OPERATING SYSTEMS

CS124 — Operating Systems
Spring 2024, Lecture 1



Welcome!

- Detailed exploration of operating system implementation
- Hard prerequisite: CS24

- This is a project class:
- Every assignment requires substantial programming effort
- Most programming is C; a small amount is IA32 assembly
- Use Git version control for managing your code, making checkins, etc.
- Also, Make/Doxygen tools.

- No exams; grade is taken entirely from assignments

- Course uses the Pintos instructional operating system
- A small UNIX-like operating system with very limited capabilities
- Implemented in 2005 for use with Stanford’s CS140 OS class

- Intended to be run on 1A32/x86 processor emulator (Bochs, QEMU)
- Can also run on actual IA32 hardware if properly coaxed...



Assignments

- Five assignments to complete throughout the term:
- Write a basic operating system shell (1 week)
- Kernel-level threading and thread-scheduling (2 weeks)

- Implement kernel system calls for user-mode programs (2 weeks)
- Implement a virtual memory system for Pintos (2 weeks)
- Implement an ext2-like filesystem for Pintos (2 weeks)

- The last assignment is due at the end of seniors’ finals week

- Assignments are weighted by how many weeks they take
- Two-week assignments are worth twice the one-week assignment



Assignments and Collaboration

- The assignments are hard

- Lots of code to understand, significant implementation effort, and lots of debugging to do
- You are required to work in groups of 2-3 students

- Not allowed to tackle this course individually

- Biggest reason: you will have other people to talk with, when designing and
debugging systems

- Students can drop the class, but this will affect others...
- Please only take this course if you really intend to finish it!

- If students drop later in the term, we can adjust the teams
- e.g. move a student into another team (student will have to learn the new team’s code)




Assignments and Collaboration (2)

- We will be using GitHub Classroom to manage code repositories, and to
facilitate collaboration

- See course Canvas page for link to join the Classroom

- Two-step submission process for each assignment:

- Push your completed work to your team’s GitHub repository
- One teammate submits the commit-hash and other details on Canvas



Assignments and Collaboration (3)

- Each team’s submission must be created entirely by that team alone.
Teams cannot share implementation code. Teams cannot use Al coding tools.

- Cross-team sharing is encouraged in these areas:
- Design and implementation ideas (but not code or pseudocode!)
- Pitfalls you encountered, and how to solve them
- Help with setup and debugging
- Also, Pintos has been around since 2005...
- Do not look for solutions to projects online!

- You are encouraged to look at other resources, e.g. Linux sources, other textbooks,
OS dev. websites, etc.
- Don’t copy code! (see first point above) Focus on understanding it.

- Cite any external sources in your submission, so | can share them with the class this year and
next year.



Assignments and Due-Dates

- Each assignment specifies a due-date (Thursdays 5pm)

- Late submissions are penalized as follows:
- 1 day late = 10% deduction
- 2 days late = 10 + 20 = 30% deduction
- 3 days late = 10 + 20 + 30 = 60% deduction
- After 4 days, don’t bother ®

- Each team has 6 “late tokens”
- Each token is good for 24 hours of extension, No Questions Asked.
- In your submitted design doc, note how many tokens you are using

- Students/teams can also request extensions due to health or other reasons
- Most important thing is to try to do this beforehand, if possible




Development and Testing Platform

- Pintos is designed to be built and tested on 32-bit Linux

- This has become difficult for multiple reasons

- Who runs a 32-bit OS anymore?
- Apple has moved away from Intel x86 processors, to an ARM-based platform

- We have multiple possible solutions

- For Intel x86-based platforms:
- We have a VirtualBox image of 32-bit Mint Linux for you to use

- We also have Docker images for Intel- and ARM-based platforms
- There are also a few other options in the works



One more note...

- This course is significantly UNIX focused...
- Linux, macQOS, PintOS, ...

- By “UNIX"” we mean UNIX and its many variants
- SysV, BSD and variants, Linux, macOS, ...
- Sometimes indicated as *NIX

- Concepts appear across all major operating systems
- UNIX is just the easiest one to experiment with

- We will point out major themes of other operating systems, but
all your work will be on UNIX-style systems



Operating Systems

- What is an operating system?
- Most generally:

- An operating system provides applications with a standardized interface to the computer’s
hardware resources.

- An operating system manages the allocation and sharing of hardware resources to
applications that want to use them.

- Many different variations under this theme!
- How the operating system is architected
- What kinds of devices the OS runs on
- What facilities/services/guarantees the OS provides to applications

- We'll start with the general principles first...



Example: Filesystems

- Many kinds of storage media used in a typical computer

- Hard disks with varying interfaces:
- Serial ATA (SATA) hard disks
- SCSI (Small Computer System Interface) or SAS (Serial Attached SCSI) disks
- On-motherboard SSDs with M.2 SATA or PCle interfaces
- USB storage devices that can be added and removed at runtime

- Different size HDDs must be accessed in different ways

- Old disks used Cylinder-Head-Sector (CHS) addressing, but this imposed limitations on
supported disk sizes

- (Plus, modern disks have multiple zones, each with its own geometry: outer zones can fit
more sectors around the disk)

- Later disks introduced Logical Block Addressing (LBA) which supports much larger disks



Example: Filesystems (2)

- Different storage technologies require different kinds of maintenance

- Magnetic disks are sensitive to fragmentation
- Large files should be stored in contiguous regions of the disk, or disk-seek times will Kill
dCCessS performance
- SSDs (Solid-State Drives) have a constant seek time; they don’t care about
fragmentation. But:

- SSD memory blocks must be erased before they can be rewritten, and the erase-block size
is much larger than read/write block size

- Blocks can only be erased so many times before they wear out

- To minimize performance and wear issues, the filesystem must interact with SSDs
differently than with magnetic disks



Example: Filesystems (3)

- Storage devices may also have many different formats!

- Hard disk drives and solid-state drives:
- NTFS (Windows)
- HPFS (older macOS)
- APFS (newer macOS)
- ext4, btrfs, and many others (Linux)

- Removable flash storage:

- FAT32
- exFAT

- Optical devices:
- 1SO9660 (older CD format)
- UDF (newer CD format)



Filesystems: Standardized Interface (1)

- UNIX operating systems provide a simple mechanism for interacting with
storage devices in the computer:

- open () Opens a file for manipulation

- close () Closes a file

- read () Read a block of one or more bytes from a file
- write () Write a block of one or more bytes to a file

- etc.

- A Virtual File System (VFS) presents a single unified view of all disks and files
In the computer
- Root of the virtual filesystem is “/”
- Storage devices are mounted at specific paths, e.g. “/mnt/cdrom”
- Every file can be accessed by a path from the root of the filesystem



Filesystems: Standardized Interface (2)

- UNIX operating systems provide a simple mechanism for interacting with
storage devices in the computer:

- open () Opens a file for manipulation

- close () Closes a file

- read () Read a block of one or more bytes from a file
- write () Write a block of one or more bytes to a file

- etc.

- In fact, other devices use essentially the same interface!
- Console input and output (printf / scanf use read / write)

- Socket communications
- Pipes between processes

- Only real API difference: how to open each device



Filesystems: Resource Sharing

- In UNIX, multiple processes can manipulate the same file

- Scenario:
- Process A opens file foo. txt to read and write it.

- Later, process B deletes foo. txt, while A is still using it.
- (UNIX file deletion is performed using the unlink () system call)
- What should happen?
- Hardware resources are shared by multiple processes...

- The operating system must coordinate access to these shared resources in a

well-defined manner
- e.g. to maintain system security, correctness, performance, etc.

- In UNIX:
- When process B deletes foo. txt, the OS removes the path to the file. But, the actual file

still remains until process A terminates!
- After process A terminates, OS reclaims space used by foo. txt



Operating Systems: A Brief History

- Early general-purpose computers were mainframes
- Programmers would create jobs from a series of punch cards

JOB FORTRAN FORTRAN DATA FOR END
COMPILER PROGRAM PROGRAM

- A job would be fed into mainframe by a human operator...
- ...the mainframe does its thing...
- ...then the results are printed out for the programmer to use.

- Alot of time was wasted waiting for programs to be loaded, results to be
printed, etc.
- The mainframe’s CPU is sitting idle, blocked on I/O operations



. ©___
Operating Systems: A Brief History (2)

- Later mainframes used batch processing
- A simpler, lower cost computer transfers multiple jobs onto a single input tape

- The mainframe reads and executes each job in sequence
- Instead of printing, job output is saved to an output tape
- Also, system tapes hold common programs like the FORTRAN compiler

- Program output is printed by a simpler, cheaper computer
- Benefit: greatly reduces wasted time!



Operating Systems: A Brief History (3)

- A big problem with batch-processing systems:

JOB 2 JOB 3 JOB 4 JOB 5

Program Counter

- If job 1 is waiting for I/O to complete (e.g. on tape), the mainframe can’t do anything else!
The CPU sits idle until /O completes.

- This became increasingly common as computer use broadened

- Later-generation mainframes introduced support for multiprogramming

- If one job is blocked on I/O or some other operation, switch execution to another job

- If mainframe can keep several programs in memory, and switch between them, the CPU
can be kept busy most of the time

Input Tape:




e
Operating Systems: A Brief History (4)

- To support multiprogramming, mainframe memory was partitioned into regions

for each job

- New problem to solve: .
Mainframe

- Need to prevent different jobs from Memory:
accessing each other’s memory regions

- Must provide process isolation

- Requires hardware support to implement
effectively

- Requires multiple CPU operating modes,
so the OS is the only program able to
manipulate the memory partitioning




I . N
Operating Systems: A Brief History (5)

- Another problem with batch-processing mainframes:

- If a programmer had a bug in their program, they didn’t know until their job had been
batched up, processed, and the results printed

- Could take hours to even discover you had a syntax error in your code! ®

- Timesharing systems were mainframes that provided users with online
terminals

- Timesharing is an extension of multiprogramming, allowing users to issue jobs directly on
the mainframe, and receive their own output

- First appearance of basic multitasking in an operating system
- The mainframe was still large and expensive...
- An individual user won'’t keep the CPU utilized at 100%...
- A group of many users will keep CPU much more heavily utilized



-z
Operating Systems: A Brief History (6)

- Integrated circuit technology became widespread, and processors became
cheaper and cheaper...

- Instead of an entire university sharing a single computer, each department
could have their own computer
- Minicomputers were smaller and less powerful than mainframes

- As hardware prices continued to drop, became feasible to give individual
users their own microcomputers

- Up to this point, operating systems and programs primarily used text
interfaces for user interaction...

- Graphical User Interfaces (GUIs) were developed to make it easy for people to use
computers, even if a user had no intention of learning how the computer worked



Operating Systems: A Brief History (7)

- As processors became less expensive, became common to have multiple
processors in a single computer

- Multiprocessor systems contain multiple processors in separate packages
- Multicore systems have multiple processors in a single package

- Multiprocessor/multicore systems require specific support from the operating
system

- Coordinating access to shared data-structures within the operating system becomes much
trickier

- Process scheduling also takes multiprocessor systems into account to maximize cache
utilization



I S
Operating Systems: A Brief History (8)

- Modern computers can even run an operating system as an application within
another operating system

- The host operating system runs the guest operating system as an application

- Emulation:
- A computer with one CPU type simulates another CPU [usually] of a different type, allowing
applications or even a guest operating system to be run within the host system
- Virtualization:
- A computer with one CPU type runs a guest operating system compiled for the same CPU
type
- If the CPU has hardware virtualization support, this will be fast!

- Otherwise, certain CPU features must be emulated by the host OS when running the guest
operating system



.
Operating Systems: A Brief History (9)

- The software that provides a virtual machine for the guest OS is called a
hypervisor

- Handles many concerns similar to more traditional operating systems
- Enforce isolation between guest operating systems
- Management of hardware resources shared between guest OSes

- A few new challenges:
- Guest OSes expect to access hardware directly; hypervisor must present this abstraction to
guest OSes
- (either emulated, or via hardware support on the host processor)
- Can the guest OS tell that it is running within a virtual machine?

- Guest OSes have their own scheduling and caching strategies; host OS should interfere
with these as little as possible



- *®
Kinds of Operating Systems

- Operating systems are used in many different contexts, for fulfilling many
different purposes

- Mainframe and server operating systems must maximize utilization of
hardware
- Operating system doesn’t require a graphical user interface
- Rather, must support very efficient handling of I/O, and possibly scheduling of many
processes
- Personal computers must be easy to use, and responsive to user input

- Maximizing hardware utilization is less important — responding to user interaction is top
priority!

- Much more code is devoted to making the computer easy to use
- Important to provide a simplified, user-friendly user interface



Kinds of Operating Systems (2)

- Mobile device / tablet OSes have several challenging, often conflicting
constraints

- Must be responsive and user-friendly, like PC operating systems
- But, must also try to maximize battery life through careful hardware resource
management

- With smartphones, must support download, installation, execution, and
uninstallation of wide range of applications
- But, basic device capabilities (e.g. voice calls, SMS) must also be rock-solid reliable

- Must support intermittent connectivity, especially when programs are using
that connectivity



. N
Kinds of Operating Systems (3)

- By far the most common kind of computer now is the embedded computer
- In your microwave oven, your printer, your WiFi router, your DVD player, controlling your car
engine, your point-and-shoot camera, ...
- Embedded OSes tend to have very limited capabilities
- Systems tend to support a specific, fixed set of tasks
- Systems aren’t designed to run arbitrary programs on them

- Can still include a variety of basic OS capabilities
- Basic thread-management and scheduling support
- Basic memory management capabilities
- Support for software upgrades
- Support for peripherals like flash cards, USB drives, networking, ...



B
Kinds of Operating Systems (4)

- Real-time operating systems focus on completing tasks by a specific
deadline

- Most general-purpose operating systems provide soft real-time support, e.g.
for media playback

- Not considered a system failure if the OS misses a deadline from time to time (e.g. your
media playback just sounds choppy)
- Some real-time OSes provide hard real-time guarantees
- If the OS misses a deadline, this is considered a fatal error!

- Example: a computer system for running an automobile manufacturing
assembly line
- The OS receives inputs from sensors along the assembly line...

- If the OS doesn’t satisfy guarantees for processing input data and controlling automated
machinery, physical damage will occur

- If OS misses its timing deadlines: Failure! Halt the assembly line!



Next Time

- More details on operating system components and hardware interactions
- Overview of UNIX facilities for user programs



