CS130 Software Engineering

Caltech — Winter 2024 — Lecture 19

Tarjan’s Algorithm for Identifying
Strongly Connected Components in the Dependency Graph

Project 4 Functionality

* Project 4 introduces features that make greater demands on the
cycle-detection implementation

* Up through Project 3, a

: A B
simple DFS traversal of ¢
the dependency graph 1 =B1 ~Al =A1/0
. #CIRCREF! #CIRCREF! #CIRCREF!
is adequate
* In Project 4 this is no
) A B C
longer adequate — can’t a1 vy CSERROR(BL
just propagate circular- 1 ~ - - (B1)
#CIRCREF! #CIRCREF! TRUE
reference errors

Strongly Connected Components

* Dependency graph of
this spreadsheet:

* Must distinguish between nodes

A B C
. =B1 =A1 =ISERROR(B1)
HCIRCREF! HCIRCREF! TRUE

in cycles, versus nodes that reference
cycles but are not part of the cycle

* Nodes in the cycle are called

strongly connected components (SCCs)

* Can reach any node in the SCC from any other node in the SCC
* All nodes in the SCC will be set to #CIRCREF!

Strongly Connected Components (2)

* Dependency graph of
this spreadsheet:

* A single node not in any cycle is a
trivial strongly connected component

e e.g.Clis atrivial SCC

* A multiple-cell SCC is a non-trivial SCC

A B C
. =B1 =A1 =ISERROR(B1)
HCIRCREF! HCIRCREF! TRUE

e e.g. the set [Al, B1] in this example

* A single cell with a dependency on itself is also a non-trivial SCC
e e.g. if cell D1 was set to the formula “=D1”

Strongly Connected Components (3)

* Dependency graph of
this spreadsheet:

* In Project 4, correct spreadsheet
evaluation requires identifying

non-trivial SCCs

* All cells in any non-trivial SCC are set to

A B C
. =B1 =A1 =ISERROR(B1)
HCIRCREF! HCIRCREF! TRUE

#CIRCREF!: no other evaluation occurs

* All other cells must be evaluated using normal mechanism
* Formulas containing e.g. ISERROR(...) function calls will be computed correctly

SCC Algorithms

* Two widely used algorithms for identifying the strongly connected
components in a directed graph

e Tarjan’s algorithm
* Kosaraju’s algorithm

* Both algorithms are built on top of depth-first search (DFS)
e Both algorithms have been used by CS130 students to identify SCCs
* Tarjan’s algorithm is easier to understand (I think)

e Tarjan’s algorithm also generates a reverse topological sort over the
nodes in the graph

Tarjan’s Algorithm: Approach

* As stated, Tarjan’s algorithm
operates on an entire graph

e Can also be used to perform
incremental updates, if only one
part of the graph has changed

* |lterate over all nodes in graph...

* If a node hasn’t yet been visited
by the algorithm, start a DFS
traversal from that node

e All SCCs reachable from that node
are identified

def tarjan(graph):
visited = set()
for node in graph.nodes:
if not node.id in visited:
find_sccs(graph, node)

def find _sccs(graph, node):
TODO: Something with DFS?

Tarjan’s Algorithm: Approach (2)

* The DFS traversal from that node def tarjan(graph):
will explore a subtree of the visited = set()
graph, rooted at that node

* All SCCs reachable from that node
are identified

for node in graph.nodes:
if not node.id in visited:

* Recall: all nodes in an SCC are find_sccs(graph, node)

reachable from any other node
in the SCC def find _sccs(graph, node):

* Thus: a given DFS traversal will # TODO: Something with DFS?
never find only a part of an SCC

Tarjan’s Algorithm: Node IDs and Lowlinks

* Tarjan’s algorithm assigns increasing
numeric IDs to nodes as it visits them

* These IDs are used solely by the algorithm, and are
independent of any other node-IDs in the program

* (The specific IDs assigned will likely vary from run to run)

* Each SCC is identified by the node with the
lowest ID in that SCC

* Tarjan’s algorithm calls this the “lowlink” value

* A node’s lowlink value is the lowest ID of any node in
the strongly connected component the node is part of

START

Tarjan’s Algorithm: Node IDs and Lowlinks (2)

* Tarjan’s algorithm assigns increasing
numeric IDs to nodes as it visits them

* These IDs are used solely by the algorithm, and are
independent of any other node-IDs in the program

* (The specific IDs assigned will likely vary from run to run)

* Each SCC is identified by the node with the
lowest ID in that SCC

* If each SCCin the graph is condensed down to a
single node with an ID of the SCC’s lowlink value:
* The graph becomes a directed acyclic graph
* Anodeiis apredecessor of nodejifi<j

START

Tarjan’s Algorithm: Computing Lowlinks

e Of course, the algorithm doesn’t automatically
know each SCC’s lowlink value...

* As the algorithm traverses the graph, lowlink values
are propagated according to specific rules

* When Tarjan’s algorithm visits a node
for the first time:
* (i.e. the node doesn’t yet have an ID)
* The next available ID value is assigned to the node
* The node’s lowlink value is set to its own ID value
* (Every node is in a trivial SCC with itself)

ENTERED

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (2)

* Once the algorithm has entered a node,
neighbor nodes fall into two categories

* Category 1: The neighbor has not yet been visited
* |t has neither an ID nor a lowlink value

* Recursively invoke the algorithm on the neighbor...

* This will set the neighbor node’s ID, and
compute its lowlink value

* Once the recursive invocation completes, CURRENT
update the current node’s lowlink value

* node.lowlink = min(node.lowlink, neighbor.lowlink)

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (3)

* Once the algorithm has entered a node,
neighbor nodes fall into two categories

e Category 2: The neighbor has already been visited
* |t has both an ID and a lowlink value

* The neighbor’s lowlink may not yet be its final value,
if we have entered but not yet left the neighbor

* The neighbor may also be from a different DFS traversal

* The algorithm has already visited the neighbor R

before... am Il inside a cycle (i.e. a nontrivial SCC)?

* We need more info to answer this question

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (4)

e Tarjan’s algorithm must discern between different kinds of links
between nodes in the graph

* When traversing the graph via DFS, non-trivial SCCs will include at
least one back-link, pointing to some node entered earlier in the DFS

* We may also find cross-links between crese | tre Crogs
subtrees within the graph 2 (/9
* Either part of this DFS traversal, or T
part of some previous DFS traversal
 We don’t care about cross-links 3
* How to distinguish between y 7

back-links and cross-links?

(diagram stolen from CMU lecture)

Tarjan’s Algorithm: Computing Lowlinks (5)

e Tarjan’s algorithm also maintains a stack of nodes
that it has entered during DFS traversal

* This stack is used to identify strongly connected components

* NOTE: This is separate from whatever is used for DFS traversal

* The stack is governed by special rules:
* When we enter a node, it is always pushed onto this stack
* Nodes are only popped off when we identify SCCs

* If we are in a non-trivial SCC, we will eventually
reach a node in the SCC we have already entered,
but have not yet left

e Use our stack of nodes to see if this is the case

CURRENT

DFS has entered the node

START DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (6)

* In the example to the right, node 5’s neighbor
(ID=3) has already been visited, but is not
currently on the stack

* Don’t need to make any changes to node 5’s
lowlink value

* This example only contains trivial SCCs

CURRENT

* (TODO: How exactly to update our stack?)

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (7)

* Now a slightly modified graph, where node 5 now
references node 2 in a cycle, same stack contents

* Node 2 has already been visited, and it also
appears in the stack

* Node 5 is in the same SCC as node 2. Need to
update node 5’s lowlink based on node 2

CURRENT

* (TODO: How exactly to update our stack?)

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (8)

and the neighbor also appears on the stack
* if neighbor.id in stack:
* my.lowlink = min(my.lowlink, neighbor.id)

* In this formulation it’s important to use
neighbor.id and not neighbor.lowlink
* This is the approach of the original paper

* (See references at end for more detailed
explanation, and an alternate approach)

CURRENT

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Computing Lowlinks (9)

e Tarjan’s algorithm must discern between different kinds of links
between nodes in the graph

* When traversing the graph via DFS, non-trivial SCCs will include at
least one back-link, pointing to some node entered earlier in the DFS

« We may also find cross-links between cress | tree Croes
subtrees within the graph

* Either part of this DFS traversal, or
part of some previous DFS traversal

e We don’t care about cross-links 3

* The stack allows us to distinguish 4 . Q

.....
e
’

between back-links and cross-links

(diagram stolen from CMU lecture)

Tarjan’s Algorithm: Updating the Stack

* How do we update the stack?

e Recall:

 The stack records nodes we have entered in the DFS traversal

* The stack is used to identify strongly connected components
by finding their back-links

* When we enter a node, it is pushed onto this stack
* Nodes are only popped off when we identify SCCs
 Also:

e Each SCCis identified by the node with the lowest ID
in that SCC

CURRENT

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Updating the Stack (2)

1
* How do we update the stack? = l

* When we are ready to leave a node, R
compare its ID and lowlink values

* |f these values are the same, then this node is the
starting point of a strongly connected component

* Pop all nodes in the SCC off the stack until
we have also popped off the current node’s ID

* Must not forget the node that identifies the SCC

CURRENT

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm: Updating the Stack (3)

STACK
1
* How do we update the stack? < l
* When we are ready to leave a node, R

compare its ID and lowlink values

* |f these values are the same, then this node is the
starting point of a strongly connected component

* As these nodes are popped off the stack, can be
recorded into a data structure representing the SCC

* Whether the SCC s trivial or non-trivial can also be
stored in the structure representing the SCC

CURRENT

DFS has entered the node

START

DFS has left the node

<— Considering this neighbor

Tarjan’s Algorithm — Wikipedia Version

algorithm tarjan is __9 // Consider neighbors of v to compute v.lowlink
input: graph G = (V, E) f\ for each (v, w) in E do
N . ' ' .
output: set of SCCs (sets of vertices) Y if w.index is undefined then

// Successor w has not yet been visited
strongconnect (w)

v.lowlink := min(v.lowlink, w.lowlink)

index := 0
S := empty stack
for each v in V do
if v.index is undefined then
strongconnect (v)

\
1
1
1
1
1
1

: else if w.onStack then

I // Successor w has been visited, and 1is
: // also on stack S and 1s therefore 1in
|
|
|
1
1
]
I
I
]
I

function strongconnect (v) // the current SCC.

// Set index, initial lowlink for v v.lowlink := min(v.lowlink, w.index)
v.index := 1index
v.lowlink := index // If v is a root of an SCC, pop vertices off
index := index + 1 // the stack to generate/record the SCC.
! if v.lowlink = v.index then

// Record v on the stack / start a new strongly connected component
S.push (v) S repeat
v.onStack := true e w = S.pop()

_-" w.onStack := false

-
-
—
-
——_—_———_
—

add w to the current SCC
while w # v

store or output the current SCC

References

* Wikipedia article on Tarjan’s algorithm (ofc)

* CMU lecture notes on strongly connected components in graphs

* A great visual explanation of Tarjan’s algorithm (YouTube)

* Note that this implementation differs slightly from the pseudocode on
Wikipedia, in this lecture, in CMU’s notes, etc!

e The CMU lecture notes also include this alternate formulation in the
“Implementation” section

24

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
https://www.cs.cmu.edu/~15451-f18/lectures/lec19-DFS-strong-components.pdf
https://youtu.be/wUgWX0nc4NY

A Common Variation of Tarjan’s Algorithm

public class TarjanSCC ({
int n, count, comp;
int[] num, low, answer;
boolean|[] onStack;
Stack<Integer> stack;

int[] [] graph;
public int[] strong(int[][] g) {
graph = g;
n = graph.length;
num = new int[n];
low = new int[n];
answer = new int[n];

onStack = new boolean[n];

stack = new Stack<Integer>();
count = 0;

comp = 0;

for (int x=0; x<n; x++) DFS (x);
return answer;

-
-
-
-
—————————_
=

void DFS (int v) {

if (num([v] != 0) return;
num[v] = low|[v] = ++count;
stack.push (v) ;

onStack[v] = true;

// Already visited

// Assign ID and
// and push
// onto stack

for (int w: graph[v]) DFS(w);

for (int w: graph(v])
if (onStack[w])

// Note different
// update!

low([v] = min(low[v], low[w]):

if (num[v] == low[Vv]) {
while (true) {
int x = stack.pop();

onStack[x] = false;
answer [x] = comp;
if (x == v) break;
}
compt++;

// Construct any
// SCC that was
// identified

25

Implementation Notes

* Use helper classes to manage the state required for Tarjan’s algorithm
* Don’t be like these implementations! ‘&
* Your implementation can in fact be very clean and readable

* The recursive version of the algorithm is straightforward...
* Making it iterative can be a bit more challenging

e The variation may be a bit easier for this
* Always calls DFS on all neighbors...

* Can break the operation into two phases, “before visiting neighbors” and
“after visiting neighbors”

* May work well with iterative DFS approach shown in Lecture 3

