
PROCESS SCHEDULING II
CS124 – Operating Systems
Spring 2024, Lecture 12

Real-Time Systems
• Increasingly common to have systems with real-time scheduling requirements
• Real-time systems are driven by specific events
• Often a periodic hardware timer interrupt
• Can also be other events, e.g. detecting a wheel slipping, or an optical sensor triggering, or

a proximity sensor reaching a threshold
• Event latency is the amount of time between an event occurring, and when it

is actually serviced
• Usually, real-time systems must keep event latency below a minimum required threshold
• e.g. antilock braking system has 3-5 ms to respond to wheel-slide

• The real-time system must try to meet its deadlines, regardless of system load
• Of course, may not always be possible…

2

Real-Time Systems (2)
• Hard real-time systems require tasks to be serviced before their deadlines,

otherwise the system has failed
• e.g. robotic assembly lines, antilock braking systems

• Soft real-time systems do not guarantee tasks will be serviced before their
deadlines
• Typically only guarantee that real-time tasks will be higher priority than non-real-time tasks
• e.g. media players

• Within the operating system, two latencies affect the event latency of the
system’s response:
• Interrupt latency is the time between an interrupt occurring, and the interrupt service

routine beginning to execute
• Dispatch latency is the time the dispatcher takes to switch from one process to another

3

Interrupt Latency
• Interrupt latency in context:

• When an interrupt occurs:
• CPU must complete the current instruction
• (If interrupts are turned off, must complete current critical section.)

• CPU dispatches to the operating system’s interrupt handler
• OS interrupt handler saves the interrupted process’ context, and invokes the actual interrupt

service routine
• All of this can take some time…

4

Task Running

Interrupt!

OS Interrupt
Handler

Context-Switch
from Task

Interrupt Service
Routine

Interrupt Latency

Interrupt Latency (2)
• Interrupt latency can be dramatically increased by kernel code that disables

interrupt handlers
• Frequently necessary to avoid synchronization issues

• Real-time systems must disable interrupts for as short as possible, to minimize
interrupt latency

• Allowing kernel preemption also helps reduce both the length and variance of
interrupt latency
• Allow the kernel to context-switch away from a user process at any time, even when the

process is in kernel code

5

Dispatch Latency
• If the interrupt signals an event for a real-time process, the process can now

execute…
• Need to get the real-time process onto the CPU as fast as possible
• Minimize dispatch latency

• Implication 1: real-time processes must be highest priority of all processes in
the system

• Implication 2: the OS scheduler must support preemption of lower-priority
processes by higher-priority processes

6

Task Running

OS Interrupt
Handler

Context-Switch
from Task

Interrupt Service
Routine

Interrupt Latency

Interrupt!

Dispatch Latency Real-Time Process Running

Dispatch to
RT Process

Event Latency

Dispatch Latency (2)
• Scheduler dispatcher must be as efficient as possible
• Also, it’s possible that a lower-priority process currently holds other resources

that the real-time process needs
• In this case, resource conflicts must be resolved:
• i.e. cause lower-priority processes to release these resources so the real-time process can

use them

7

Conflicts

Task Running

OS Interrupt
Handler

Context-Switch
from Task

Interrupt Service
Routine

Interrupt Latency

Interrupt!

Dispatch Latency Real-Time Process Running

Dispatch to
RT Process

Event Latency

Real-Time Process Scheduling
• Real-time scheduling algorithms often make assumptions about real-time

processes
• Real-time processes are often periodic: need the CPU at constant intervals
• Must execute on a regular period p
• Each period, execution takes a fixed time t to complete (t < p)

• Given these values (and event latency), can determine a deadline d for the
process to receive the CPU
• If real-time process doesn’t receive the CPU within the deadline, it will not complete on time

8

Period p Period p

Time t

Deadline d Deadline d

Real-Time Process Scheduling (2)
• Some OSes require real-time processes to state their scheduling requirements

to the OS scheduler
• The OS can then make a decision about whether it can schedule the real-time

process successfully
• Called an admission-control algorithm
• If the OS cannot schedule the process based on its requirements, the scheduling request is

rejected
• Otherwise, the OS admits the process, guaranteeing that it can satisfy the process’

scheduling requirements
• (Primarily a feature of hard real-time operating systems…)

9

Period p Period p

Time t

Deadline d Deadline d

Rate-Monotonic Scheduling
• Real-time processes can be scheduled with rate-monotonic scheduling
• Tasks are assigned a priority inversely based on their period
• The shorter the period, the higher the priority

• Higher-priority tasks preempt lower-priority ones
• This algorithm is optimal in terms of static priorities
• If a set of real-time processes can’t be scheduled by this algorithm, no algorithm that

assigns static priorities can schedule them

10

Period p Period p

Time t

Deadline d Deadline d

Rate-Monotonic Scheduling (2)
• Lower-priority processes may be preempted by higher-priority ones
• As with fixed-priority preemptive scheduling, priority inversion can become an issue (and

the solutions are the same)
• Is a set of real-time processes actually schedulable?
• Processes must execute on a specific period p
• Processes complete a CPU burst of length t during each period

• Example: two real-time processes
• P1 has a period of 50 clocks, CPU burst of 20 clocks
• P2 has a period of 100 clocks, CPU burst of 35 clocks

11

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P1P1, P2 P1, P2Required Completion:

Rate-Monotonic Scheduling (2)
• Example: two real-time processes
• P1 has a period of 50 clocks, CPU burst of 20 clocks
• P2 has a period of 100 clocks, CPU burst of 35 clocks

• P1 and P2 can begin executing at the same time…
• P1 has the higher priority, so it takes the CPU first
• P1 completes its processing, and then P2 starts…

• Part way through P2’s CPU burst, P1 must execute again
• Preempts P2, and completes
• P2 regains the CPU and completes its processing

12

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P2 P1 P1 P2 P1

P1 P1P1, P2 P1, P2Required Completion:

Rate-Monotonic Scheduling (3)
• With these processes, clearly have some time left over…
• P1 has a period of 50 clocks, CPU burst of 20 clocks
• P2 has a period of 100 clocks, CPU burst of 35 clocks

• CPU utilization of P1 = time / period = 20 / 50 = 0.4
• CPU utilization of P2 = 35 / 100 = 0.35
• Total CPU utilization = 0.75
• Can we use CPU utilization to tell if a set of real-time processes can be

scheduled?

13

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P2 P1 P1 P2 P1

P1 P1P1, P2 P1, P2Required Completion:

idle idle

Rate-Monotonic Scheduling (4)
• Another example:
• P1 has a period of 50 clocks, CPU burst of 25 clocks
• P2 has a period of 80 clocks, CPU burst of 35 clocks

• CPU utilization of P1 = time / period = 25 / 50 = 0.5
• CPU utilization of P2 = time / period = 35 / 80 = ~0.44
• Total CPU utilization = ~0.94

• But can we actually schedule these processes with rate-monotonic
scheduling?

14

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P1P1 P1Required Completion:
P2 P2

Rate-Monotonic Scheduling (5)
• Again, simulate rate-monotonic scheduling:
• P1 has higher priority, executes first, and completes
• P2 begins to execute…
• …but is preempted by P1 before it completes…
• When P2 regains CPU, it misses its deadline by 5 clocks
• Even though total CPU utilization is < 100%, still not good enough!

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P2 P1

P1 P1P1 P1Required Completion:
P2 P2

Rate-Monotonic Scheduling (6)
• For scheduling N real-time processes, CPU utilization can be no more than

N(21/N – 1)
• e.g. for two processes, CPU utilization must be ≤ 0.828

• As N à ∞, maximum CPU utilization à 0.69

• For details on the above constraint, see:
• Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment by Liu and

Layland (1973)

16

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P2 P1

P1 P1P1 P1Required Completion:
P2 P2

Earliest Deadline First Scheduling
• Earliest deadline first (EDF) scheduling algorithm dynamically assigns

priorities to real-time processes
• The earlier a process’ deadline, the higher its priority
• Processes must state their deadlines to the scheduler

• Our previous example:
• P1 has a period of 50 clocks, CPU burst of 25 clocks
• P2 has a period of 80 clocks, CPU burst of 35 clocks

17

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P1P1 P1Required Completion:
P2 P2

Earliest Deadline First Scheduling (2)
• With earliest deadline first scheduling:
• P1 has earliest deadline at 50, so it runs first, completes
• P2 begins running…
• This time when P1’s next deadline at 100 comes up, P2’s deadline at 80 is still

earlier, so it runs to completion

• Both processes complete in time for their first deadline

18

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1Required Completion:
P2

P1 P2

P1

Earliest Deadline First Scheduling (3)
• P1 starts running again for its second deadline at 100, and it completes before

that deadline
• P2 begins running for its second deadline at 160…
• …but is preempted by P1 due to its 3rd deadline at 150
• P1 completes in time for its third deadline
• P2 resumes execution, and also completes in time for 2nd deadline

• Both processes complete in time for their deadlines

19

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P1 P2

P2P1P1Required Completion:
P2

P1 P2 P1 P2

P1

Earliest Deadline First Scheduling (4)
• Earliest deadline first scheduling has fewer requirements than rate-monotonic

scheduling:
• Doesn’t actually require periodic processes, or constant CPU burst times
• Only requires processes to state their deadlines

• EDF scheduling is theoretically optimal:
• If a set of processes has at most 100% CPU utilization, EDF can schedule that set of

processes such that it meets its deadlines
• Of course, event latency imposes an overhead…
• Prevents EDF scheduling from achieving 100% CPU utilization

20

Linux 2.4 Scheduler
• Linux has used a wide range of scheduling algorithms
• Linux 2.4 scheduler: time is divided into epochs
• At the start of each epoch, scheduler assigns a priority to every process based

on its behavior
• Real-time processes have an absolute priority assigned to them, and are highest priority
• Interactive processes have a dynamic priority assigned to them based on behavior in the

previous epoch
• Batch processes are given the lowest priority

• Each process’ priority is used to compute a time quantum
• Different processes can have different size quantums
• (Higher-priority processes generally get larger timeslices)
• When a process has completely used its quantum, it’s preempted and another process runs

21

Linux 2.4 Scheduler (2)
• When scheduler is invoked, it iterates over all processes
• Computes a “goodness,” based on priority and other considerations
• e.g. processes can receive a bonus if they last ran on the same CPU that the scheduler is running

on (encourages CPU affinity)
• The best process is given the CPU

• Higher priority processes preempt lower priority ones
• If a higher-priority process becomes runnable, it takes the CPU from a lower-priority

process that currently holds the CPU
• The current epoch ends when all runnable processes have consumed their

entire time quantum
• A process can be scheduled on the CPU multiple times within an epoch
• e.g. it yields or blocks before its quantum is consumed, and then becomes runnable before

the epoch completes

22

Linux 2.4 Scheduler (3)
• At start of next epoch, the scheduler iterates through all processes again,

computing a new priority for each one
• Several O(N) computations in the scheduler made it scale terribly to large

numbers of processes
• Assigning a dynamic priority to each process at start of epochs
• Choosing a process from the run queue

• Linux 2.6 scheduler was written to eliminate as many inefficiencies in the 2.4
scheduler as possible

• Captured the basic principles of the 2.4 scheduler, but a faster implementation

23

Linux 2.6 O(1) Scheduler
• Linux O(1) scheduler still includes the notion of epochs, but only informally
• Processes are maintained in a priority array structure
• Each priority level has a queue of processes

• A bitmap records which priority levels have
runnable processes

• Finding the highest-priority process to run is a
constant-time operation
• Find index of lowest 1-bit in bitmap
• Use that index to access the priority array

24

Highest
Priority

Lowest
Priority

0 0 0 1 1 0 1 0

Highest
Priority

Lowest
Priority

Bitmap:

Linux 2.6 O(1) Scheduler (2)
• Linux O(1) scheduler maintains two priority arrays:
• Active array contains processes with remaining time
• Expired array holds processes that have used up their quantum

• When an active process uses its entire quantum,
it is moved to the expired array
• When it is moved, a new priority

is given to the process
• When the active priority array is empty,

the epoch is over
• O(1) scheduler swaps the active and expired

pointers and starts over again

25

Highest
Priority

Lowest
Priority

Active:

Highest
Priority

Lowest
Priority

Expired:

Linux 2.6 O(1) Scheduler (3)
• The O(1) scheduler is very cleverly written to be efficient
• Same basic mechanism as the 2.4 scheduler, but much faster
• Used until Linux kernel 2.6.23

• Unfortunately, the O(1) scheduler implementation was very complicated and
difficult to maintain

• After version 2.6.23, Linux switched to the Completely Fair Scheduler (CFS)
• Originally written by Ingo Molnar

26

Linux Completely Fair Scheduler
• Linux Completely Fair Scheduler (CFS):
• Instead of maintaining processes in various queues, the CFS simply ensures that each

process gets its “fair share” of the CPU
• What constitutes a “fair share” is affected by the process’ priority; e.g. high-priority

processes get a larger share, etc.
• Scheduler maintains a virtual run time for each process:
• Records how long each process has run on the CPU
• This virtual clock is inversely scaled by the process’ priority: the clock runs slower for high-

priority processes, faster for low-priority
• All ready processes are maintained in a red-black tree, ordered by increasing

virtual run times
• O(log N) time to insert a process into the tree

• The leftmost process has run for shortest amount of time, and therefore has
the greatest need for the CPU

27

Linux Completely Fair Scheduler (2)
• To facilitate rapid identification of leftmost process, a separate variable records

this process
• O(1) lookup for next process to run

• The CFS scheduler chooses a time quantum based on:
• The targeted latency of the system: a time interval in which every ready process should

receive the CPU at least once
• The total number of processes in the system: the targeted latency has minimum and default

values, but can be dynamically increased if a system is under heavy load
• Using these values and a process’ virtual run time, the scheduler determines

when to preempt each process

28

Linux Completely Fair Scheduler (3)
• General behaviors:
• Processes that block or yield frequently will have lower virtual runtimes than those that don’t
• When these processes become ready to execute, they will receive the CPU very quickly

• No idea how long Linux will stick with the Completely Fair Scheduler
• CFS has been default scheduler since 2007, so it seems to be here to stay
• Very interesting to study Linux schedulers: very different from the most widely used

approaches to process scheduling

29

Other Scheduling Algorithms
• Linux Completely Fair Scheduler is similar to another algorithm called stride

scheduling
• Unfortunately, not enough time to discuss this algorithm
• See: Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management by

Waldspurger (1995)

30

Next Time
• Implementation of user processes and system calls

31

