ if some of the entries of $H(s)$ has a pole at $s = \lambda$, i.e., $D_{ij}(\lambda) = 0$ for some ij.

From (6.8) we have

$$\{ \text{poles of } H(s) \} \subseteq \{ \text{eigenvalues of } A \}$$

(6.9)

There may be eigenvalues of A that are not poles of $H(s)$ because of pole-zero cancellation. The definition of zeros of a transfer function matrix $H(s)$ is subtle. Roughly $H(s)$ has a zero at $s = z$ if the rank of $H(s)$ drops at $s = z$. This is complicated by the fact that $s = z$ can be both a zero and a pole of $H(s)$.

\(^4\)Instead of (6.7), for the system

$$\dot{x} = Ax(t) + Bu(t), \quad y = Cx(t) + Du(t)$$

with nonzero matrix D, the impulse response $h(t)$ and transfer function $H(s)$ are given by

$$h(t) = Ce^{At}B + D\delta(t), \quad H(s) = C(sI - A)^{-1}B + D$$

The transfer function $H(s)$ is proper but not strictly proper and $H(s) \to D$ as $|s| \to \infty$. See Example 6.3.
The next result characterizes L_p-stability and BIBO stability in terms of the poles of the transfer function $H(s)$ and eigenvalues of the system matrix A. It implies in particular that, for finite dimensional LTI system, BIBO stability is equivalent to L_p-stability.

Theorem 6.9 L_p-stability. Consider the finite dimensional LTI system (6.7) with transfer function $H(s)$ and system matrix A.

1. For any $p = 1, 2, \infty$, the system (6.7) is L_p-stable if and only if all the poles of $H(s)$ are in the open LHP.

2. If the origin of the system (6.7) is asymptotically stable then the system is BIBO stable.

By Theorem 6.5 the origin is asymptotic stability if and only if all the eigenvalues of A are in the open LHP. This implies Theorem 6.9.2. As explained above (see (6.8)), the set of poles of $H(s)$ can be a strict subset of the eigenvalues of A when there is pole-zero cancellation. This is why the converse of Theorem 6.9.2 generally does not hold, i.e., there are systems that are BIBO stable but their realizations are not asymptotically stable. For an important class of realizations (A, B, C) the poles of $H(s)$ coincide with the eigenvalues of A and such a system is BIBO stability if and only if its origin is asymptotically stable, as we now explain.

We will call a realization (A, B, C) *controllable* if the rank of the following controllability matrix

$$
\begin{bmatrix}
B & AB & A^2B & \cdots & A^{n-1}B
\end{bmatrix}
$$

is n, and *observable* if the rank of the following observability matrix

$$
\begin{bmatrix}
C \\
CA \\
CA^2 \\
\vdots \\
CA^{n-1}
\end{bmatrix}
$$

is n. If (A, B) is controllable then, given any initial state x_0, any target state x_1, and any time interval $[t_0, t_1]$, there exists an input $u(t)$ over $[t_0, t_1]$ that will drive the state from x_0 at time t_0 to x_1 at time t_1. If (A, C) is observable then any initial state x_0 can be uniquely determined from input/output measurements (i.e., measurements of $u(t), y(t)$ and their derivatives) over any finite time interval. If (A, B, C) is both controllable and observable then it is called a *minimal realization*. A minimal realization has no internal modes that are uncontrollable by applying an appropriate input nor internal modes that
are unobservable from input/output measurements. In this case $H(s)$ has no pole-zero cancellation and instead of (6.9) we have

$$\{ \text{poles of } H(s) \} = \{ \text{eigenvalues of } A \}$$

We hence have the following corollary of Theorem 6.9.

Corollary 6.10 Stability of minimal realization. Consider the finite dimensional LTI system (6.7) with transfer function $H(s)$ and a realization (A, B, C). If the realization is minimal, then the following are equivalent:

1. For any $p = 1, 2, \infty$, the system (6.7) is L_p-stable (including BIBO stability).
2. The origin of the system (6.7) is asymptotically stable.
3. All the poles of $H(s)$ are in the open LHP.
4. All eigenvalues of A are in the open LHP.

Eigenvector dyadic expansion of $H(s)$ with diagonalizable A. We close this subsection by exhibiting the particularly simple structure of $H(s)$ and its poles in the special case where A is diagonalizable. A complex matrix $M \in \mathbb{C}^{n \times n}$ is called *diagonalizable* if it is similar to a diagonal matrix $\Lambda = \text{diag}(\lambda_i)$, i.e., there exists a nonsingular matrix V such that

$$V^{-1}MV = \Lambda$$

From $MV = V\Lambda$ we see that λ_i are eigenvalues of M with the columns v_i of V as the corresponding eigenvectors. Hence M is diagonalizable if and only if it has an eigenbasis, i.e. a basis consisting of eigenvectors.

Lemma 6.11 Suppose $M \in \mathbb{C}^{n \times n}$ is diagonalizable. Then

1. M has a basis of right eigenvectors (v_1, \ldots, v_n) such that $Mv_i = \lambda_i v_i$. Let $V \in \mathbb{C}^{n \times n}$ with v_i as its columns.
2. M has a basis of left eigenvectors (u_1, \ldots, u_n) such that $u_i^* M = \lambda_i u_i^*$. Let $U \in \mathbb{C}^{n \times n}$ with u_i as its columns.
3. The left and right eigenvectors are orthogonal, i.e. $u_i^* v_j = 0$ if $i \neq j$ and 1 if $i = j$ or more compactly $U^* V = I$.
4. The identity matrix I has the eigenvector dyadic expansion $I = \sum_i v_i u_i^* = VU^*$.
5. The matrix M has the eigenvector dyadic expansion

$$M = \sum_i \lambda_i v_i u_i^* = VAU^*$$

6. If M is nonsingular then $\lambda_i \neq 0$ and

$$M^{-1} = \sum_i (\lambda_i)^{-1} v_i u_i^* = V\Lambda^{-1}U^*$$

7. Every vector $x \in \mathbb{C}^n$ can be expressed in terms of the basis V as:

$$x = \sum_i v_i u_i^* x = \sum_i a_i v_i$$

where $a_i = u_i^* x$ is the projection of x onto the left eigenvector space. Every $y = Mx$ can be expressed in terms of V as:

$$y = M\left(\sum_i a_i v_i\right) = \sum_i \lambda_i a_i v_i$$

In particular Lemma 6.11.3–4 imply that V and U^* are inverses of each other. When its eigenvectors do not form a basis, a matrix M is not diagonalizable. It can still be transform into a block diagonal matrix called the Jordan form. Indeed any matrix $M \in \mathbb{C}^{n \times n}$ can be uniquely written as

$$M = M_1 + M_2$$

such that M_1 is diagonalizable and M_2 is nilpotent of index m. Moreover M and M_1 have identical eigenvalues and M_1, M_2 commute.

We now apply these properties to transfer function $H(s) := C(sI - A)^{-1}B$, for the case where $A \in \mathbb{R}^{n \times n}$ is diagonalizable with eigenvalues $\lambda_i \in \mathbb{C}$ and the corresponding left and right eigenvectors (u_i, v_i), $i = 1, \ldots, n$. Then $(sI - A)$ is diagonalizable and has eigenvalues $(s - \lambda_i)$. Moreover, from Lemma 6.11.4–6, $(sI - A)^{-1}$ has a unique eigenvector dyadic expansion (V and U^* are inverses of each other):

$$(sI - A)^{-1} = (sVU^* - VAU^*)^{-1} = V(sI - \Lambda)U^* = \sum_i (s - \lambda_i)^{-1} v_i u_i^*$$

Hence

$$H(s) = \sum_i (s - \lambda_i)^{-1} (Cv_i) \cdot (u_i^* B)$$

A matrix A is nilpotent of index m if m is the smallest integer such that A^m is the zero matrix.
6. LOCAL STABILITY WITH DELAY

Since \((Cv_i) \cdot (u_i^* B)\) is a dyad with column \(Cv_i\) and row \(u_i^* B\), \((s - \lambda_i)^{-1}\) disappears from the sum if and only if either \(Cv_i\) is the zero column vector or \(u_i^* B\) is the zero row vector.

Theorem 6.12 Consider the transfer function \(H(s) := C(sI - A)^{-1}B\) and suppose \(A \in \mathbb{R}^{n \times n}\) is diagonalizable with eigenvalues \(\lambda_i \in \mathbb{C}\) and the corresponding left and right eigenvectors \((u_i, v_i)\), \(i = 1, \ldots, n\). Then \(\lambda \in \mathbb{C}^n\) is a pole of \(H(s)\) if and only if all the following three conditions hold:

1. \(\lambda\) is an eigenvalue of \(A\), i.e., \(\lambda = \lambda_i\) for some \(i\).
2. \(Cv_i\) is not the zero column vector.
3. \(u_i^* B\) is not the zero row vector.

6.2.3 FEEDBACK SYSTEM AND LOOP FUNCTION

We are interested in the stability of feedback connection of component dynamical systems. Nyquist stability theory provides us with a method to assess the stability of the closed-loop system in terms of the stability of the component systems in open loop. A central concept in is the loop function, which we now explain.

Consider a general feedback loop, as shown in Figure 6.3(a), consisting of the interconnection of \(k\) LTI systems \((A_i, B_i, C_i)\) with corresponding transfer functions

\[
H_i(s) := C_i(sI - A_i)^{-1}B_i, \quad i = 1, \ldots, k
\]

Inputs \(u_i\) are inserted through a transfer function \(G_i\) at the input of \(H_i\); these \(u_i\) can represent control inputs, reference signals, disturbances, or measurement noises. Since the system is LTI, the effect on the output \(y\) of all inputs \(u_1, u_2, \ldots, u_k, u_{k+1}\) is the superposition of the effects of individual inputs when all other inputs are zero (going round the loop from the output \(y\) towards the inputs in the opposite direction of the signal flow; see Figure 6.3):

\[
H_k \cdots H_1 G_1 u_1, \ H_k \cdots H_2 G_2 u_2, \ldots, \ H_k G_k u_k, \ G_{k+1} u_{k+1}
\]

To write down the effect of the output feedback, we break the loop at the output \(y\) to obtain an “open-loop” system shown in Figure 6.3(b). The effect on \(y\) of the output feedback is (negative sign for negative feedback):

\[-H_k \cdots H_1 y\]

By superposition of linear systems we have

\[
y = - \underbrace{H_k \cdots H_1}_{\text{loop function } L} y + \sum_{i=1}^{k} H_k \cdots H_i G_i u_i + G_{k+1} u_{k+1}
\]
Figure 6.3: Loop function of a feedback system.
Hence the transfer functions from inputs u_i to output y can be read off from

$$y = (I + L)^{-1} \sum_{i=1}^{k} H_k \cdots H_i G_i u_i + (I + L)^{-1} G_{k+1} u_{k+1} \quad (6.10a)$$

where the loop function is:

$$L := H_k \cdots H_1 \quad (6.10b)$$

It will play a critical role in Nyquist stability method as we will see below. In particular the transfer function H_{yu_i} from input u_i to output y is

$$H_{yu_i} = (I + L)^{-1} H_k \cdots H_i G_i, \quad i = 1, \ldots, k \quad (6.10c)$$

Example 6.13 Find the transfer function H_{yu} from u to y and the loop function of the feedback system in Figure 6.4(a). Break the loop at the output y, as shown in Figure 6.4(b),

![Figure 6.4: Example 6.13: Loop function.](image)

and denote the transfer function of the local feedforward loop from u_1 to y_1 by H_1 and that of the local feedback loop from u_3 to y_3 by H_3. Applying superposition to the local loops we have

$$H_1 = G_1 - G_2 \quad \text{and} \quad H_3 = (I + G_3 G_4) G_3$$

6The transfer function from $G_{k+1} u_{k+1}$ to y is $S := (I + L)^{-1}$ and is called the sensitivity function. The transfer function from $G_1 u_1$ to y is $T := (I + L)^{-1} L$ and is called the complementary sensitivity function since $S + T = I$. S and T determine the dynamic performance of the closed-loop system; see e.g. [41].
Applying again (6.10) we find the loop function to be:

\[L = H_4 H_3 H_2 H_1 = H_4 (I + G_3 G_4)^{-1} G_3 H_2 (G_1 - G_2) \]

Hence the transfer function from \(u \) to \(y \) is

\[H_{yu} = (I + L)^{-1} (H_4 H_3 H_2) = (I + L)^{-1} (H_4 (I + G_3 G_4)^{-1} G_3 H_2) \]

6.2.4 STABILITY OF CLOSED-LOOP SYSTEM

Consider the feedback connection in Figure 6.5 and let the component systems be

\[
\begin{align*}
\dot{x}_i &= A_i x_i + B_i e_i, \quad y_i = C_i x_i, \quad i = 1, 2 \\
\end{align*}
\]

where \(x_i \in \mathbb{R}^{n_i}, e_i \in \mathbb{R}^{m_i}, y_1 \in \mathbb{R}^{m_1}, y_2 \in \mathbb{R}^{m_1}, A_i \in \mathbb{R}^{n_i \times n_i}, B_1 \in \mathbb{R}^{n_1 \times m_1}, B_2 \in \mathbb{R}^{n_2 \times m_2}, C_1 \in \mathbb{R}^{m_2 \times n_1}, \text{ and } C_2 \in \mathbb{R}^{m_1 \times n_2}. \)

The transfer functions of the component systems are

\[
H_i(s) = C_i (s I - A_i)^{-1} B_i, \quad i = 1, 2
\]

We sometimes refer to \(H_i(s) \) as the open-loop systems and \(\det(s I - A_i) \) as the open-loop characteristic polynomials. Motivated by Theorem 6.5, we say that the open-loop system \(H_i(s) \) is open-loop stable if all roots of \(\det(s I - A_i) \) are in the open LHP, i.e., the open-loop system matrix \(A_i \) is stable. See also Theorem 6.9 and Corollary 6.10 for relationship with input-output stability of the open-loop transfer function \(H_i(s) \).

The state of the closed-loop system is \(x := [x_1^T \quad x_2^T]^T \in \mathbb{R}^{n_1+n_2}, \) input is \(u := [u_1^T \quad u_2^T]^T \in \mathbb{R}^{m_1+m_2}, \) and output is \(y := [y_1^T \quad y_2^T]^T \in \mathbb{R}^{m_1+m_2}. \) It can be shown that the closed-loop system is also LTI, described by

\[
\dot{x} = Ax + Bu, \quad y = Cu
\]
where \(A, B, C \) can be expressed in terms of \(A_1, B_1, C_1 \) as (Exercise 6.7):

\[
A := \begin{bmatrix} A_1 & -B_1 C_2 \\ B_2 C_1 & A_2 \end{bmatrix} \quad B := \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix} \quad C := \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \tag{6.12b}
\]

We are interested in sufficient conditions under which the closed-loop system (6.12) is asymptotically stable when the input is zero \(u \equiv 0 \).

By Theorem 6.5 the origin of the closed-loop system is asymptotically stable (with \(u \equiv 0 \)) if and only if all eigvenvalues of \(A \) are in the open LHP, or equivalently all roots of the characteristic polynomial \(\det(sI - A) = 0 \) are in the open LHP. As we see from (6.12b), the closed-loop system matrix \(A \) can be quite complicated. The following fundamental result allows us to relate the eigenvalues of the closed-loop system matrix \(A \) to the eigenvalues of the system matrices \(A_i \) of the open-loop (component) systems and the loop function \(H_1 H_2 \). It is proved in Appendix 6.5.

Theorem 6.14 The characteristic polynomial \(\det(sI - A) \) of the closed-loop system (6.12) is given by

\[
\det(sI - A) = \det(sI - A_1) \cdot \det(sI - A_2) \cdot \det(I + H_1(s)H_2(s)) \tag{6.13}
\]

where \(H_i(s) = C_i(sI - A_i)^{-1}B_i \).

This theorem has several important implications. First the left-hand side of (6.13) is a polynomial in \(s \) of degree \(n_1 + n_2 \). On the right-hand side, \(\det(sI - A_i) \) are polynomials but \(\det(I + H_1(s)H_2(s)) \) are generally rational functions. Therefore any poles of \(\det(I + H_1(s)H_2(s)) \) must be canceled by zeros of \(\det(sI - A_i) \).

Second the poles of the transfer function \(H_i(s) = C_i(sI - A_i)^{-1}B_i \) are in general a subset of the eigenvalues of \(A_i \) (zeros of \(\det(sI - A_i) \)); See Chapter 6.2.2. If there is an eigenvalue \(\lambda \) of \(A_i \) that is not a pole of \(H_i(s) \), the associated eigenvector is then associated with an uncontrollable and/or unobservable mode of the (open-loop) linear system \((A_i, B_i, C_i)\); in this case, we say that the system \((A_i, B_i, C_i)\) has a hidden mode at \(\lambda \). The system \((A_i, B_i, C_i)\) can be excited along the direction of the eigenvector associated with the hidden mode \(\lambda \) but the effect on the system state \(x_i(t) \) will not manifest itself at the output \(y_i(t) \). If the realization \((A_i, B_i, C_i)\) is minimal (controllable and observable) then \(s \) is a pole of \(H_i(s) \) if and only if it is an eigenvalue of \(A_i \); see Corollary 6.10.

Third the closed-loop system \((A, B, C)\) in (6.12) is asymptotically stable if and only if the zeros of \(\det(sI - A) \), or the eigenvalues of the closed-loop system matrix \(A \), are all in the open left-half plane (LHP). Let \(\lambda_i \) be the eigenvalues of the closed-loop system matrix \(A \) and \(\lambda_{1j}, \lambda_{2j} \) be the eigenvalues of the open-loop system matrices \(A_1, A_2 \) respectively. Then (6.13) can be rewritten as

\[
\prod_i (s - \lambda_i) = \prod_j (s - \lambda_{1j}) \cdot \prod_j (s - \lambda_{2j}) \cdot \det(I + H_1(s)H_2(s))
\]
6.2. NYQUIST STABILITY THEORY

Hence the closed-loop system \((A, B, C)\) will be asymptotically stable if and only if the rational function \(\det(sI + H_1(s)H_2(s))\) has no zeros (i.e. roots of its numerator polynomial) in the closed right-half plane (RHP) and any zeros of the polynomials \(\det(sI - A_1) \cdot \det(sI - A_2)\) in the closed RHP are exactly canceled by the poles of \(\det(sI + H_1(s)H_2(s))\) (i.e. roots of its denominator polynomial). In particular if the open-loop systems are asymptotically stable, i.e., all \(\lambda_{1j}, \lambda_{2j}\) of \(A_1, A_2\) are in the open LHP for all \(j\), then the closed-loop system is asymptotically stable if and only if \(\det(sI + H_1(s)H_2(s))\) has no zero (nor pole) in the closed RHP.

The Nyquist stability theorem provides a graphical test for asymptotic stability of the closed-loop system in terms of the open-loop transfer functions \(H_i(s)\). Let

\[p_{0+} := \text{number of closed RHP zeros of the polynomial} \]
\[\det(sI - A_1) \cdot \det(sI - A_2), \text{ counting multiplicity} \]

i.e. \(p_{0+}\) is the number of RHP eigenvalues of \(A_1, A_2\). If they have a triple zero at \(\lambda_1\) in the closed RHP then \(\lambda_1\) contributes 3 to \(p_{0+}\). If both \(A_1\) and \(A_2\) are open-loop asymptotically stable then \(p_{0+} = 0\). From the discussion above, the closed-loop system is asymptotically stable if and only if \(\det(sI + H_1(s)H_2(s))\) has no zero in the closed RHP and exactly \(p_{0+}\) number of poles in the closed RHP. Define the rational function:

\[f(s) := \det(I + H_1(s)H_2(s)) \]

In the complex \(s\)-plane \((s = \sigma + j\omega)\) consider the closed curve \(D\) that consists of the imaginary \(j\omega\)-axis and of the right half-circle centered at the origin with arbitrarily large radius. If the rational function \(f(s)\) has a pole on the \(j\omega\)-axis the curve \(D\) is indented to the left by an arbitrarily small half-circle centered at the pole.\(^7\) By convention \(D\) is a simple (not self-intersecting) closed curve oriented clockwise; see Figure 6.6(a). Let \(f(D)\) denote the closed oriented curve \(\{f(s), s \in D\}\) traced by \(f(s)\) as \(s\) traverses the curve \(D\) clockwise. Even though \(D\) is a simple curve \(f(D)\) is not necessarily a simple curve.

We call \(D\) a Nyquist path and \(f(D)\) the corresponding Nyquist plot.

Theorem 6.15 Nyquist stability criterion. Consider the closed-loop system \((A, B, C)\) in (6.12).

1. The origin is asymptotically stable if and only if the Nyquist plot \(f(D)\) encircles the origin \(p_{0+}\) times counterclockwise and does not go through the origin.

\(^7\)By indenting to the left, the closed curve \(D\) includes purely imaginary poles of \(f(s)\) and therefore the stability criterion in Theorem 6.15 disallows eigenvalues of the closed-loop system on the imaginary axis. This guarantees asymptotic stability. If we had indented to the right instead then the stability criterion allows eigenvalues of the closed-loop system on the imaginary axis and hence guarantees only stability, not asymptotic stability.
6. LOCAL STABILITY WITH DELAY

2. Suppose the component systems are open-loop asymptotically stable (i.e., all eigenvalues of \(A_i, i = 1, 2 \), are in the open LHP). Then the origin of the closed-loop system is asymptotically stable if and only if the Nyquist plot \(f(D) \) does not encircle the origin counterclockwise nor does it go through the origin.

We now sketch a proof of Theorem 6.15. The proof relies on the argument principle, as follows. Consider the complex plane in Figure 6.6.

![Figure 6.6: Nyquist path D and the argument principle](image)

The argument principle. We are given a closed, oriented, and simple (not self-intersecting) curve \(C \) and a complex-valued function

\[
g(s) := \frac{\prod_i (s - z_i)}{\prod_k (s - p_k)}
\]

where \(z_i \) and \(p_k \) are zeros and poles respectively of \(g \) with \(z_i \neq p_k \) for all \(i, k \). Let \(g(s) \) be a proper rational function with \(g(s) \) finite and nonzero for all \(s \in C \) (i.e., \(g(s) \) has neither poles nor zeros on \(C \)). As \(s \) traverses \(C \) clockwise, \(g(s) \) traverses \(g(C) \) and encircles the origin \(p - n \) times counterclockwise, where

\[
\begin{align*}
p &:= \# \text{ of poles of } g \text{ inside } C \text{ counting multiplicity} \\
n &:= \# \text{ of zeros of } g \text{ inside } C \text{ counting multiplicity}
\end{align*}
\]

Recall that a proper rational function is one where the degree of the numerator polynomial does not exceed the degree of the denominator polynomial, and \(g(C) := \{g(s), s \in C\} \).
6.2. NYQUIST STABILITY THEORY

To see why the argument principle holds, consider the argument of g:

$$\arg g(s) = \sum_i \arg(s - z_i) - \sum_k \arg(s - p_k)$$

For any zero z_i or pole p_i outside of the contour C in Figure 6.6, as s completes a cycle on C, the net change of $\angle(s - z_i)$ or of $\angle(s - p_k)$ is zero. On the other hand, for a zero z_i or pole p_k inside C, as s completes a cycle clockwise, $\angle(s - z_i)$ or $\angle(s - p_k)$ makes exactly one cycle clockwise, i.e., z_i introduces -2π and p_k introduces 2π to the curve $g(s)$ as it traverses $g(C)$. Hence

$$\text{# counterclockwise encirclements of the origin by } g(C) = p - n$$

since each 2π change in angle corresponds to a counterclockwise encirclement of the origin.

Proof of Theorem 6.15. Theorem 6.5 implies that the closed-loop system matrix A is asymptotically stable if and only if all its eigenvalues, i.e., all zeros of $\det(sI - A)$, are in the open LHP. From Theorem 6.14 and the discussion immediately thereafter, the zeros of $\det(sI - A)$ must come from the zeros of $f(s) := \det(I + H_1(s)H_2(s))$ and those zeros of the polynomial $\det(sI - A_1)\det(sI - A_2)$ that are not canceled by the poles of $\det(I + H_1(s)H_2(s))$. In other words A will be asymptotically stable if and only if

- every closed RHP zero of $\det(sI - A_1)\det(sI - A_2)$ is canceled by a closed RHP pole of $f(s)$.
- $f(s)$ has no closed RHP zero.

The rational function $f(s)$ is proper. Since the curve D is indented to the left by an arbitrarily small half-circle centered at any pole of $f(s)$ on the $j\omega$-axis, D contains all closed RHP poles of $f(s)$. Moreover $f(s)$ remains nonzero (and finite since f is proper) on D. Hence we can apply the argument principle to conclude that these two conditions are equivalent to that the number of counterclockwise encirclements of the origin by $f(D)$ is exactly $p = p_0 + n = 0$.

We will frequently use the following simple result.

Lemma 6.16 Let $\sigma(AB)$ denote the set of nonzero eigenvalues of the product matrix AB. Then $\sigma(AB) = \sigma(BA)$ and hence $\det(I + AB) = \det(I + BA)$.

Proof. If (λ, v) are eigenvalue and eigenvector of AB with $\lambda \neq 0$, then $ABv = \lambda v \Rightarrow BA(Bv) = \lambda Bv$, and hence (λ, Bv) are eigenvalue and eigenvector of BA. Hence AB and BA have the same nonzero eigenvalues. The second assertion follows since both determinants equal, $\prod_i (1 + \lambda_i(AB)) = \prod_i (1 + \lambda_i(BA))$ where $\lambda_i(M)$ denotes the eigenvalues of matrix M.\qed
Lemma 6.16 implies that
\[f(s) := \det(I + H_1(s)H_2(s)) = \det(I + H_2(s)H_1(s)) \]
in Theorem 6.15, i.e., it does not matter where we “break the loop.”

6.2.5 GENERALIZED NYQUIST STABILITY CRITERION

The application of Theorem 6.15 requires the computation of the Nyquist plot
\[f(j\omega) := \det(I + H_1(j\omega)H_2(j\omega)) \]
as \(\omega \) goes from \(-\infty\) to \(+\infty\) along the imaginary axis with possible left indentations. In order to analyze the stability of a closed-loop system in the presence of feedback delay, a generalized Nyquist stability criterion is developed that, instead of checking if \(f(j\omega) \) avoids the origin and encircles the origin \(p_{0+} \) times counterclockwise, checks if a certain family of circuits formed from the eigenloci of the loop function \(H_1(j\omega)H_2(j\omega) \) avoids and encircles the point \((-1, 0)\) on the complex plane \(p_{0+} \) times counterclockwise.

The basic idea is as follows.

Let \(L(s) \) denote a loop function. Theorem 6.15 then checks the argument of the Nyquist plot \(f(s) \) as \(s \) traverses the Nyquist path \(D \). Since
\[\det(I + L(s)) = \prod_{i=1}^{m} (1 + \lambda_i(s)) \]
where \(\lambda_i, i = 1, \ldots, m, \) are the eigenvalues of the loop function \(L(s) \) evaluated at \(s \), we have
\[\angle \det(I + L(s)) = \angle \prod_{i=1}^{m} (1 + \lambda_i(s)) = \sum_{i=1}^{m} \angle (1 + \lambda_i(s)) \]
As \(s \) travels along the Nyquist path \(D \), we can label the eigenvalues of \(L(s) \) such that, for each \(i, s \rightarrow \lambda_i(s) \) is a continuous function (this is because eigenvalues of a matrix are continuous functions of the elements of the matrix). This gives \(m \) continuous eigenloci \(\lambda_i(D) \).

Thus it seems that, instead of counting the number of encirclements of the origin by \(\det(I + L(s)) \), we can equivalently sum the number of encirclements of the point \((-1, 0)\) by \(\lambda_i(D), i = 1, \ldots, m \). Unfortunately this does not work because some eigenloci \(\lambda_i(D) \) may not form closed paths, as the following example shows.

Example 6.17 Consider the loop function
\[L(s) := \begin{bmatrix} 0 & 1 \\ \frac{s-1}{s+1} & 0 \end{bmatrix} \]
with two eigenloci
\[\lambda_1(j\omega) = \sqrt{\frac{j\omega - 1}{j\omega + 1}} = \frac{j(1 - j\omega)}{\sqrt{1 + \omega^2}} = e^{j(\frac{\pi}{2} - \tan^{-1} \omega)} \]
6.2. NYQUIST STABILITY THEORY

\[\lambda_2(j\omega) = -\lambda_1(j\omega) = -e^{j\left(\frac{\pi}{2} - \tan^{-1}\omega\right)} \]

These eigenloci \(\lambda_1(D) \) and \(\lambda_2(D) \) are shown in Figure 6.7 where the Nyquist path \(D \) is the \(j\omega \)-axis for \(\omega \in [-\infty, \infty] \). Consider \(\lambda_1(j\omega) \) and Figure 6.7(a). As \(\omega \) goes from \(-\infty \) to \(\infty \),

Figure 6.7: (a) Eigenloci \(\lambda_i(D) \) may not be a closed curve, (b) We can always form an indexed family of **closed** curves \((\gamma_k, k = 1, \ldots, p) \) from the set of eigenloci \((\lambda_i, i = 1, \ldots, m) \).

\(\lambda_1(j\omega) \) traces out a semicircular arc in the upper half plane from \(e^{j\pi} \) to \(e^{j0} \) in the clockwise direction. Similarly the eigenlocus of \(\lambda_2(D) \) is the semicircle in the lower half plane as shown in Figure 6.7(b).

Even though some eigenloci \(\lambda_i(D) \) may not form closed paths, it can be shown however that we can always form an indexed family of **closed** paths \((\gamma_k(D), k = 1, \ldots, p) \) from the set of eigenloci \((\lambda_i, i = 1, \ldots, m) \) that encircle the same points in the complex plane. For Example 6.17, from Figure 6.7(b), as \(\omega \) goes from \(-\infty \) to \(+\infty \), \(\lambda_1(j\omega) \) traces out the upper semicircle from \((-1, 0) \) to \((1, 0) \) in the clockwise direction while **simultaneously** \(\lambda_2(j\omega) \) traces out the lower semicircle in the same direction. Moreover for **any** choice of \((\gamma_k(s), k = 1, \ldots, p) \), the sum of the number of encirclements of \(-1 \) is equal to the number of encirclements of the origin by \(f(D) = \text{det}(I + L(D)) \). We summarize this discussion as a theorem (c.f. Theorem 6.15).

Theorem 6.18 Suppose the loop function \(L \) is proper. Construct an indexed family of closed paths \((\gamma_k(s), k = 1, \ldots, p) \) from the eigenloci \((\lambda_i(s), i = 1, \ldots, m) \) of the loop function \(L \) as described above. The closed-loop system \((A, B, C) \) in (6.12) is asymptotically stable if and only if \((\gamma_k(s), k = 1, \ldots, p) \) does not go through \(-1 \) on the real line and encircles \(-1 \) on the
real line p_0^+ times counterclockwise, as s traverses the Nyquist path D.

Hence we can test closed-loop stability by checking the number of encirclements of -1 by any such family of closed curves ($\gamma_k(s), k = 1, \ldots, p$). Even though our discussion assumes a proper rational loop function L, Theorem 6.18 holds for more general proper functions, e.g., for systems involving delay or trigonometric functions.

For our purposes we only need a corollary of Theorem 6.18.

Corollary 6.19 Suppose

- The loop function L is proper.
- The open-loop systems are all asymptotically stable, i.e. the eigenvalues of A_i are all in the open LHP.

If all eigenloci of the loop function $L(s)$ stay entirely to the right of (and do not pass through) -1 on the real line, as s traverses the Nyquist path D, then the origin of the closed-loop system is asymptotically stable.

Indeed when we study the primal or dual algorithm, there is dynamics in either sources or links but not both. As we will see in Sections 6.3 and 6.4 they can be modeled by the unity feedback system in Figure 6.8. The generalized Nyquist criteria is given by

\[
\begin{align*}
\dot{y}(s) &= -H(s)y(s) + H(s)u(s) \\
\Rightarrow \quad y(s) &= (I + H(s))^{-1} H(s) u(s)
\end{align*}
\]

\textbf{Figure 6.8:} Unity feedback system.

Corollary 6.19 with the loop function given by $L(s) = H(s)$. Similarly Theorems 6.14, 6.15, and 6.18 hold with the loop function $L(s) = H(s)$ for unity feedback systems (see Exercise 6.6).

We now use Corollary 6.19 to study the linear stability of congestion control algorithms in the presence of feedback delay.
6.3 STABILITY OF PRIMAL ALGORITHM

Consider the following primal algorithm:

\[
\begin{align*}
\dot{x}_i(t) &= \kappa_i (U'_i(x_i(t)) - q_i(t)) + p_i(t) = g_i(y_i(t)) \\
q_i(t) &= \sum_l R_{li} p_l(t - \tau^{fl}_{li}), \\
y_i(t) &= \sum_i R_{li} x_i(t - \tau^{fl}_{li})
\end{align*}
\]

where \(\kappa_i > 0 \), the utility functions \(U_i \) are strictly concave, \(U'_i \) are the first derivatives of \(U_i \), and \(g_i \) are nonnegative and strictly decreasing. Here \(\tau^{fl}_{li} \) represents the backward delay from source \(i \) to link \(l \); both can depend on the pairs \((l, i)\). Let \((x^*, p^*)\) be an equilibrium. Without loss of generality we assume \(x^*_i > 0, p^*_l > 0 \) for all \(i, l \); otherwise we remove the zero entries from consideration in the linearized model below. Linearizing around \((x^*, p^*)\) and using \(\bar{x} := x - x^*, \bar{p} := p - p^* \), etc, we obtain the following linear delayed model in the Laplace domain:\(^8\)

\[
\begin{align*}
s\bar{x}_i &= \kappa_i U''_i(x^*_i)\bar{x}_i - \kappa_i \bar{q}_i, \\
\bar{q}_i &= \sum_l R_{li} e^{-s\tau^{bl}_{li}} \bar{p}_l, \\
\bar{p}_l &= g_i(y^*_l)\bar{y}_l, \\
\bar{y}_l &= \sum_i R_{li} e^{-s\tau^{fl}_{li}}\bar{x}_i
\end{align*}
\]

where \(U''_i \) are the second derivatives of \(U_i \). This can be written compactly in matrix form by defining the forward (routing) matrix \(R^f(s) \) and backward matrix \(R^b(s) \) in the Laplace domain where

\[
[R^f(s)]_{li} := R_{li} e^{-s\tau^{fl}_{li}}, \quad [R^b(s)]_{li} := R_{li} e^{-s\tau^{bl}_{li}} \tag{6.14}
\]

Then the linearized system is, in Laplace domain:

\[
\begin{align*}
s\bar{x} &= KU''\bar{x} - K\bar{q}, \\
\bar{q} &= (R^b(s))^T \bar{p}, \\
\bar{p} &= G\bar{y}, \\
\bar{y} &= R^f(s)\bar{x}
\end{align*}
\]

where \(K := \text{diag}(\kappa_i, i \in N) > 0, U'' := \text{diag}(U''_i(x^*_i), i \in N) < 0 \) and \(G := \text{diag}(g_i(y^*_i), l \in L) > 0 \). This is represented as a feedback system in Figure 6.9. Note that \(H(s) \neq -(sI - KU'')^{-1}K \) because of the negative feedback.

Assume:

C6.1: All utility functions \(U_i \) are strictly concave and the routing matrix \(R \) has a full row rank.

C6.2: For all sources \(i \), \(\tau^{fl}_{li} + \tau^{bl}_{li} = \tau_i \) for all links \(l \) in \(i \)'s path.

\(^8\)We abuse notation to use \(\bar{x} \) to denote both the time function \(\bar{x}(t) \) and its Laplace transform \(\bar{x}(s) \). The meaning should be clear from the context.
$y - \rho = G y$

$R_f(s) \left(s I - K U^\prime \right)^{-1} K$

$H(s) = (s I - K U^\prime)^{-1} K$

Figure 6.9: Delayed linear system representing the primal algorithm (6.15).
Condition C6.1 implies that the equilibrium \((x^*, p^*)\) exists and is unique. Condition C6.2 says that the forward delay from a source \(i\) to any links \(l\) in its path plus the backward delay from that link back to the source is equal to the round-trip delay \(\tau_i\) of source \(i\). It is a reasonable assumption if all packets of each source \(i\) follow the same round-trip path. We further assume \(\tau_i\) are constants. The main implication of Condition C6.2 is the following relationship between the forward and backward matrix:

\[
R_b(s) = R_f(s) \text{diag} (e^{-\tau_i s}) \tag{6.16}
\]

Let \(N := \max_i \sum_l R_{li}\) be an upper bound on the number of sources through any link and \(L := \max_i \sum_l R_{li}\) be an upper bound on the number of links used by any source.

Theorem 6.20 Assume conditions C6.1 and C6.2 hold. The origin of the linearized primal algorithm (6.15) is asymptotically stable if

\[
\max_i \tau_i \kappa_i \cdot \max_l g'_l(y^*_l) \leq \frac{\pi}{2NL}
\]

An upper bound on \(\tau_i \kappa_i\) means that to maintain stability the source control gain \(\kappa_i\) should be small if the round-trip time \(\tau_i\) is large. An upper bound on \(g'_l(y^*_l)\) means that the congestion price \(p^*_l = g_l(y^*_l)\) at a link should not be too sensitive to its input rate \(y^*_l\) in equilibrium. The bounds \(N, L\) in the stability condition are conservative. The proof of the theorem suggests how to modify the algorithm in (6.15) to remove these bounds (see the dual algorithm in the next subsection).

We will apply Corollary 6.19 to prove Theorem 6.20. The loop transfer function of (6.15) from \(\tilde{p}\) to \(\tilde{p}\) is (see Figure 6.9):

\[
L(s) = GR_f(s)(sI - KU'')^{-1} K (R^b(s))^T \tag{6.17}
\]

Substituting (6.16) into (6.17), the loop transfer function becomes

\[
L(s) = GR_f(s)(sI - KU'')^{-1} K \text{diag} (e^{-\tau_i s}) (R^f(-s))^T
\]

As discussed after Corollary 6.19, since the primal algorithm (6.15) has dynamics only in sources, it can be modeled as a unity feedback system (Figure 6.8b) with the open-loop transfer function as its loop function \(L(s) = H(s)\) (also see Exercise 6.6). The system matrix of the

As discussed above, the open-loop system \(H(s) = (sI - KU'')^{-1} K\) is asymptotically stable. By Corollary 6.19 the closed-loop system is stable if and only if the eigenloci of \(L(j\omega)\) neither pass through nor encircle \(-1\) in the complex plane as \(\omega\) traverses the Nyquist path from 0 to \(+\infty\).
To better understand the structure of $L(s)$ note that all matrices in $L(s)$ except $R_f(s)$ are diagonal. More explicitly

$$
L(s) = \text{diag}(g_l) R_f(s) \text{diag} \left(\frac{\kappa_i e^{-\tau_i s}}{s - \kappa_i U_i^T} \right) \left(R_f(-s) \right)^T
$$

$$
= \text{diag}(g_l) R_f(s) \text{diag} \left(\sqrt{\frac{2}{\pi} \tau_i \kappa_i} \right) \text{diag} \left(\frac{\pi}{2} e^{-\tau_i s} \right) \text{diag} \left(\sqrt{\frac{2}{\pi} \tau_i \kappa_i} \right) \left(R_f(-s) \right)^T
$$

(6.18)

where $\alpha_i := -\tau_i \kappa_i U_i^T(x_i^*) > 0$. For any matrix M let $\sigma(M(j\omega), j\omega \in D)$ denote the eigenloci of M that are not identically zero as s traverses the Nyquist path D. Lemma 6.16 implies that we can change the order of some component matrices in L in (6.18) as far as nonzero eigenloci are concerned. Hence

$$
\sigma(L(j\omega)) = \sigma \left(\hat{R}(j\omega) \text{diag} \left(\frac{\pi}{2} e^{-j\tau_i \omega} \right) \hat{R}^H(j\omega) \right)
$$

(6.19a)

where

$$
\hat{R}(j\omega) := \text{diag} \left(\sqrt{g_l} \right) R_f(j\omega) \text{diag} \left(\sqrt{\frac{2}{\pi} \tau_i \kappa_i} \right)
$$

(6.19b)

and $\hat{R}^H(j\omega) = \hat{R}^T(-j\omega)$ is the Hermitian transpose.

To bound the eigenloci in (6.19) as ω goes from 0 to ∞, we will use the following property.

Lemma 6.21 Let $D := \text{diag}(d_i, i = 1, \ldots, n)$ be a diagonal matrix and A any $m \times n$ matrix with full row rank of m. Then

$$
\sigma(ADA^H) \subseteq \rho(\sigma(AA^H)) \cdot \text{co}(0, d_i, i = 1, \ldots, n)
$$

where $\rho(\sigma(AA^H))$ is the spectral radius of AA^H and $\text{co}(a_k)$ is the convex hull of points a_k.

Proof. Let (λ, v) be an eigenvalue and eigenvector pair of ADA^H such that $\|v\|_2 = 1$. Then

$$
ADA^H v = \lambda v \Rightarrow \lambda = v^H ADA^H v = \sum_i d_i |\hat{v}_i|^2
$$

(6.20)

where $\hat{v} := A^H v$. Hence

$$
\|\hat{v}\|^2_2 = v^H AA^H v \leq \rho(\sigma(AA^H)) \cdot \|v\|^2_2 = \rho(\sigma(AA^H))
$$

(6.21)

since AA^H is a Hermitian positive semidefinite matrix. Hence from (6.20) we have

$$
\lambda = \rho(\sigma(A^T)) \sum_i \frac{|\hat{v}_i|^2}{\rho(\sigma(AA^H))} d_i = \rho(\sigma(AA^H)) \left(\sum_i \frac{|\hat{v}_i|^2}{\rho(\sigma(AA^H))} d_i + \left(1 - \frac{\|\hat{v}\|^2_2}{\rho(\sigma(AA^H))} \right) \cdot 0 \right)
$$
The lemma then follows from (6.21).

Proof of Theorem 6.20. The closed loop system is asymptotically stable if and only if the eigenloci in (6.19) neither pass through nor encircle the critical point -1 in the complex plane. We now use Lemma 6.21 to bound the eigenloci (strictly) to the right of -1.

From Lemma 6.21

$$
\sigma\left(\hat{R}(j\omega)\ \text{diag}\left(\frac{\pi}{2} e^{-\tau_i s} \hat{R}^H(j\omega)\right)\right) \subseteq \rho\left(\hat{R}(j\omega)\hat{R}^H(j\omega)\right) \cdot \cos\left(0, \frac{\pi}{2} e^{-\tau_i s} \alpha_i\right)
$$

We examine each term on the right-hand side in turn.

Observe the sets of eigenloci in the last term satisfy:

$$
\left\{\frac{\pi}{2} e^{-j\tau_i \omega}, \quad \omega \in [0, +\infty]\right\} = \left\{\frac{\pi}{2} \frac{e^{-j\omega}}{j\omega + \alpha_i}, \quad \omega \in [0, +\infty]\right\}
$$

The set on the right-hand side is shown in Figure 6.10. These sets cross the real axis

![Figure 6.10](attachment:image.png)

Figure 6.10: The sets $\left\{\frac{\pi}{2} e^{-j\omega}, \quad \omega \in [0, +\infty]\right\}$ for $\alpha_i = 0, 0.5, 1$ in the complex plane. They cross the real axis to the right of -1 as long as $\alpha_i > 0$.

Hence we only need to check that $\rho\left(\hat{R}(j\omega)\hat{R}^H(j\omega)\right) \leq 1$ under the condition of Theorem 6.20. For any matrix A, $\rho(A) \leq \|A\|$ for any induced matrix norm. Using the $\| \cdot \|_\infty$
norm (maximum absolute row sum), (6.19b), and Lemma 6.16, we have

\[
\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) = \rho \left(\text{diag} \left(g'_l \right) R^f(j\omega) \text{diag} \left(\frac{2}{\pi} \tau_i \kappa_i \right) \left(R^f(-j\omega) \right)^T \right)
\]

\[
\leq \left\| \text{diag} \left(g'_l \right) R^f(j\omega) \text{diag} \left(\frac{2}{\pi} \tau_i \kappa_i \right) \left(R^f(-j\omega) \right)^T \right\|_\infty
\]

\[
\leq \left\| \text{diag} \left(g'_l \right) R^f(j\omega) \right\|_\infty \cdot \left\| \text{diag} \left(\frac{2}{\pi} \tau_i \kappa_i \right) \left(R^f(-j\omega) \right)^T \right\|_\infty
\]

\[
\leq \max_i \sum_l |g'_l R_{li} e^{-j\tau_i^f \omega}| \cdot \max_i \sum_l \frac{2}{\pi} \tau_i \kappa_i R_{li} e^{j\tau_i^f \omega}
\]

\[
= \frac{2}{\pi} \cdot \max_i g'_l \sum_i R_{li} \cdot \max_i \tau_i \kappa_i \sum_l R_{li}
\]

\[
\leq \frac{2N\mathcal{T}}{\pi} \cdot \max_i g'_l \cdot \max_i \tau_i \kappa_i
\]

Hence the condition in the theorem guarantees \(\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) \leq 1 \). \(\square \)

6.4 Stability of Dual Algorithm

Consider the dual algorithm

\[
x_i(t) = U_i^{-1}(q_i(t)), \quad q_i(t) = \sum_l R_{li} p(t - \tau_i^f), \quad y_i(t) = \sum_i R_{li} x_i(t - \tau_i^f)
\]

where \(\gamma_l > 0 \) and \(U_i^{-1} \) are nonnegative and strictly decreasing. Let \((x^*, p^*) \) be an equilibrium and assume without loss of generality that \((x^*, p^*) > 0 \). Using \(\tilde{x} := x - x^*, \tilde{p} := p - p^* \), etc, the linearized system around \((x^*, p^*) \) is, in the Laplace domain,

\[
\tilde{x}_i = \frac{1}{U_i''(x^*_i)} \tilde{q}_i, \quad \tilde{p}_i = \gamma_i \tilde{y}_i
\]

\[
\tilde{q}_i = \sum_l R_{li} e^{-\tau_i^* s} \tilde{p}_l, \quad \tilde{y}_i = \sum_i R_{li} e^{-\tau_i^* s} \tilde{x}_i
\]

As for the primal algorithm we use the delayed routing matrix \(R^f(s) \) and \(R^h(s) \) in (6.14) to write the dual algorithm compactly in matrix form:

\[
\tilde{x} = \text{diag} \left(\frac{1}{U_i''(x^*_i)} \right) \tilde{q}, \quad \tilde{p} = \frac{1}{s} \Gamma \tilde{y} \quad (6.22a)
\]

\[
\tilde{q} = \left(R^h(s) \right) \tilde{p}, \quad \tilde{y} = R^f(s) \tilde{x} \quad (6.22b)
\]

where \(\Gamma := \text{diag}(\gamma_l, l \in L) > 0 \). This is represented as a feedback system in Figure 6.11 (note the minus sign in \(H(s) := -\Gamma/s \) because of the negative feedback). Even though the
open-loop system \(H(s)\) is stable but not asymptotically stable, the closed-loop system turns out to be asymptotically stable due to the special structure (6.16) of the routing matrices, as we now show.

\[
\tilde{x} = \text{diag}\left((U_i^r)^{-1}\right) \tilde{q} \quad \tilde{y} = R^f(s) \tilde{x}
\]

Figure 6.11: Delayed linear system representing the dual algorithm (6.22).

The loop transfer function from \(\tilde{y}\) to \(\tilde{y}\) is:

\[
L(s) = R^f(s) \text{diag}\left(\frac{1}{U_i^r(x^*)}\right) (R^b(s))^T \frac{-\Gamma}{s}
\]

Under condition C6.2 we can again relate the forward and backward routing matrix:

\[
R^b(s) = R^f(-s) \text{diag} \left(e^{-\tau_i s}\right)
\]

Substituting into \(L\), the loop transfer function becomes

\[
L(s) = -R^f(s) \text{diag}\left(\frac{1}{U_i^r(x^*)}\right) \text{diag} \left(\frac{e^{-\tau_i s}}{s}\right) (R^f(-s))^T \Gamma
\]

The open-loop system is asymptotically stable since it has no zero in the closed right-half plane. By Corollary 6.19 the closed-loop system is stable if the eigenloci of \(L(j\omega)\) neither pass through nor encircle \(-1\) on the real line as \(\omega\) traverses the Nyquist path from 0 to \(+\infty\) or from 0 to \(-\infty\). Hence we can equivalently consider \(-L(j\omega)\) instead of \(L(j\omega)\) and show that it does not pass through nor encircle 1 on the real line.

With a slight abuse of notation we will consider the new loop function (which is the negative of \(L\) above):

\[
L(s) = R^f(s) \text{diag}\left(\frac{2}{\pi} \frac{\tau_i}{U_i^{r''}(x^*)}\right) \text{diag} \left(\pi \frac{e^{-\tau_i s}}{\tau_i s}\right) (R^f(-s))^T \Gamma
\]
Hence we are interested in the eigenloci of
\[
\sigma(L(j\omega)) = \sigma \left(\hat{R}(j\omega) \ \text{diag} \left(\frac{\pi e^{-j\tau_i\omega}}{2} \right) \hat{R}^H(j\omega) \right) \tag{6.23a}
\]

where
\[
\hat{R}(j\omega) := \text{diag}(\sqrt{\gamma_i}) R^f(j\omega) \ \text{diag} \left(\frac{2}{\pi} \frac{\tau_i}{U''_i(x^*)} \right) \tag{6.23b}
\]

and \(\hat{R}^H(j\omega) = \hat{R}^T(-j\omega)\) is the Hermitian transpose. The set of eigenloci here has the same structure as that in (6.19). Hence we know from Lemma 6.21 that
\[
\sigma \left(\hat{R}(j\omega) \ \text{diag} \left(\frac{\pi e^{-j\tau_i\omega}}{2} \right) \hat{R}^H(j\omega) \right) \subseteq \rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) \cdot \text{co} \left(0, \frac{\pi e^{-j\tau_i\omega}}{2} \right)
\]

Hence as in the proof of Theorem 6.20, the closed-loop system is asymptotically stable if
\[
\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) < 1 \tag{6.24}
\]

This can be enforced by constraining algorithm parameters \(\gamma_i, U''_i(x^*)\) based on feedback delays \(\tau_i\). For the primal algorithm considered in Theorem 6.20, the (sufficient) stability condition imposes upper bounds on source control gain \(\kappa_i\) and link price sensitivity \(g_l(y_l)\). These bounds become tighter as delay \(\tau_i\) increase. Moreover the condition involves bounds \(N, L\) that are likely to be conservative.

To address these issues we now specialize to a dual algorithm for which the linearized closed-loop system remains asymptotically stable for arbitrary feedback delay and network topology. In other words the utility functions \(U_i\) are carefully chosen to obtain asymptotic stability that is scalable to arbitrary delay and link capacity.

Consider the utility functions
\[
U_i(x_i) = \frac{M_i \tau_i}{\alpha_i} x_i \left(1 - \log \left(\frac{x_i}{\bar{x}_i} \right) \right), \quad x \leq \bar{x}_i \tag{6.25a}
\]

where \(\tau_i\) is the round-trip time of source \(i\), \(M_i\) is an upper bound on the maximum number of (bottleneck) links in the path of source \(i\), \(\alpha_i > 0\) is a design parameter, and \(\bar{x}_i\) is the peak rate for source \(i\). Scale the price function by the link capacity \(c_l\):
\[
\hat{p}_l = \frac{1}{c_l} (y_l(t) - c_l)^+ \tag{6.25b}
\]

This price function can be implemented by having the source algorithm react to queueing delay as TCP Vegas and FAST do; see Chapter 1.3. Then the stability parameters in (6.23) are
\[
U''_i(x^*_i) = -\frac{M_i \tau_i}{x^*_i \alpha_i} \quad \text{and} \quad \gamma_l = \frac{1}{c_l} \tag{6.26}
\]
Theorem 6.22 Suppose conditions C6.1 and C6.2 hold. The origin of the linearized dual algorithm (6.22) with utility functions and link capacity scaling (6.25) is asymptotically stable as long as
\[
\max_i \alpha_i < \frac{\pi}{2}
\]

Proof. As discussed above the theorem is proved if we can establish (6.24). Substitute (6.23b) into the left-hand side of (6.24) we have (again using Lemma 6.16)
\[
\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right)
= \rho \left(\text{diag}(\gamma_i) R_f(j\omega) \text{diag} \left(\frac{2}{\pi U_i'(x^*)} \right) \left(R_f(-j\omega) \right)^T \right)
= \rho \left(\text{diag} \left(\frac{1}{c_l} \right) R_f(j\omega) \text{diag} \left(-\frac{2x_i^*\alpha_i}{\pi M_i} \right) \left(R_f(-j\omega) \right)^T \right)
= \rho \left(\text{diag} \left(\frac{1}{c_l} \right) R_f(j\omega) \text{diag} (x_i^*) \text{diag} \left(-\frac{2\alpha_i}{\pi} \right) \text{diag} \left(\frac{1}{M_i} \right) \left(R_f(-j\omega) \right)^T \right)
\]
where the last second equality follows from (6.26). Since the spectral radius of a matrix is less than any induced matrix norm, we use \(\| \cdot \|_\infty \) (the maximum absolute row sum) to get
\[
\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) \\
\leq \left\| \text{diag} \left(\frac{1}{c_l} \right) R_f(j\omega) \text{diag} (x_i^*) \right\|_\infty \cdot \left\| \text{diag} \left(-\frac{2\alpha_i}{\pi} \right) \right\|_\infty \cdot \left\| \text{diag} \left(\frac{1}{M_i} \right) \left(R_f(-j\omega) \right)^T \right\|_\infty
\]
Notice
\[
\left\| \text{diag} \left(\frac{1}{c_l} \right) R_f(j\omega) \text{diag} (x_i^*) \right\|_\infty = \max_i \frac{1}{c_l} \sum_i \left| R_{li} e^{-j\tau_{li}\omega} x_i^* \right| \leq 1
\]
\[
\left\| \text{diag} \left(\frac{1}{M_i} \right) \left(R_f(-j\omega) \right)^T \right\|_\infty = \max_i \frac{1}{M_i} \sum_i \left| R_{li} e^{j\tau_{li}\omega} \right| \leq 1
\]
\[
\left\| \text{diag} \left(-\frac{2\alpha_i}{\pi} \right) \right\|_\infty = \max_i \frac{2\alpha_i}{\pi} < 1
\]
Hence \(\rho \left(\hat{R}(j\omega)\hat{R}^H(j\omega) \right) < 1 \) and the proof is complete. \(\square \)

6.5 APPENDIX: PROOF OF THEOREM 6.14

Factorize the system matrix \(A \) in (6.12b) of the closed-loop system into:
\[
\begin{bmatrix} sI-A_1 & B_1C_2 \\ -B_2C_1 & sI-A_2 \end{bmatrix} = \begin{bmatrix} sI-A_1 & 0 \\ 0 & sI-A_2 \end{bmatrix} \begin{bmatrix} I & (sI-A_1)^{-1}B_1C_2 \\ -(sI-A_2)^{-1}B_2C_1 & I \end{bmatrix}
\]
Apply the Schur’s determinant identity (proved below)

\[
\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det D \cdot \det(A - BD^{-1}C) \tag{6.27}
\]

to obtain

\[
\det(sI - A) = \det(sI - A_1) \cdot \det(sI - A_2) \cdot \det(I + (sI - A_1)^{-1}B_1C_2(sI - A_2)^{-1}B_2C_1)
\]

From Lemma 6.16 we therefore have

\[
\det(sI - A) = \det(sI - A_1) \cdot \det(sI - A_2) \cdot \det(I + C_1(sI - A_1)^{-1}B_1C_2(sI - A_2)^{-1}B_2)
\]

\[
= \det(sI - A_1) \cdot \det(sI - A_2) \cdot (I + H_1(s)H_2(s))
\]

We are left to derive the Schur’s determine identity (6.27). Perform two successive block Gaussian eliminations to eliminate the off-diagonal blocks:

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I & 0 \\ -D^{-1}C & I \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}
\]

Hence we have

\[
\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D^{-1}C \end{bmatrix}
\]

from which (6.27) follows. This completes the proof of Theorem 6.14.

\[\square\]

6.6 BIBLIOGRAPHICAL NOTES

The poles and zeros of a multi-input-multi-output (MIMO) system is much subtler than those of a single-input-single-output (SISO) system, and we have only presented a minimal set of results that are needed to analyze local stability of TCP congestion control algorithms in the presence of feedback delay. See, e.g. [13] and [18]. When \(A\) is diagonalizable, the eigenvector dyadic expansion of \(A\) leads to a transparent structure of the transfer function matrix and its poles, as explained in Lemma 6.11 and Theorem 6.12, both taken from [13, Chapter 3.3]. Theorems 6.14 and 6.15 are taken from [13, Chapter 11]. Theorem 6.18 is proved in [19]. Even though our discussion assumes a proper rational loop function \(L\), Theorem 6.18 extends to more general proper functions, e.g., for systems involving delay or trigonometric functions; see [19, Section III]. The dual algorithm in Theorem 6.22 is proposed and analyzed in [38].
6.7 PROBLEMS

Exercise 6.1. Consider the single-input single-output LTI system in Example 6.2 specified by the transfer function:

\[H(s) := \frac{y(s)}{u(s)} = \frac{s - 1}{(s + 1)(s + 2)} \]

Consider realizations \((A, B, C)\) with \(n = 2\) states:

\[
A := \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad B := \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad C := [c_1 \ c_2]
\]

Suppose we restrict \(B = [1 \ 0]^T\). Show that all realizations \((A, B, C)\) are controllable.

Exercise 6.2. Consider the single-input single-output LTI system in Exercise 6.1. Suppose we restrict \(C = [1 \ 0]\). Show that all realizations \((A, B, C)\) are observable.

Exercise 6.3. The transfer function in Exercise 6.1 is strictly proper and is realized in Example 6.3 by a different implementation:

\[
\begin{align*}
\dot{x}_1 &= -x_1(t) - 2u(t) \\
\dot{x}_2 &= -2x_2(t) + 3u(t) \\
y(t) &= x_1(t) + x_2(t)
\end{align*}
\]

Is this realization controllable? Observable?

Exercise 6.4. Consider the second transfer function in Example 6.3:

\[H(s) = \frac{c(s - b_1)(s - b_2)}{(s - a_1)(s - a_2)} \]

where \(a_i \neq b_j\), i.e., the numerator and the denominator are co-prime. This transfer function is proper but not strictly proper. Is the following realization in Example 6.3

\[
A := \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -a_1a_2 & a_1 + a_2 \end{bmatrix}, \quad B := \begin{bmatrix} \Delta_1 \\ \Delta_2 \\ 0 \\ \Delta_1\Delta_2 \end{bmatrix}, \quad C^T := \begin{bmatrix} c \\ c \\ c \\ 0 \end{bmatrix}, \quad D := c
\]

controllable? Observable?

Exercise 6.5. Design a state-space realization of the MIMO transfer function in Example 6.4.
6. LOCAL STABILITY WITH DELAY

Exercise 6.6. Consider the unity feedback system in Figure 6.8b with \(H(s) = C(sI - A)^{-1}B \). Show that the characteristic polynomial of the system matrix \(\hat{A} \) of the closed-loop system satisfies:

\[
det(sI - \hat{A}) = \det(sI - A) \cdot \det(I + H(s))
\]

This implies that the Nyquist stability results (Theorems 6.14, 6.15, 6.18 and Corollary 6.19) hold with the loop function \(L(s) = H(s) \) for unity feedback systems.

Exercise 6.7. Consider the feedback connection in Figure 6.12 and let the component systems be

\[
\dot{x}_i = A_i x_i + B_i e_i, \quad y_i = C_i x_i, \quad i = 1, 2
\]

where \(x_i \in \mathbb{R}^{n_i} \), \(e_i \in \mathbb{R}^{m_i} \), \(y_1 \in \mathbb{R}^{m_2} \), \(y_2 \in \mathbb{R}^{m_1} \), \(A_1 \in \mathbb{R}^{n_i \times n_i} \), \(B_1 \in \mathbb{R}^{n_1 \times m_1} \), \(B_2 \in \mathbb{R}^{n_2 \times m_2} \), \(C_1 \in \mathbb{R}^{m_2 \times n_1} \), and \(C_2 \in \mathbb{R}^{m_1 \times n_2} \). The external inputs \(u_i \) are thus in \(\mathbb{R}^{m_i} \). The transfer functions of the component systems are

\[
H_i(s) = C_i(sI - A_i)^{-1}B_i, \quad i = 1, 2
\]

The state of the closed-loop system is \(x := [x_1^T \; x_2^T]^T \in \mathbb{R}^{n_1 + n_2} \), input is \(u := [u_1^T \; u_2^T]^T \in \mathbb{R}^{m_1 + m_2} \), and output is \(y := [y_1^T \; y_2^T]^T \in \mathbb{R}^{m_1 + m_2} \). Show that the closed-loop system is also LTI, described by

\[
\dot{x} = Ax + Bu, \quad y = Cu
\]

where

\[
A := \begin{bmatrix} A_1 & -B_1 C_2 \\ B_2 C_1 & A_2 \end{bmatrix}, \quad B := \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, \quad C := \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}
\]

Exercise 6.8 ([47]). Let \(P = P^* > 0 \) and \(\Lambda = \text{diag}(\Lambda_i) \) be \(n \times n \) matrices. Then the set of eigenvalues \(\sigma(PA) \subseteq \rho(P) \cdot \text{co}\{0, \lambda_i\} \) where \(\rho(P) \) is the spectral radius of \(P \) and \(\text{co} \ A \) is the convex hull of set \(A \).
Exercise 6.9 ([47]). Consider the following primal algorithm
\[
\begin{align*}
\dot{x}_i(t) &= \kappa_i(w_i - x_i(t - \tau_i)q_i(t)), & p_i(t) &= g_i(y_i(t)) \quad (6.28a) \\
q_i(t) &= \sum_l R_{li}p_l(t - \tau_{li}^b), & y_i(t) &= \sum_l R_{li}x_l(t - \tau_{li}^f) \quad (6.28b)
\end{align*}
\]

Derive sufficient condition for linearized stability. (Hint: The difference between this primal algorithm and that in the chapter is the product \(x_i(t - \tau_i)q_i(t)\). Consider the variable \(z_i(t) := x_i(t - \tau_i)q_i(t)\).)

Exercise 6.10. Consider the following system
\[
\begin{align*}
\dot{x}_1(t) &= y_1(t) - y_2(t - \tau_{12}) - u_1(t) \\
\dot{x}_2(t) &= y_2(t) - y_1(t - \tau_{21}) - u_2(t) \\
\dot{y}_i(t) &= \gamma_i x_i(t), & i &= 1, 2
\end{align*}
\]

where \(\tau_{12} > 0, \tau_{21} > 0, \gamma_i > 0\).

1. Prove that we can choose \(\gamma_i\) so that the closed-loop system with zero input \(u_i(t) \equiv 0\) is stable, but not asymptotically stable.

2. Design state feedback \(u_i(t) = u(x_i(t))\) so that, with appropriate choice of \(\gamma_i\), the closed-loop system is asymptotically stable. (Hint: Try \(u_i(x_i) = a_i x_i\) for some \(a_i > 0\).)

6. LOCAL STABILITY WITH DELAY

6. LOCAL STABILITY WITH DELAY
