
Lecture 10

Introduction to Spectral Graph
Theory

Spectral graph theory is the study of a graph through the properties of the eigenvalues and
eigenvectors of its associated Laplacian matrix. In the following, we use G = (V,E) to
represent a undirected graph with no self-loops, and write V = {1, . . . , n}, with the degree
of vertex i being denoted by di. For undirected graphs our convention will be that if there is
an edge then both (i, j) ∈ E and (j, i) ∈ E. Thus

∑
(i,j)∈E 1 = 2|E|. If we wish to sum over

edges only once, we will write {i, j} ∈ E for the unordered pair. Thus
∑
{i,j}∈E 1 = |E|.

10.1 Matrices associated to a graph

Given an undirected graph G, we define the following matrices:

Definition 10.1 (Adjacency Matrix). The adjacency matrix A ∈ {0, 1}n×n is defined as

Aij =

{
1 if {i, j} ∈ E
0 otherwise.

Note that A is always a symmetric matrix with exactly di ones in the i-th row and the i-th
column.

Definition 10.2 (Degree Matrix). The degree matrix D ∈ Rn×n is defined as the diagonal
matrix with diagonal entries (d1, . . . , dn).

Definition 10.3 (Normalized Adjacency Matrix). The normalized adjacency matrix is de-
fined as

A = D−1A.

Note that this is not necessarily a symmetric matrix. It will be useful when we consider
random walks on graphs.
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Definition 10.4 (Laplacian and normalized Laplacian Matrix). The Laplacian matrix is
defined as

L = D − A.

The normalized Laplacian is defined as

L = D−1/2LD−1/2 = I−D−1/2AD−1/2.

L is always a symmetric matrix. It is the main matrix we will work with.

In spectral graph theory, a basic question is: which properties of G can be inferred from
the eigenvalues and eigenvectors of A and L? Of course, the whole matrices encode the whole
graph. But we will see that surprisingly, a lot of information can be read solely from just a
few eigenvalues, typically the smallest and largest ones, and the associated eigenvectors. It
will be convenient to always order the eigenvalues of A in deceasing order, µ1 ≥ · · · ≥ µn,
and those of L in increasing order, λ1 ≤ · · · ≤ λn.

So why would the eigenvalues of A or L have anything interesting to say? Let’s do some
simple examples:

Example 10.5. Consider the graph shown in Figure. 10.1.

Figure 10.1: A single edge

The adjacency matrix is

A =

(
0 1
1 0

)
.

Note that in writing down A we have some liberty in ordering the rows and columns. But
this does not change the spectrum as simultaneous reordering of the rows and the columns
corresponds to conjugation by a permutation, which is orthogonal and thus preserves the
spectral decomposition. We can also compute

D =

(
1 0
0 1

)
and L =

(
1 −1
−1 1

)
= L.

The spectrum of L is given by λ1 = 0, λ2 = 2. The corresponding eigenvectors are

1√
2

(
1
1

)
and

1√
2

(
1
−1

)
.
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Example 10.6. Consider the graph shown in Figure. 10.2.

Figure 10.2: The triangle graph

The adjacency matrix is given by

A =

 0 1 1
1 0 1
1 1 0


We can also compute

D =

 2 0 0
0 2 0
0 0 2

 and L =

 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

 .

The eigenvalues of L are 0, 3/2, 3/2 with corresponding eigenvectors

1√
3

 1
1
1

 ,
1√
6

 2
−1
−1

 ,
1√
2

 0
1
−1

 ,

where since the second eigenvalue 3/2 is degenerate we have freedom in choosing a basis for
the associated 2-dimensional subspace.

Example 10.7. As a last example, consider the path of length two, pictured in Figure. 10.3.

Figure 10.3: The path of length 2

The adjacency matrix is given by

A =

 0 1 0
1 0 1
0 1 0


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We can also compute

D =

 1 0 0
0 2 0
0 0 1

 and L =

 1 −1/
√

2 0

−1/
√

2 1 −1/
√

2

0 −1/
√

2 1

 .

The eigenvalues of L are 0, 1, 2 with corresponding eigenvectors

1

2

 1√
2

1

 ,
1√
2

−1
0
1

 ,
1

2

−1√
2
−1

 .

We’ve seen three examples — do you notice any pattern? 0 seems to always be the
smallest eigenvalue. Moreover, in two cases the associated eigenvector has all its coefficients
equal. In the case of the path, the middle coefficient is larger — this seems to reflect the
degree distribution in some way. Anything else? The largest eigenvalue is not always the
same. Sometimes there is a degenerate eigenvalue.

Exercise 1. Show that the largest eigenvalue of the normalized Laplacian λn = 2 if and
only if G is bipartite.

We will see that much more can be read about G from L in a systematic way. The
main connection between eigenvalues of L and combinatorial properties of G will rely on the
Courant-Fisher theorem:

Theorem 10.8 (Variational Characterization of Eigenvalues). Let M ∈ Rn×n be a sym-
metric matrix with eigenvalues µ1 ≥ · · · ≥ µn, and let the corresponding eigenvectors be
v1, · · · , vn. Then

µ1 = sup
x∈Rn

x 6=0

xTMx

xTx

µ2 = sup
x∈Rn

x⊥v1

xTMx

xTx

...

µn = sup
x∈Rn

x⊥v1,...,vn−1

xTMx

xTx
= inf

x∈Rn

x 6=0

xTMx

xTx

Proof. By the spectral theorem, we can write

M =
n∑

i=1

µiviv
T
i , (10.1)
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where {v1, . . . , vn} are an orthonormal basis of Rn formed of eigenvectors of M . For 1 ≤
k ≤ n, we have

µk ≤ sup
x∈Rn

x⊥v1,...,vk−1

xTMx

xTx
(10.2)

because by taking x = vk and using (10.1) together with vTi vk = 0 for i 6= k we immediately
get

xTMx

xTx
= µk.

To show the reverse inequality, observe that any x such that xTx = 1 and x ⊥ v1, . . . , vk−1
can be decomposed as x =

∑n
j=k αjvj with

∑
j α

2
j = 1. Now

xTMx =
n∑

i,j=k

n∑
l=1

µlαiαjv
T
i vlv

T
l vj =

n∑
l=k

µlα
2
l ≤ µk

since the eigenvalues are ordered in decreasing order. Thus

µk ≥ sup
x∈Rn

x⊥v1,...,vk−1

xTMx

xTx
,

which together with (10.2) concludes the proof.

10.2 The normalized Laplacian

The following gives a very useful interpretation of the quadratic form x 7→ xTLx associated
with the normalized Laplacian.

Claim 10.9. ∀x ∈ Rn, we have

xTLx =
∑
{i,j}∈E

(
xi√
di
− xj√

dj

)2

. (10.3)

If G is d-regular, then this simplifies to

xTLx =
1

d

∑
{i,j}∈E

(xi − xj)2.
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Proof.

xTLx = xTx− xTD−1/2AD−1/2x

=
∑
i

x2i −
∑
i,j

xi√
di
Aij

xj√
dj

=
∑
i

di

(
xi√
di

)2

−
∑

(i,j)∈E

xi√
di
· xj√

di

=
∑
{i,j}∈E

(
xi√
di
− xj√

dj

)2

.

The claim provides the following interpretation of the Laplacian: if we think of the vector
x as assigning a weight, or “potential” xi ∈ R to every vertex v ∈ V , then the Laplacian
measures the average variation of the potential over all edges. The expression xTLx will
be small when the potential x is close to constant across all edges (when appropriately
weighted by the corresponding degrees), and large when it varies a lot, for instance when
potentials associated with endpoints of an edge have a different sign. Now by the variational
characterization of eigenvalues we know how to relate this expression to the eigenvalues of
L, and we get the following corollary.

Claim 10.10. For any graph G with normalized Laplacian L, 0 ≤ L ≤ 2I. Moreover, if λ1
is the smallest eigenvalue of L then λ1 = 0 with multiplicity equal to the number of connected
components of G.

Proof. From (10.3) we see that xTLx ≥ 0 for any x, and using (a− b)2 ≤ 2(a2 + b2 we also
have xTLx ≤ 2xTx. Using the variational characterization

λ1 = inf
x6=0

xTLx

xTx
, λn = sup

x 6=0

xTLx

xTx
,

where λn is the largest eigenvalue, we see that 0 ≤ L ≤ 2I.
To see that λ1 = 0 alwyas with multiplicity at least 1 it suffices to consider the vector

v1 =


√
d1
...√
dn

 ,

for which vT1 Lv1 = 0.
Now suppose G has exactly L connected components. By choosing a vector equal to

√
di

for all i that belong to a given connected component and 0 elsewhere we can construct as
many orthogonal vectors v such that vTLv = 0 as there are connected components. Thus the
multiplicity of the eigenvalue 0 is at least as large as the number of connected components.
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To show the converse, note that from (10.3) we see that up to normalization any v such
that vTLv = 0 must be such that vi/

√
di is constant across each connected component. Thus

the dimension of the subspace of all v such that vTLv = 0 is effectively at most the number
of connected componentens, and there can be at most k linearly independent such vectors:
the multiplicity of the eigenvalue 0 is at most the number of connected components.

An immediate corollary worth stating explicitly is as follows:

Claim 10.11. For any graph G, the second smallest eigenvalue λ2(L) > 0 if and only if G
is connected.

These claims show that the small eigenvalues of L tells us whether the graph is connected
or not. We will make this statement more quantitative by showing that, not only is the
question of connectedness related to the question of λ2 being equal to 0, but in fact the
magnitude of λ2 can be used to quantify, in a precise way, how “well-connected” the graph
is. So let us look at a natural measure of connectedness of a graph, its conductance. Given
a set of edges S ( V , and S 6= ∅, the boundary of S is defined as

∂S =
{
{i, j} ∈ E : i ∈ S, j /∈ S

}
.

The conductance of S is

φ(S) =
|∂S|

min (d(S), d(V \S))
,

where d(S) :=
∑

i∈S di. If G is d-regular, then this simplifies to

φ(S) =
|∂S|

d ·min(|S|, |V \S|)
.

Definition 10.12 (Conductance). The conductance of a graph G is defined as

φ(G) = min
S:S 6=∅,S 6=V

φ(S).

If G is d-regular, this simplifies to

Φ(G) = min
S, 1≤|S|≤n/2

|∂S|
d · |S|

,

the fraction of edges incident on S that have one endpoint outside of S.

The conductance is a measure of how well connected G is. Here are some examples
demonstrating this point.

Example 10.13.

• Clearly G is disconnected if and only if there exists a set S 6= ∅, S 6= V such that
|∂S| = 0, i.e. if and only if φ(G) = 0.
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• If G is a clique, then

φ(G) = min
1≤k≤n/2

k(n− k)

(n− 1)k
=

n

2(n− 1)
≈ 1

2
.

• If G is a cycle, then

φ(G) = min
1≤k≤n/2

2

2k
=

2

n
.

Exercise 2. Compute the conductance of the hypercube G = (V,E) where V = {0, 1}n and
E = {{u, v} ∈ V : dH(u, v) = 1}, where dH is the Hamming distance.

The following theorem is the fundamental result relating conductance and the second
smallest eigenvalue of the normalized Laplacian.

Theorem 10.14 (Cheeger’s inequality). Let G be an undirected graph with normalized Lapla-
cian L = I−D−1/2AD−1/2. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L. Then

λ2
2
≤ φ(G) ≤

√
2λ2.

Remark 10.15. • Both sides of the inequality are interesting. The left-hand side says
that if there is a good cut, that is a cut of small conductance, then there is an eigen-
vector orthogonal to the smallest eigenvector with small eigenvalue. This is called the
“easy” side of Cheeger.

• The right-hand side says that if λ2 is small, then there must exist a poorly connected
set. This is called the “hard” side of Cheeger.

• We will give “algorithmic” proofs of both inequalities: for the left-hand side, given a
set S of low conductance we will show how to construct a vector v ⊥ v1 that achieves
a low value in (10.3). For the right-hand side, given a vector v2 ⊥ v1 achieving a low
value in (10.3) we will construct a set S of low conductance.

• The next exercise shows that both sides of the inequality are tight.

Exercise 3. Show that the left-hand side of Cheeger’s inequality is tight by computing the
eigenvalues and eigenvectors of the hypercube (hint: Fourier basis). Show that the right-hand
side is also tight by considering the example of the n-cycle.

Proof of Cheeger’s inequality. We first prove the “easy side”. Let S be a set of vertices such
that φ(S) = φ(G). We claim

λ2 = min
x∈Rn

x⊥v1=(
√
d1,··· ,

√
dn)

xTLx

xTx
≤ 2φ(G).
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To see this, define
x = (

√
di, . . .︸ ︷︷ ︸

vertices in S

,−σ
√
dj, . . .︸ ︷︷ ︸

vertices in S

),

where σ d(S)
d(V \S) is defined so that

xTv1 =
∑
i∈S

di − σ
∑
i∈S

di = 0.

We then have

xTx =
∑
i∈S

di + σ2
∑
i∈V \S

di = d(S) +
d(S)2

d(V \S)2
· d(V \S) =

d(S)d(V )

d(V \S)
,

and

xTLx =
∑
{i,j}∈E

(
xi√
di
− xj√

dj

)2

=
∑
{i,j}∈∂S

(1 + σ)2 =
∑
{i,j}∈∂S

(
d(V \S) + d(S)

d(V \S)

)2

= |∂S| d(V )2

d(V \S)2
.

This finally implies

xTLx

xTx
=
|∂S|d(V )

d(S)d(V \S)
≤ 2|∂S|

min(d(S), d(V \S))
= 2φ(G),

where the inequality can be seen by considering the cases d(S) ≤ d(V \S) and d(S) > d(V \S)
separately.

Now let’s turn to the “hard side” of the inequality. Let y ∈ Rn be such that

yTLy

yTy
≤ λ2 (10.4)

and y ⊥ v1 = (
√
d1, . . . ,

√
dn)T . We start with a few convenient normalization manipulations.

Let z = D−1/2y−σ1 for some σ to be determined soon and 1 = (1, . . . , 1)T . Since 1TL1 = 0,
we see that zTLz = yTLy. Moreover, D1 = σ1, thus

zTDz = yTy − 2σ vT1 · y︸ ︷︷ ︸
=0

+σ2d(V ) ≥ yTy,

and using (10.4) we get that for any σ,

zTLz

zTDz
≤ λ2.

We make the following conventions, without loss of generality:
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• Order the coordinates of z so that z1 ≤ . . . ≤ zn.

• Choose σ such that zi0 = 0, where i0 is such that∑
i<i0

di <
d(V )

2

∑
i≤i0

di ≥
d(V )

2
. (10.5)

• Scale z so that z21 + z2n = 1.

Let t ∈ [z1, zn] be chosen according to the distribution with density 2|t| (the scaling on z
assumed above ensures that this is a properly normalized probability density). Observe that
for any a < b,

Pr(t ∈ [a, b]) =

∫ b

a

2|t|dt

=


b2 + a2 if a < 0 < b

b2 − a2 if b > a > 0

a2 − b2 otherwise

≤ |b− a| (|a|+ |b|) ,

an inequality that is easily verified in all three cases. For any t, let St = {i : zi ≤ t}. Then

E
t
d(St) =

∑
i

Pr(i ∈ St)di =
∑
i

Pr(zi ≤ t)di.

Our choice of the index i0 in (10.5) ensures that, if t < 0 then min(d(St), d(V \St)) = d(St),
while if t ≥ 0 then min(d(St), d(V \St)) = d(V \St). Thus

E
t

min (d(St), d(V \St)) =
∑
i<j

Pr(zi ≤ t ∧ t < 0)di +
∑
i≥j

Pr(zi > t ∧ t ≥ 0)di

=
∑
i<j

z2i di +
∑
i≥j

z2i di (10.6)

= zTDz. (10.7)

Next we compute

E |∂St| =
∑
{i,j}∈E

Pr (zi ≤ t ≤ zj)

≤
∑
{i,j}∈E

|zj − zi|(|zi|+ |zj|)

≤
√ ∑
{i,j}∈E

(zi − zj)2

︸ ︷︷ ︸√
zTLz

√ ∑
{i,j}∈E

(|zi|+ |zj|)2

︸ ︷︷ ︸
≤
√

2
∑
{i,j}∈E(|zi|2+|zj |2)=

√
2zTDz

≤
√

2λ2z
TDz, (10.8)
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where the second inequality is Cauchy-Schwarz. Combining (10.6) and (10.8),

E |∂St| ≤
√

2λ2 E
t

min (d(St), d(v\St)) ,

which we can rewrite as

E
t

[√
2λ2 min (d(St), d(v\St))− |∂St|

]
≥ 0.

From there we deduce that there exists a choice of t such that

Φ(St) ≤
√

2λ2,

which immediately gives us that Φ(G) ≤
√

2λ2, as desired.

We note that the proof given above is algorithmic, in that it describes an efficient algo-
rithm that, given a graph, will produce a set with conductance at most

√
2λ2: simply com-

pute an eigenvector associated with the second smallest eigenvalue (using, e.g., the power
method), and output the set St which has smallest conductance among the n possibilities:
this can be checked efficiently.
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