
PROCESSES AND THREADS
THREADING MODELS
CS124 – Operating Systems
Spring 2024, Lecture 7

Processes and Threads
• As previously described, processes have one sequential thread of execution
• Increasingly, operating systems offer the ability to have multiple concurrent

threads of execution in a process
• Individual threads can execute only one instruction at a time
• Multiple threads in a process allow multiple tasks to be performed concurrently,

“at the same time” (i.e. overlapping logical control-flows)

• Requires changes to the process model:
• CPU state can no longer be managed on a per-process basis
• Must manage CPU state on a per-thread basis
• All other resources can be managed on a per-process basis

2

Processes and Threads (2)
Single-threaded process
• Per-process items:
• Address space / page table
• Program text (i.e. the code)
• CPU registers
• Program counter
• Stack and stack pointer
• Global variables
• Memory heap
• Signal handlers
• Open files, sockets, etc.
• Child processes

Multithreaded process
• Per-process items:
• Address space / page table
• Program text
• Global variables
• Memory heap
• Signal handlers
• Open files, sockets, etc.
• Child processes

• Per-thread items:
• CPU registers
• Program counter
• Stack and stack pointer

3

Why Multithreaded Processes?
• Two big reasons why multithreading is desirable:
• Reason 1: Performance (obvious)
• Reason 2: A cleaner abstraction for concurrent operations

• Lots of ways that multithreading can improve performance
• Responsiveness:
• Apps that perform slow or long-running tasks can do them on background threads
• A foreground thread responds to user interactions immediately
• Responsive applications = happy users J

• Web browsers are a common example of this pattern
• User-interface thread draws the web page, handles mouse clicks
• A pool of background threads handles content downloads from remote servers
• UI thread updates display as downloaded files become available

4

Multithreading: Responsiveness
• Common web browser pattern:
• User-interface thread draws the web page, handles mouse clicks
• A pool of background threads handles content downloads from remote servers

• Does this require multiple CPUs to yield a benefit?
• NO!
• Background threads will usually be blocked on I/O, or waiting for work to do – they won’t

occupy the CPU
• Similar case for UI thread – waiting for user interaction

• Even with a single physical processor, multithreading can greatly improve
application responsiveness
• Particularly in cases where most tasks are I/O bound

5

Multithreading: Scalability
• Example: a large scientific/mathematical computation
• Instead of performing this computation in a single thread, split it into multiple concurrently

executing threads
• Does this require multiple CPUs to yield a benefit?
• YES!
• Threads will mostly be CPU-bound, not I/O-bound
• If there is only one CPU in the system, multiple threads will probably make the program

slower instead of faster (extra context-switches, synchronization overhead, etc.)
• If there are multiple CPUs in the system:
• A single-threaded process cannot take advantage of multiple CPUs
• Only way to utilize multiple CPUs is to run multiple processes, or to run a process with

multiple threads
• Multithreading facilitates scalability with available hardware

6

Multithreading: Scalability (2)
• A major difference between concurrency and parallelism

• Concurrency means that multiple tasks have overlapping logical control flows
• Concurrency does not require multiple processors
• A one-CPU system can achieve this by switching back and forth between concurrent tasks

at appropriate points in time
• Concurrency doesn’t necessarily imply that multiple tasks’ instructions are being executed

at the same time, just that their execution is overlapping/interleaved in some way

• Parallelism means that multiple tasks are actually executing at the same time
• i.e. multiple processors are executing different tasks’ instructions at exactly the same time

7

Multithreading: Scalability (3)
• Example: a large scientific/mathematical computation
• Instead of performing this computation in a single thread, split it into multiple concurrently

executing threads
• If a system has multiple CPUs, can improve computation’s performance by

running one thread per CPU
• Threads will actually execute in parallel

• Assume program takes 1 unit of time to complete on 1 CPU
• Ideally, running the program on N CPUs will result in it taking 1/N the time to complete

(i.e. a speedup of N)
• The reality isn’t always so nice…
• Most computations have parts that must be performed sequentially, cannot be parallelized
• The sequential parts restrict max possible speedup achievable by parallelizing the task

8

Amdahl’s Law
• Amdahl’s Law is a simple formula that captures this issue
• Given: a task where S is the percentage of the task that must be executed

serially (i.e. cannot be parallelized)
• On a single-processor machine the task takes 1 unit of time to run
• On an N-processor machine, the task will take S + (1 – S) / N units of time to run
• The speedup due to parallelism will be (S + (1 – S) / N)-1

• Example: a task with 10% that must be run serially
• 1.8x speedup on 2 CPUs
• 3.1x speedup on 4 CPUs
• 4.7x speedup on 8 CPUs
• As N à ∞, speedup à 10x, and that’s it. L

9

Amdahl’s Law (2)
• Amdahl’s Law is bad news for speeding up fixed-size tasks with more CPUs…
• Many tasks are variable in size:
• Given more computing resources, users will increase the size of the task to use all available

computing resources
• Focus isn’t solely on reducing the time to complete the task

• Also, many variable-size tasks have this characteristic:
• As the task’s size increases, the size of parallelizable part of the task increases faster than

size of the serial part of the task
• Percentage of the task that must be executed serially will decrease!

• Such tasks still see improved performance by increasing parallelism
• Formulated as Gustafson-Barsis’ Law (1988)
• Not a contradiction of Amdahl’s Law, just different constraints

10

Multithreading: Economy
• Multithreaded processes have two other performance-related benefits:

resource sharing and economy
• Threads are generally much faster to create and destroy than processes
• Fewer resources to allocate or release: most resources managed on a per-process basis

• Context-switching between multiple threads in the same process tends to be
much faster
• Threads share one address space: don’t need to change the page table being used, etc.
• (Switching between threads in different processes is still slower.)

• Sharing resources (e.g. files, sockets) between threads is much easier than
sharing them between processes

11

Multithreading: Abstractions
• Another benefit of threads: a cleaner abstraction
• Why are long-running system calls blocking, anyway?
• i.e. why do they force the process to wait until request is completed

• Blocking operations are simply much easier to use
• Alternative: asynchronous (non-blocking) operations
• Initiate a long-running operation in the system.
• Periodically check to see if the operation is complete.

If not, go do other things while you wait.
• When operation finally completes, go on to next steps in your task.

• Most systems provide asynchronous I/O APIs alongside blocking I/O APIs
• Primarily used for asynchronous networking I/O
• Asynchronous filesystem APIs are becoming increasingly common

12

Asynchronous I/O
• UNIX API examples:
select(int nfds, fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, timeval *timeout)
poll(pollfd *fds, nfds_t nfds, int timeout)

• Both allow a collection of file-descriptors to be monitored
• Returns if a file-descriptor can be read or written without blocking, if an error occurs on a

file-descriptor, or if the call times out

• Applications usually use non-blocking I/O when they want to achieve very high
performance
• (OSes heavily optimize these functions to be fast and scalable)

• However, greatly increases implementation complexity

13

Example: Web Server
• Basic webserver operation, per request:
• Accept an incoming socket connection
• Receive the HTTP request over the socket
• Access the file(s) specified in the HTTP request
• Send an HTTP response back to the client

• Of course, want to handle requests as fast as possible
• Even handle multiple incoming requests concurrently, if possible

• Most of these operations are long-running tasks
• Can imagine how webserver would be implemented with these approaches:
• Single-threaded process with blocking network I/O
• Single-threaded process with non-blocking network I/O
• Multithreaded process with blocking network I/O

14

Web Server, Single-Threaded Style
• Webserver implemented as single-threaded process with blocking network IO:
• Can code this very easily: write a loop that just processes each request and sends each

response in sequence
• Web server can’t do anything else while receiving a request, or sending a response

(basically always blocked on I/O)
• Web clients will spend a lot of time waiting on the server

• Non-blocking I/O allows us to achieve concurrency without multiple threads
• Allows us to overlap the networking operations of multiple requests/responses

(concurrency!)
• A given request/response will still take the same time to complete, but overall throughput

will be much higher
• Server is more likely to be CPU-bound, rather than I/O-bound

15

Web Server, Single-Threaded Style (2)
• Webserver with non-blocking I/O:
• Will have many sockets open to many clients, servicing requests

• Must keep track of the state of every in-flight
request/response interaction:
• What stage of request/response cycle is each connection at?
• Receiving the request? If so, where is request data being

buffered, and where does new data get written in the buffer?
• Sending the response? If so, how much of the file has been

sent? Or, is the webserver sending an error response?

16

Connection

Connection

Connection

Connection

Connection

State

State

State

State

State

Stage of interaction

Incoming data buffer
and offset in buffer

Outgoing data buffer
and offset in buffer

Web Server, Single-Threaded Style (3)
• Web server main-loop:
• Wait for some socket(s) to become active (i.e. can send/receive

without blocking)
• For each active socket, get the current state of that socket’s

interaction, and do as much work as possible without blocking
• Once all active sockets are handled, go back and wait some more!

• Server basically implements a finite state machine
for each open connection

17

Connection

Connection

Connection

Connection

Connection

State

State

State

State

State

Stage of interaction

Incoming data buffer
and offset in buffer

Outgoing data buffer
and offset in buffer

Web Server, Single-Threaded Style (4)
• Example pseudocode:

if stage is RECV_REQUEST:
 receive more data into input buffer
 if all data received:
 generate response into output buffer
 stage = SEND_RESPONSE
else if stage is SEND_RESPONSE:
 send more data from output buffer
 if all data sent:
 close connection
 remove state and connection from arrays

• Responsibility of implementing concurrency of tasks
has fallen on the webserver, not on the OS L
• (It’s complicated, and prone to bugs.)

18

Connection

Connection

Connection

Connection

Connection

State

State

State

State

State

Stage of interaction

Incoming data buffer
and offset in buffer

Outgoing data buffer
and offset in buffer

Web Server, Multithreaded Style
• Multithreaded processes allow applications to achieve concurrency while still

using blocking system calls
• The operating system implements the concurrency
• Apps only have to worry about coordination between threads

• Multithreaded webserver with blocking network I/O:
• Each thread executes a simple sequence of steps, identical to the original single-threaded

webserver with blocking calls:
• Receive the HTTP request over the socket
• Access the file(s) specified in the HTTP request
• Send an HTTP response back to the client

• Can start as many threads as we need
• (With an I/O-bound problem like this, can usually start many more threads than CPUs in the

system, and still see performance gains)

19

Aside: Non-Blocking I/O
• Non-blocking I/O in a single-threaded process is pretty complicated…
• Nonetheless, it is often the fastest possible approach
• Used by highly scalable servers
• Avoids a significant amount of overhead from e.g. context-switching between threads,

kernel scheduler invocations, etc.
• Reduces space requirements as well (e.g. don’t need stacks for multiple threads, can

optimize storage of task details
• One thread waiting on a large collection of sockets is much more efficient than many

threads each waiting on one socket
• Example: NGINX (“engine-x”) web server
• Easily supports 10000+ concurrent connections (C10K problem)
• Used by Facebook, Dropbox, Wikipedia, Wordpress, etc.

20

Implementing Threads
• Several different approaches to implementing threads
• Can implement multithreading entirely in user mode
• a.k.a. user-mode/userspace threading libraries, or “user threads”
• Kernel only provides a process abstraction, is unaware of threads

• Excellent for platforms that don’t support multithreading at the kernel level
(less common now)

• Such libraries often provide cooperative multithreading
• Difficult / grungy to set up a periodic timer to drive thread preemption
• Often, smallest timer interval available in user-space is still

pretty large
• Frequent timer interrupts can degrade performance of other

applications, etc.

21

Kernel

Process

Process
Scheduler

Thread 1 Thread 2

User-Space
Threading Library

Thread
Scheduler

User Threads
• Benefit: user-mode thread management is very fast
• No trapping to kernel to create/destroy threads, switch threads, etc.

• Problem: often want to use threads to achieve concurrency in programs with
blocking system calls
• Blocking system calls require a trap into the kernel…
• The kernel will simply context-switch to another process!
• When a thread makes a long-running call, other user-mode threads

in the same process won’t get to run
• Problem: often want to use threads to take advantage of

multiple CPUs
• Again, the kernel is unaware of user-mode threads; it only schedules

processes on CPUs
• User threading is very limited

22

Kernel

Process

Process
Scheduler

Thread 1 Thread 2

User-Space
Threading Library

Thread
Scheduler

Kernel Threading Support
• Another option is to provide threading support in the kernel
• Basically all modern operating systems have this capability now

• Kernel can be more intelligent about thread scheduling
• Multithreading and blocking system calls:
• If one thread in a process makes a system call and blocks, but another thread in same

process can proceed, switch to 2nd thread
• Saves some overhead of context-switching (e.g. MMU updates)

• Multithreading and parallelism:
• On multiprocessor systems, the kernel can schedule threads from the same process on

different CPUs
• Drawback: thread-management calls now require a trap
• Creating/destroying threads, context-switch between threads, etc.

23

Kernel Threads
• Ultimately, the operating system is what implements and provides multitasking

support…
• Each thread a user application has, must correspond to some schedulable,

kernel-level task
• (Multiple user-level threads can map to the same kernel task)

• Minimal form of schedulable task inside the kernel is called a kernel thread
• Thread’s context contains CPU registers, program counter, stack, stack pointer, flags, etc.
• This is not a process! Every process may have a corresponding kernel thread, but the

kernel thread itself is very lightweight.
• Individual kernel threads can become blocked, can be resumed, etc.

24

Threading Models
• Different threading models have different ways of mapping “user threads”

(threads in an application) to kernel threads
• The many-to-one threading model maps many user threads to a single

kernel thread
• In this case, the kernel thread basically manages a process

• This model corresponds to the user-mode threading library implementation
• Example:
• All user threads in a process are mapped to one kernel thread
• One user thread decides to perform a blocking operation…
• The kernel thread becomes blocked, preventing all other user threads from progressing

• The GNU Portable Threads library follows this model

25

Threading Models (2)
• The one-to-one threading model maps every user thread to its own kernel

thread
• This model corresponds to a kernel-supported threading library

implementation
• Example:
• Each user thread in a process is mapped to its own kernel thread
• One user thread decides to perform a blocking operation…
• That kernel thread becomes blocked…
• Since every other user thread has its own kernel thread, other user threads are unaffected

by the blocked thread
• This is the model that most OSes now provide
• Tends to be the most straightforward to implement

26

Threading Models (3)
• A few OSes implement a many-to-many or hybrid threading model
• Many user threads mapped to many (usually fewer) kernel threads

• Premise:
• Both user-mode threading and kernel threading have benefits!
• User-space threading is very lightweight and inexpensive, but weak
• Kernel threading is powerful, but slower and more resource-heavy

• Given: N user threads, M kernel threads (M < N)
• Try to map user threads to kernel threads to maximize benefits
• e.g. creating and destroying many short-lived threads will be cheap
• e.g. many cooperating user threads can be mapped to one kernel thread, reducing syscalls

and kernel-level context switches
• e.g. if a user thread blocks on I/O frequently, assign it a dedicated kernel thread to keep it

from blocking other user threads

27

Threading Models (4)
• Many-to-many model appears to be the best solution…
• Unfortunately, it is extremely difficult to implement
• So difficult that most OSes simply use the one-to-one model
• Windows 7 implements a hybrid threading model
• Previous versions of Windows implemented a one-to-one model

• Problem: thread management code is spread between
userspace library and the kernel
• These layers must collaborate closely to maximize the performance

benefits of combining the two threading models

28

Kernel

Process

Thread
Scheduler

Th
re

ad
 1

User-Space
Threading Library

Thread
Scheduler

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

KT 1 KT 2

Threading Models (5)
• Without coordination, user threading library has little hope of effectively

managing the mapping to kernel threads
• Can user-thread layer intercept blocking syscalls?
• If so, other user threads on same kernel thread can be reassigned to prevent them from

being blocked
• If not, very likely that user threads sharing a kernel thread will

become blocked
• Can user-thread layer access kernel-level details of thread

behavior?
• e.g. if kernel reports compute-intensive tasks, user thread library can

assign them to different kernel threads to run on multiple CPUs
• If not, system can’t take full advantage of multiple CPUs to maximize

performance

29

Kernel

Process

Th
re

ad
 1

User-Space
Threading Library

Thread
Scheduler

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

KT 1 KT 2

?

Thread
Scheduler

Scheduler Activations
• Clearly, user-space threading library and kernel threading layer must

communicate for hybrid threading to work…
• Most widely used approach called scheduler activations
• Kernel allows processes to register for scheduling events
• “A kernel thread was preempted”
• “A kernel thread is about to block”
• “A kernel thread is about to be unblocked”
• “A kernel thread caused a page fault”
• etc.

• When kernel scheduler detects such an event, it makes
an upcall to the user-space event handler
• The upcall handler responds to the event, then the kernel

goes on with its tasks

30

Kernel

Process

Th
re

ad
 1

User-Space
Threading Library

Thread
Scheduler

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

KT 1 KT 2 Thread
Scheduler

Scheduler Activations (2)
• The user-space threading library can register an upcall handler to receive

kernel scheduling events
• Library can map user threads to kernel threads more intelligently!
• Library can even request additional kernel threads on behalf of the application, depending

on app’s thread behavior
• (Kernel threads are sometimes called “lightweight processes” in

this approach)
• Problem: this mechanism can greatly affect system

performance
• Additional transitions between user-mode and kernel-mode

during scheduling…
• More time spent scheduling, and less time spent executing

the application’s code
• Approach hasn’t seen widespread adoption at this point

31

Kernel

Process

Th
re

ad
 1

User-Space
Threading Library

Thread
Scheduler

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

KT 1 KT 2 Thread
Scheduler

Scheduler Activations (3)
• Marcel threading library is most notable example of “scheduler activations”

mechanism
• http://runtime.bordeaux.inria.fr/marcel/

32

Next Time
• More kernel thread implementation details

33

