
CS130 Software Engineering
Caltech – Winter 2024 – Lecture 19

Tarjan’s Algorithm for Identifying
Strongly Connected Components in the Dependency Graph

Project 4 Functionality

• Project 4 introduces features that make greater demands on the
cycle-detection implementation
• Up through Project 3, a

simple DFS traversal of
the dependency graph
is adequate
• In Project 4 this is no

longer adequate – can’t
just propagate circular-
reference errors

=B1
#CIRCREF!

=A1
#CIRCREF!

=A1 / 0
#CIRCREF!

A B C

1

=B1
#CIRCREF!

=A1
#CIRCREF!

=ISERROR(B1)
TRUE

A B C

1

2

Strongly Connected Components

• Dependency graph of
this spreadsheet:

• Must distinguish between nodes
in cycles, versus nodes that reference
cycles but are not part of the cycle
• Nodes in the cycle are called

strongly connected components (SCCs)
• Can reach any node in the SCC from any other node in the SCC
• All nodes in the SCC will be set to #CIRCREF!

=B1
#CIRCREF!

=A1
#CIRCREF!

=ISERROR(B1)
TRUE

A B C

1

A1 B1 C1

3

Strongly Connected Components (2)

• Dependency graph of
this spreadsheet:

• A single node not in any cycle is a
trivial strongly connected component
• e.g. C1 is a trivial SCC

• A multiple-cell SCC is a non-trivial SCC
• e.g. the set [A1, B1] in this example

• A single cell with a dependency on itself is also a non-trivial SCC
• e.g. if cell D1 was set to the formula “=D1”

=B1
#CIRCREF!

=A1
#CIRCREF!

=ISERROR(B1)
TRUE

A B C

1

A1 B1 C1

4

Strongly Connected Components (3)

• Dependency graph of
this spreadsheet:

• In Project 4, correct spreadsheet
evaluation requires identifying
non-trivial SCCs
• All cells in any non-trivial SCC are set to

#CIRCREF!; no other evaluation occurs
• All other cells must be evaluated using normal mechanism
• Formulas containing e.g. ISERROR(…) function calls will be computed correctly

=B1
#CIRCREF!

=A1
#CIRCREF!

=ISERROR(B1)
TRUE

A B C

1

A1 B1 C1

5

SCC Algorithms

• Two widely used algorithms for identifying the strongly connected
components in a directed graph
• Tarjan’s algorithm
• Kosaraju’s algorithm

• Both algorithms are built on top of depth-first search (DFS)
• Both algorithms have been used by CS130 students to identify SCCs
• Tarjan’s algorithm is easier to understand (I think)
• Tarjan’s algorithm also generates a reverse topological sort over the

nodes in the graph

6

Tarjan’s Algorithm: Approach

• As stated, Tarjan’s algorithm
operates on an entire graph
• Can also be used to perform

incremental updates, if only one
part of the graph has changed

• Iterate over all nodes in graph…
• If a node hasn’t yet been visited

by the algorithm, start a DFS
traversal from that node
• All SCCs reachable from that node

are identified

def tarjan(graph):
 visited = set()
 for node in graph.nodes:
 if not node.id in visited:
 find_sccs(graph, node)

def find_sccs(graph, node):
 # TODO: Something with DFS?

7

Tarjan’s Algorithm: Approach (2)

• The DFS traversal from that node
will explore a subtree of the
graph, rooted at that node
• All SCCs reachable from that node

are identified

• Recall: all nodes in an SCC are
reachable from any other node
in the SCC
• Thus: a given DFS traversal will

never find only a part of an SCC

def tarjan(graph):
 visited = set()
 for node in graph.nodes:
 if not node.id in visited:
 find_sccs(graph, node)

def find_sccs(graph, node):
 # TODO: Something with DFS?

8

Tarjan’s Algorithm: Node IDs and Lowlinks

• Tarjan’s algorithm assigns increasing
numeric IDs to nodes as it visits them
• These IDs are used solely by the algorithm, and are

independent of any other node-IDs in the program
• (The specific IDs assigned will likely vary from run to run)

• Each SCC is identified by the node with the
lowest ID in that SCC
• Tarjan’s algorithm calls this the “lowlink” value
• A node’s lowlink value is the lowest ID of any node in

the strongly connected component the node is part of
ID=1

ID=2

ID=5

ID=3

ID=4

START
9

Tarjan’s Algorithm: Node IDs and Lowlinks (2)

• Tarjan’s algorithm assigns increasing
numeric IDs to nodes as it visits them
• These IDs are used solely by the algorithm, and are

independent of any other node-IDs in the program
• (The specific IDs assigned will likely vary from run to run)

• Each SCC is identified by the node with the
lowest ID in that SCC
• If each SCC in the graph is condensed down to a

single node with an ID of the SCC’s lowlink value:
• The graph becomes a directed acyclic graph
• A node i is a predecessor of node j if i < j

ID=1

ID=2

ID=5

ID=3

ID=4

START
10

Tarjan’s Algorithm: Computing Lowlinks

• Of course, the algorithm doesn’t automatically
know each SCC’s lowlink value…
• As the algorithm traverses the graph, lowlink values

are propagated according to specific rules
• When Tarjan’s algorithm visits a node

for the first time:
• (i.e. the node doesn’t yet have an ID)
• The next available ID value is assigned to the node
• The node’s lowlink value is set to its own ID value
• (Every node is in a trivial SCC with itself)

ID=1
LL=1

ID=2
LL=2

START

ENTERED

DFS has entered the node

DFS has left the node

Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (2)

• Once the algorithm has entered a node,
neighbor nodes fall into two categories
• Category 1: The neighbor has not yet been visited
• It has neither an ID nor a lowlink value

• Recursively invoke the algorithm on the neighbor…
• This will set the neighbor node’s ID, and

compute its lowlink value
• Once the recursive invocation completes,

update the current node’s lowlink value
• node.lowlink = min(node.lowlink, neighbor.lowlink)

DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

START

CURRENT

ID=2
LL=2

Tarjan’s Algorithm: Computing Lowlinks (3)

• Once the algorithm has entered a node,
neighbor nodes fall into two categories
• Category 2: The neighbor has already been visited
• It has both an ID and a lowlink value
• The neighbor’s lowlink may not yet be its final value,

if we have entered but not yet left the neighbor
• The neighbor may also be from a different DFS traversal

• The algorithm has already visited the neighbor
before… am I inside a cycle (i.e. a nontrivial SCC)?
• We need more info to answer this question DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=5

Tarjan’s Algorithm: Computing Lowlinks (4)

• Tarjan’s algorithm must discern between different kinds of links
between nodes in the graph
• When traversing the graph via DFS, non-trivial SCCs will include at

least one back-link, pointing to some node entered earlier in the DFS
• We may also find cross-links between

subtrees within the graph
• Either part of this DFS traversal, or

part of some previous DFS traversal
• We don’t care about cross-links

• How to distinguish between
back-links and cross-links?

edges, forward edges, cross edges and back edges.

This classification of the edges is not a property of the graph alone. It also depends on the ordering
of the vertices in adj(v) and on the ordering of the vertices in the loop that calls the DFS procedure.
The num and mark fields are not actually necessary to accomplish a complete search of the graph.
All that is needed to do that is a single bit for each vertex that indicates whether or not that vertex
has already been searched. (This bit is zero for vertex v if and only if num(v) = 0.) We have
presented the fully general version here because it is needed for the strong components algorithm
that we present later in this lecture.

The tree edges have the property that either zero or one of them points to a given vertex. (It’s
the edge used to discover a vertex for the first time.) Therefore, they define a collection of trees,
called the depth first spanning forest of the graph. The root of each tree is the lowest numbered
vertex in it (the one that was searched first). These rooted trees allow us to define the ancestor
and descendant relations among vertices.

The figure above illustrates a spanning forest with two trees. Whenever we draw pictures of DFS
spanning forests we draw the ancestors up and the descendants down. We also draw the tree edges
out of a node left to right in the order in which they appear in the adjacency list.

So to summarize:

• tree edges form a forest of trees.
• forward edges are from a vertex to a descendant in the tree.
• cross edges are from node a to node b where the subtrees rooted at a and b are disjoint.
• back edges are from a vertex to an ancestor.

Note that it is never possible for there to to be “reverse cross edges”, that is, an edge that goes
from left to right between two disjoint subtrees, as in this picture:

This is because if such an edge existed, then it would be a tree edge. The vertex on the right end of

2

(diagram stolen from CMU lecture)
14

Tarjan’s Algorithm: Computing Lowlinks (5)

• Tarjan’s algorithm also maintains a stack of nodes
that it has entered during DFS traversal
• This stack is used to identify strongly connected components
• NOTE: This is separate from whatever is used for DFS traversal

• The stack is governed by special rules:
• When we enter a node, it is always pushed onto this stack
• Nodes are only popped off when we identify SCCs

• If we are in a non-trivial SCC, we will eventually
reach a node in the SCC we have already entered,
but have not yet left
• Use our stack of nodes to see if this is the case

DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=5

STACK
1
2
5

Tarjan’s Algorithm: Computing Lowlinks (6)

• In the example to the right, node 5’s neighbor
(ID=3) has already been visited, but is not
currently on the stack
• Don’t need to make any changes to node 5’s

lowlink value
• This example only contains trivial SCCs

• (TODO: How exactly to update our stack?)
DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=5

STACK
1
2
5

Tarjan’s Algorithm: Computing Lowlinks (7)

• Now a slightly modified graph, where node 5 now
references node 2 in a cycle, same stack contents
• Node 2 has already been visited, and it also

appears in the stack
• Node 5 is in the same SCC as node 2. Need to

update node 5’s lowlink based on node 2

• (TODO: How exactly to update our stack?)
DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=5

STACK
1
2
5

LL=2

Tarjan’s Algorithm: Computing Lowlinks (8)

• Category 2: The neighbor has already been visited,
and the neighbor also appears on the stack
• if neighbor.id in stack:
• my.lowlink = min(my.lowlink, neighbor.id)

• In this formulation it’s important to use
neighbor.id and not neighbor.lowlink
• This is the approach of the original paper
• (See references at end for more detailed

explanation, and an alternate approach)
DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=5

STACK
1
2
5

LL=2

Tarjan’s Algorithm: Computing Lowlinks (9)

• Tarjan’s algorithm must discern between different kinds of links
between nodes in the graph
• When traversing the graph via DFS, non-trivial SCCs will include at

least one back-link, pointing to some node entered earlier in the DFS
• We may also find cross-links between

subtrees within the graph
• Either part of this DFS traversal, or

part of some previous DFS traversal
• We don’t care about cross-links

• The stack allows us to distinguish
between back-links and cross-links

edges, forward edges, cross edges and back edges.

This classification of the edges is not a property of the graph alone. It also depends on the ordering
of the vertices in adj(v) and on the ordering of the vertices in the loop that calls the DFS procedure.
The num and mark fields are not actually necessary to accomplish a complete search of the graph.
All that is needed to do that is a single bit for each vertex that indicates whether or not that vertex
has already been searched. (This bit is zero for vertex v if and only if num(v) = 0.) We have
presented the fully general version here because it is needed for the strong components algorithm
that we present later in this lecture.

The tree edges have the property that either zero or one of them points to a given vertex. (It’s
the edge used to discover a vertex for the first time.) Therefore, they define a collection of trees,
called the depth first spanning forest of the graph. The root of each tree is the lowest numbered
vertex in it (the one that was searched first). These rooted trees allow us to define the ancestor
and descendant relations among vertices.

The figure above illustrates a spanning forest with two trees. Whenever we draw pictures of DFS
spanning forests we draw the ancestors up and the descendants down. We also draw the tree edges
out of a node left to right in the order in which they appear in the adjacency list.

So to summarize:

• tree edges form a forest of trees.
• forward edges are from a vertex to a descendant in the tree.
• cross edges are from node a to node b where the subtrees rooted at a and b are disjoint.
• back edges are from a vertex to an ancestor.

Note that it is never possible for there to to be “reverse cross edges”, that is, an edge that goes
from left to right between two disjoint subtrees, as in this picture:

This is because if such an edge existed, then it would be a tree edge. The vertex on the right end of

2

(diagram stolen from CMU lecture)
19

Tarjan’s Algorithm: Updating the Stack

• How do we update the stack?
• Recall:
• The stack records nodes we have entered in the DFS traversal
• The stack is used to identify strongly connected components

by finding their back-links
• When we enter a node, it is pushed onto this stack
• Nodes are only popped off when we identify SCCs

• Also:
• Each SCC is identified by the node with the lowest ID

in that SCC
DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=2

STACK
1
2
5

Tarjan’s Algorithm: Updating the Stack (2)

• How do we update the stack?
• When we are ready to leave a node,

compare its ID and lowlink values
• If these values are the same, then this node is the

starting point of a strongly connected component

• Pop all nodes in the SCC off the stack until
we have also popped off the current node’s ID
• Must not forget the node that identifies the SCC

DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=2

STACK
1
2
5

Tarjan’s Algorithm: Updating the Stack (3)

• How do we update the stack?
• When we are ready to leave a node,

compare its ID and lowlink values
• If these values are the same, then this node is the

starting point of a strongly connected component

• As these nodes are popped off the stack, can be
recorded into a data structure representing the SCC
• Whether the SCC is trivial or non-trivial can also be

stored in the structure representing the SCC DFS has entered the node

DFS has left the node

Considering this neighbor

ID=1
LL=1

ID=3
LL=3

ID=4
LL=4

START

CURRENT

ID=2
LL=2

ID=5
LL=2

STACK
1
2
5

Tarjan’s Algorithm – Wikipedia Version
algorithm tarjan is
 input: graph G = (V, E)
 output: set of SCCs (sets of vertices)

 index := 0
 S := empty stack
 for each v in V do
 if v.index is undefined then
 strongconnect(v)

 function strongconnect(v)
 // Set index, initial lowlink for v
 v.index := index
 v.lowlink := index
 index := index + 1

 // Record v on the stack
 S.push(v)
 v.onStack := true

 ...

// Consider neighbors of v to compute v.lowlink
 for each (v, w) in E do
 if w.index is undefined then
 // Successor w has not yet been visited
 strongconnect(w)
 v.lowlink := min(v.lowlink, w.lowlink)

 else if w.onStack then
 // Successor w has been visited, and is
 // also on stack S and is therefore in
 // the current SCC.
 v.lowlink := min(v.lowlink, w.index)

 // If v is a root of an SCC, pop vertices off
 // the stack to generate/record the SCC.
 if v.lowlink = v.index then
 start a new strongly connected component
 repeat
 w := S.pop()
 w.onStack := false
 add w to the current SCC
 while w ≠ v
 store or output the current SCC 23

References

• Wikipedia article on Tarjan’s algorithm (ofc)

• CMU lecture notes on strongly connected components in graphs

• A great visual explanation of Tarjan’s algorithm (YouTube)
• Note that this implementation differs slightly from the pseudocode on

Wikipedia, in this lecture, in CMU’s notes, etc!
• The CMU lecture notes also include this alternate formulation in the

“Implementation” section

24

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
https://www.cs.cmu.edu/~15451-f18/lectures/lec19-DFS-strong-components.pdf
https://youtu.be/wUgWX0nc4NY

A Common Variation of Tarjan’s Algorithm

25

public class TarjanSCC {
 int n, count, comp;
 int[] num, low, answer;
 boolean[] onStack;
 Stack<Integer> stack;
 int[][] graph;

 public int[] strong(int[][] g) {
 graph = g;
 n = graph.length;
 num = new int[n];
 low = new int[n];
 answer = new int[n];
 onStack = new boolean[n];
 stack = new Stack<Integer>();
 count = 0;
 comp = 0;
 for (int x=0; x<n; x++) DFS(x);
 return answer;
 }

 ...

void DFS(int v) {
 if (num[v] != 0) return; // Already visited

 num[v] = low[v] = ++count; // Assign ID and
 stack.push(v); // and push
 onStack[v] = true; // onto stack

 for (int w: graph[v]) DFS(w);

 for (int w: graph[v]) // Note different
 if (onStack[w]) // update!
 low[v] = min(low[v], low[w]);

 if (num[v] == low[v]) { // Construct any
 while (true) { // SCC that was
 int x = stack.pop(); // identified
 onStack[x] = false;
 answer[x] = comp;
 if (x == v) break;
 }
 comp++;
 }
 }
}

Implementation Notes

• Use helper classes to manage the state required for Tarjan’s algorithm
• Don’t be like these implementations! 🤮
• Your implementation can in fact be very clean and readable

• The recursive version of the algorithm is straightforward…
• Making it iterative can be a bit more challenging
• The variation may be a bit easier for this
• Always calls DFS on all neighbors…
• Can break the operation into two phases, “before visiting neighbors” and

“after visiting neighbors”
• May work well with iterative DFS approach shown in Lecture 3

26

