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Processes and Threads
• As previously described, processes have one sequential thread of execution
• Increasingly, operating systems offer the ability to have multiple concurrent 

threads of execution in a process
• Individual threads can execute only one instruction at a time
• Multiple threads in a process allow multiple tasks to be performed concurrently,

“at the same time” (i.e. overlapping logical control-flows)

• Requires changes to the process model:
• CPU state can no longer be managed on a per-process basis
• Must manage CPU state on a per-thread basis
• All other resources can be managed on a per-process basis

2



Processes and Threads (2)
Single-threaded process
• Per-process items:
• Address space / page table
• Program text (i.e. the code)
• CPU registers
• Program counter
• Stack and stack pointer
• Global variables
• Memory heap
• Signal handlers
• Open files, sockets, etc.
• Child processes

Multithreaded process
• Per-process items:
• Address space / page table
• Program text
• Global variables
• Memory heap
• Signal handlers
• Open files, sockets, etc.
• Child processes

• Per-thread items:
• CPU registers
• Program counter
• Stack and stack pointer
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Why Multithreaded Processes?
• Two big reasons why multithreading is desirable:
• Reason 1:  Performance (obvious)
• Reason 2:  A cleaner abstraction for concurrent operations

• Lots of ways that multithreading can improve performance
• Responsiveness:
• Apps that perform slow or long-running tasks can do them on background threads
• A foreground thread responds to user interactions immediately
• Responsive applications = happy users J

• Web browsers are a common example of this pattern
• User-interface thread draws the web page, handles mouse clicks
• A pool of background threads handles content downloads from remote servers
• UI thread updates display as downloaded files become available
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Multithreading:  Responsiveness
• Common web browser pattern:
• User-interface thread draws the web page, handles mouse clicks
• A pool of background threads handles content downloads from remote servers

• Does this require multiple CPUs to yield a benefit?
• NO!
• Background threads will usually be blocked on I/O, or waiting for work to do – they won’t 

occupy the CPU
• Similar case for UI thread – waiting for user interaction

• Even with a single physical processor, multithreading can greatly improve 
application responsiveness
• Particularly in cases where most tasks are I/O bound
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Multithreading:  Scalability
• Example:  a large scientific/mathematical computation
• Instead of performing this computation in a single thread, split it into multiple concurrently 

executing threads
• Does this require multiple CPUs to yield a benefit?
• YES!
• Threads will mostly be CPU-bound, not I/O-bound
• If there is only one CPU in the system, multiple threads will probably make the program 

slower instead of faster (extra context-switches, synchronization overhead, etc.)
• If there are multiple CPUs in the system:
• A single-threaded process cannot take advantage of multiple CPUs
• Only way to utilize multiple CPUs is to run multiple processes, or to run a process with 

multiple threads
• Multithreading facilitates scalability with available hardware
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Multithreading:  Scalability (2)
• A major difference between concurrency and parallelism

• Concurrency means that multiple tasks have overlapping logical control flows
• Concurrency does not require multiple processors
• A one-CPU system can achieve this by switching back and forth between concurrent tasks 

at appropriate points in time
• Concurrency doesn’t necessarily imply that multiple tasks’ instructions are being executed 

at the same time, just that their execution is overlapping/interleaved in some way

• Parallelism means that multiple tasks are actually executing at the same time
• i.e. multiple processors are executing different tasks’ instructions at exactly the same time
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Multithreading:  Scalability (3)
• Example:  a large scientific/mathematical computation
• Instead of performing this computation in a single thread, split it into multiple concurrently 

executing threads
• If a system has multiple CPUs, can improve computation’s performance by 

running one thread per CPU
• Threads will actually execute in parallel

• Assume program takes 1 unit of time to complete on 1 CPU
• Ideally, running the program on N CPUs will result in it taking 1/N the time to complete

(i.e. a speedup of N)
• The reality isn’t always so nice…
• Most computations have parts that must be performed sequentially, cannot be parallelized
• The sequential parts restrict max possible speedup achievable by parallelizing the task
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Amdahl’s Law
• Amdahl’s Law is a simple formula that captures this issue
• Given:  a task where S is the percentage of the task that must be executed 

serially (i.e. cannot be parallelized)
• On a single-processor machine the task takes 1 unit of time to run
• On an N-processor machine, the task will take S + (1 – S) / N units of time to run
• The speedup due to parallelism will be (S + (1 – S) / N)-1

• Example:  a task with 10% that must be run serially
• 1.8x speedup on 2 CPUs
• 3.1x speedup on 4 CPUs
• 4.7x speedup on 8 CPUs
• As N à ∞, speedup à 10x, and that’s it.  L
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Amdahl’s Law (2)
• Amdahl’s Law is bad news for speeding up fixed-size tasks with more CPUs…
• Many tasks are variable in size:
• Given more computing resources, users will increase the size of the task to use all available 

computing resources
• Focus isn’t solely on reducing the time to complete the task

• Also, many variable-size tasks have this characteristic:
• As the task’s size increases, the size of parallelizable part of the task increases faster than 

size of the serial part of the task
• Percentage of the task that must be executed serially will decrease!

• Such tasks still see improved performance by increasing parallelism
• Formulated as Gustafson-Barsis’ Law (1988)
• Not a contradiction of Amdahl’s Law, just different constraints
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Multithreading:  Economy
• Multithreaded processes have two other performance-related benefits:  

resource sharing and economy
• Threads are generally much faster to create and destroy than processes
• Fewer resources to allocate or release:  most resources managed on a per-process basis

• Context-switching between multiple threads in the same process tends to be 
much faster
• Threads share one address space:  don’t need to change the page table being used, etc.
• (Switching between threads in different processes is still slower.)

• Sharing resources (e.g. files, sockets) between threads is much easier than 
sharing them between processes
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Multithreading:  Abstractions
• Another benefit of threads:  a cleaner abstraction
• Why are long-running system calls blocking, anyway?
• i.e. why do they force the process to wait until request is completed

• Blocking operations are simply much easier to use
• Alternative:  asynchronous (non-blocking) operations
• Initiate a long-running operation in the system.
• Periodically check to see if the operation is complete.

If not, go do other things while you wait.
• When operation finally completes, go on to next steps in your task.

• Most systems provide asynchronous I/O APIs alongside blocking I/O APIs
• Primarily used for asynchronous networking I/O
• Asynchronous filesystem APIs are becoming increasingly common
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Asynchronous I/O
• UNIX API examples:
select(int nfds, fd_set *readfds, fd_set *writefds,
       fd_set *exceptfds, timeval *timeout)
poll(pollfd *fds, nfds_t nfds, int timeout)

• Both allow a collection of file-descriptors to be monitored
• Returns if a file-descriptor can be read or written without blocking, if an error occurs on a 

file-descriptor, or if the call times out

• Applications usually use non-blocking I/O when they want to achieve very high 
performance
• (OSes heavily optimize these functions to be fast and scalable)

• However, greatly increases implementation complexity
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Example:  Web Server
• Basic webserver operation, per request:
• Accept an incoming socket connection
• Receive the HTTP request over the socket
• Access the file(s) specified in the HTTP request
• Send an HTTP response back to the client

• Of course, want to handle requests as fast as possible
• Even handle multiple incoming requests concurrently, if possible

• Most of these operations are long-running tasks
• Can imagine how webserver would be implemented with these approaches:
• Single-threaded process with blocking network I/O
• Single-threaded process with non-blocking network I/O
• Multithreaded process with blocking network I/O
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Web Server, Single-Threaded Style
• Webserver implemented as single-threaded process with blocking network IO:
• Can code this very easily:  write a loop that just processes each request and sends each 

response in sequence
• Web server can’t do anything else while receiving a request, or sending a response 

(basically always blocked on I/O)
• Web clients will spend a lot of time waiting on the server

• Non-blocking I/O allows us to achieve concurrency without multiple threads
• Allows us to overlap the networking operations of multiple requests/responses 

(concurrency!)
• A given request/response will still take the same time to complete, but overall throughput 

will be much higher
• Server is more likely to be CPU-bound, rather than I/O-bound
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Web Server, Single-Threaded Style (2)
• Webserver with non-blocking I/O:
• Will have many sockets open to many clients, servicing requests

• Must keep track of the state of every in-flight
request/response interaction:
• What stage of request/response cycle is each connection at?
• Receiving the request?  If so, where is request data being

buffered, and where does new data get written in the buffer?
• Sending the response?  If so, how much of the file has been

sent?  Or, is the webserver sending an error response?
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Web Server, Single-Threaded Style (3)
• Web server main-loop:
• Wait for some socket(s) to become active (i.e. can send/receive

without blocking)
• For each active socket, get the current state of that socket’s

interaction, and do as much work as possible without blocking
• Once all active sockets are handled, go back and wait some more!

• Server basically implements a finite state machine
for each open connection
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Web Server, Single-Threaded Style (4)
• Example pseudocode:

if stage is RECV_REQUEST:
    receive more data into input buffer
    if all data received:
        generate response into output buffer
        stage = SEND_RESPONSE
else if stage is SEND_RESPONSE:
    send more data from output buffer
    if all data sent:
        close connection
        remove state and connection from arrays

• Responsibility of implementing concurrency of tasks
has fallen on the webserver, not on the OS L
• (It’s complicated, and prone to bugs.)
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Web Server, Multithreaded Style
• Multithreaded processes allow applications to achieve concurrency while still 

using blocking system calls
• The operating system implements the concurrency
• Apps only have to worry about coordination between threads

• Multithreaded webserver with blocking network I/O:
• Each thread executes a simple sequence of steps, identical to the original single-threaded 

webserver with blocking calls:
• Receive the HTTP request over the socket
• Access the file(s) specified in the HTTP request
• Send an HTTP response back to the client

• Can start as many threads as we need
• (With an I/O-bound problem like this, can usually start many more threads than CPUs in the 

system, and still see performance gains)
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Aside:  Non-Blocking I/O
• Non-blocking I/O in a single-threaded process is pretty complicated…
• Nonetheless, it is often the fastest possible approach
• Used by highly scalable servers
• Avoids a significant amount of overhead from e.g. context-switching between threads, 

kernel scheduler invocations, etc.
• Reduces space requirements as well (e.g. don’t need stacks for multiple threads, can 

optimize storage of task details
• One thread waiting on a large collection of sockets is much more efficient than many 

threads each waiting on one socket
• Example:  NGINX (“engine-x”) web server
• Easily supports 10000+ concurrent connections (C10K problem)
• Used by Facebook, Dropbox, Wikipedia, Wordpress, etc.
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Implementing Threads
• Several different approaches to implementing threads
• Can implement multithreading entirely in user mode
• a.k.a. user-mode/userspace threading libraries, or “user threads”
• Kernel only provides a process abstraction, is unaware of threads

• Excellent for platforms that don’t support multithreading at the kernel level 
(less common now)

• Such libraries often provide cooperative multithreading
• Difficult / grungy to set up a periodic timer to drive thread preemption
• Often, smallest timer interval available in user-space is still

pretty large
• Frequent timer interrupts can degrade performance of other

applications, etc.
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User Threads
• Benefit:  user-mode thread management is very fast
• No trapping to kernel to create/destroy threads, switch threads, etc.

• Problem:  often want to use threads to achieve concurrency in programs with 
blocking system calls
• Blocking system calls require a trap into the kernel…
• The kernel will simply context-switch to another process!
• When a thread makes a long-running call, other user-mode threads

in the same process won’t get to run
• Problem:  often want to use threads to take advantage of

multiple CPUs
• Again, the kernel is unaware of user-mode threads; it only schedules

processes on CPUs
• User threading is very limited

22

Kernel

Process

Process
Scheduler

Thread 1 Thread 2

User-Space
Threading Library

Thread
Scheduler



Kernel Threading Support
• Another option is to provide threading support in the kernel
• Basically all modern operating systems have this capability now

• Kernel can be more intelligent about thread scheduling
• Multithreading and blocking system calls:
• If one thread in a process makes a system call and blocks, but another thread in same 

process can proceed, switch to 2nd thread
• Saves some overhead of context-switching (e.g. MMU updates)

• Multithreading and parallelism:
• On multiprocessor systems, the kernel can schedule threads from the same process on 

different CPUs
• Drawback:  thread-management calls now require a trap
• Creating/destroying threads, context-switch between threads, etc.
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Kernel Threads
• Ultimately, the operating system is what implements and provides multitasking 

support…
• Each thread a user application has, must correspond to some schedulable, 

kernel-level task
• (Multiple user-level threads can map to the same kernel task)

• Minimal form of schedulable task inside the kernel is called a kernel thread
• Thread’s context contains CPU registers, program counter, stack, stack pointer, flags, etc.
• This is not a process!  Every process may have a corresponding kernel thread, but the 

kernel thread itself is very lightweight.
• Individual kernel threads can become blocked, can be resumed, etc.
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Threading Models
• Different threading models have different ways of mapping “user threads” 

(threads in an application) to kernel threads
• The many-to-one threading model maps many user threads to a single 

kernel thread
• In this case, the kernel thread basically manages a process

• This model corresponds to the user-mode threading library implementation
• Example:
• All user threads in a process are mapped to one kernel thread
• One user thread decides to perform a blocking operation…
• The kernel thread becomes blocked, preventing all other user threads from progressing

• The GNU Portable Threads library follows this model
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Threading Models (2)
• The one-to-one threading model maps every user thread to its own kernel 

thread
• This model corresponds to a kernel-supported threading library 

implementation
• Example:
• Each user thread in a process is mapped to its own kernel thread
• One user thread decides to perform a blocking operation…
• That kernel thread becomes blocked…
• Since every other user thread has its own kernel thread, other user threads are unaffected 

by the blocked thread
• This is the model that most OSes now provide
• Tends to be the most straightforward to implement
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Threading Models (3)
• A few OSes implement a many-to-many or hybrid threading model
• Many user threads mapped to many (usually fewer) kernel threads

• Premise:
• Both user-mode threading and kernel threading have benefits!
• User-space threading is very lightweight and inexpensive, but weak
• Kernel threading is powerful, but slower and more resource-heavy

• Given:  N user threads, M kernel threads (M < N)
• Try to map user threads to kernel threads to maximize benefits
• e.g. creating and destroying many short-lived threads will be cheap
• e.g. many cooperating user threads can be mapped to one kernel thread, reducing syscalls 

and kernel-level context switches
• e.g. if a user thread blocks on I/O frequently, assign it a dedicated kernel thread to keep it 

from blocking other user threads
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Threading Models (4)
• Many-to-many model appears to be the best solution…
• Unfortunately, it is extremely difficult to implement
• So difficult that most OSes simply use the one-to-one model
• Windows 7 implements a hybrid threading model
• Previous versions of Windows implemented a one-to-one model

• Problem:  thread management code is spread between
userspace library and the kernel
• These layers must collaborate closely to maximize the performance

benefits of combining the two threading models
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Threading Models (5)
• Without coordination, user threading library has little hope of effectively 

managing the mapping to kernel threads
• Can user-thread layer intercept blocking syscalls?
• If so, other user threads on same kernel thread can be reassigned to prevent them from 

being blocked
• If not, very likely that user threads sharing a kernel thread will

become blocked
• Can user-thread layer access kernel-level details of thread

behavior?
• e.g. if kernel reports compute-intensive tasks, user thread library can

assign them to different kernel threads to run on multiple CPUs
• If not, system can’t take full advantage of multiple CPUs to maximize

performance

29

Kernel

Process

Th
re

ad
 1

User-Space
Threading Library

Thread
Scheduler

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

KT 1 KT 2

?

Thread
Scheduler



Scheduler Activations
• Clearly, user-space threading library and kernel threading layer must 

communicate for hybrid threading to work…
• Most widely used approach called scheduler activations
• Kernel allows processes to register for scheduling events
• “A kernel thread was preempted”
• “A kernel thread is about to block”
• “A kernel thread is about to be unblocked”
• “A kernel thread caused a page fault”
• etc.

• When kernel scheduler detects such an event, it makes
an upcall to the user-space event handler
• The upcall handler responds to the event, then the kernel

goes on with its tasks
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Scheduler Activations (2)
• The user-space threading library can register an upcall handler to receive 

kernel scheduling events
• Library can map user threads to kernel threads more intelligently!
• Library can even request additional kernel threads on behalf of the application, depending 

on app’s thread behavior
• (Kernel threads are sometimes called “lightweight processes” in

this approach)
• Problem:  this mechanism can greatly affect system

performance
• Additional transitions between user-mode and kernel-mode

during scheduling…
• More time spent scheduling, and less time spent executing

the application’s code
• Approach hasn’t seen widespread adoption at this point
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Scheduler Activations (3)
• Marcel threading library is most notable example of “scheduler activations” 

mechanism
• http://runtime.bordeaux.inria.fr/marcel/
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Next Time
• More kernel thread implementation details
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