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Signal Handling
• UNIX operating systems allow user processes to register 

for and handle signals
• Provides exceptional control flow mechanism for user processes

• User program registers a signal handler via a system call
• Example:
typedef void (*sig_t)(int);

• sig_t is a function-pointer to a function that takes an int
argument and returns void

sig_t signal(int sig, sig_t func);

• This system call sets the signal handler for the specified signal 
type, and returns the previous signal handler

• Declarations are in C standard header signal.h
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Signal Handling:  Example
/* Print a message, then request another SIGALRM. */
void handle_sigalrm(int sig) {

printf("Hello!\n");
alarm(1);  /* Request another SIGALRM in 1 second. */

}

/* User typed Ctrl-C.  Taunt them. */
void handle_sigint(int sig) {

printf("Ha ha, can't kill me!\n");
}

int main() {
signal(SIGINT, handle_sigint);
signal(SIGALRM, handle_sigalrm);
alarm(1);  /* Request a SIGALRM in 1 second. */

while (1) pause();  /* Wait for signals in a loop. */

return 0;
}
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Advanced Signal Handling Support
• UNIX also provides more advanced signal handling:
int sigaction(int sig, const struct sigaction *act,

struct sigaction *oact)

• sigaction struct specifies various details, including the kind 
of handler function:
• Either the simple void handler(int sig) as before…
• Or, a more advanced handler function:
void sigact(int sig, siginfo *info, void *ctxt)

• The siginfo struct includes many details about signals
• e.g. sending process ID, memory address that caused fault, etc.

• ctxt points to a ucontext_t structure
• A platform/architecture-dependent machine context, containing the 

CPU state of the user process, when it was interrupted by signal
• Facilitates e.g. user-space threading libraries
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Pending and Blocked Signals
• The kernel maintains two bit-vectors for every process

• Every type of signal has a specific bit in this bit-vector
• pending bit-vector records what signals have yet to be 

delivered to the process
• Note:  if multiple instances of a given signal occur before a process 

receives the signal, it will see only one instance of the signal
• Signals indicate one or more events of given type have occurred

• blocked bit-vector records what signals are currently not 
allowed to be delivered to the process
• Can have a signal that is both blocked and pending
• When the signal is unblocked, it will be delivered to the process

• When a signal is delivered to a process, that type of 
signal is automatically blocked for the process
• Prevents a given signal handler from interrupting itself
• One kind of signal can interrupt another kind of signal
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The Kernel and Signal Handling
• How does the kernel provide signal handling to user 

processes?
• When is a signal delivered to the receiving process?

• What if process is running on the CPU?  What if ready or blocked?
• How does signal handling affect process scheduling?

• If a process has multiple signals pending, how does the 
kernel dispatch all these signals to the process?

• Note:  we are ignoring many issues caused by using 
signals in multithreaded programs
• Individual threads can block signals so that only one thread 

handles signals, etc.
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Generating and Delivering Signals
• A process isn’t always running when a signal is sent to it

• e.g. kill() syscall is invoked by another process
• e.g. a child process dies, causing SIGCHLD to be sent to parent, 

but a higher priority process currently preempts the parent

• Kernels make a distinction between generating a signal 
and delivering the signal

• Signal generation:  kernel updates the data structures of 
the receiving process to record that the signal was sent

• Signal delivery:  kernel forces the receiving process to 
respond to the signal (e.g. by invoking a signal handler)

• Time may pass between generating and delivering signal
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Process Signal Data Structures
• Already mentioned pending / blocked signal bit-vectors

• At a coarse-grain level of detail, records which signals need to be 
delivered, and which signals are currently blocked from delivery

• Each process also has a linked list of pending signals
• siginfo_t struct records relevant details of the pending signal

• Each process also has an array of “signal action” structs
• Specifies how to handle each kind of signal
• e.g. “default action,” “ignore,”

or a user-space handler
• (Flags also record other

options for handling signals)
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Generating a Signal
• When a signal is sent to a process:

• The kernel invokes a specific function to update the process’ signal 
structures, perform scheduling tasks, etc.

• e.g. Linux 2.6 has specific_send_sig_info() kernel function
• If the process already has a pending signal of that type, 

the new signal is ignored
• For real-time signals, this test is skipped
• Every occurrence of a real-time signal is delivered

• If the process is ignoring
the signal, nothing is done
• No structures are updated
• No scheduling tasks occur
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Generating a Signal (2)
• Otherwise, new signal is appended to the signal queue

• The pending bit-vector is also updated
• If the process is currently blocked or suspended, it is 

moved to the ready state

• Note:  a few signal types are not added to signal queue
• e.g. SIGKILL, SIGSTOP
• These signals are enforced

immediately by the kernel the
next time the process runs

• Affects the process’ execution
state in the scheduler
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Delivering Signals
• Signals are only delivered to the currently running process

• Obvious; the process must hold the CPU to run the signal handler
• The kernel checks for pending signals when it is about to 

return back to the user process
• Kernel checks the process’ signal state
• If there are pending signals to deliver,

they are delivered at this point
• Two ways a signal can be handled:
• Signal is ignored, or default action

is to be performed
• These signals are handled by the kernel

• Signal has a user-mode handler
• Kernel must invoke the user-mode handler
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Delivering Signals (2)
• Two ways a signal can be handled:

• Signal is ignored, or the default action
is to be performed

• Signal has a user-mode handler
• For kernel-handled signals, it can

handle as many as are pending
• For user-process-handled signals,

only one signal is handled
• Other pending signals will be delivered

the next time the scheduler is invoked
• In Linux 2.6 kernel, signal delivery

handled by do_signal() function
• This code has been greatly restructured

in subsequent Linux kernel releases
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Delivering Signals (3)
• Several big signal delivery challenges
• Signal handler must return back to

the kernel so that previous user
process context can be restored

• Signals can interrupt system calls
• Particularly on preemptible kernels

• Handlers can make system calls
• When returning from syscall handler,

must return to the signal handler, not
the interrupted user process context

• Signals can siglongjmp() from
the signal handler back to another
part of the user process
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Delivering Signals (4)
• Linux 2.6 do_signal() uses a loop:
• Try to find a pending signal to service

• If there are multiple pending signals,
kernel may choose to service them
in a different order from queue order

• (Some signals also cancel each other,
like SIGSTOP and SIGCONT)

• If no more pending signals, the
kernel returns to the user process

• If a pending signal was found, it is
removed from pending queue
• User process state is also updated to

mark the signal as no longer pending
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Delivering Signals (5)
• Linux 2.6 do_signal(), cont.

• If signal is currently being ignored,
do_signalcontinues to next signal
• A signal may be ignored if the process

has set its handler to SIG_IGN
• Or, if signal’s handler is SIG_DFL and

default action is to ignore the signal,
the signal is ignored
• e.g. SIGCHLD is ignored by default
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Delivering Signals (6)
• Linux 2.6 do_signal(), cont.

• Next, do_signalchecks if the
default action should be used
• Signal’s handler is set to SIG_DFL

(and default action is not to ignore)
• If so, do_signal carries out the action

• Default actions:
• Terminate – kill the process
• Dump – kill process, create a core dump
• Ignore – ignore signal (handled earlier)
• Stop – move process to suspended state
• Continue – move process to ready state
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Delivering Signals (7)
• If none of the previous cases hold, do_signal must 

invoke the user process’ signal handler
• Recall the state of our stacks within do_signal call:
• It’s easy to cause the user process

to run the signal handler…
• Just set the process’ EIP to the

address of the signal handler
• Problem:  can’t just overwrite the

previous CPU state of the process
• When signal handler completes, must

return to whatever was interrupted in
the user process

• Must set up a new CPU context
for the signal handler to use
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Delivering Signals (8)
• Another problem:  the CPU context of the user process’ 

interrupted execution is on the kernel stack…
• …but kernel stack will be emptied when kernel returns to user mode!

• Solution:  do_signal copies some critical details to user stack
• CPU context of the user process before it was interrupted
• Other details necessary for properly

completing signal handler invocation
• e.g. a bit-vector of blocked signals, other

saved registers not in CPU context, etc.
• These details are used when the

signal handler returns:
• The kernel uses them to go back to the

previous point in the interrupted process
• Then, the kernel can change the CPU

context on the kernel stack to invoke
the signal handler
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Delivering Signals (9)
• Finally, do_signalmust set up the stack frame for signal 

handler function to use
• If calling a 1-arg signal handler, just push signal # onto stack
• If calling a 3-arg signal handler, also push signal details onto stack

• Since the process’ interrupted CPU
context is already on the stack, the
“machine context” pointer is easy
• And, it allows signal handlers to modify

the process’ CPU state directly, e.g. to
implement user-mode threading libraries
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Delivering Signals (10)
• One last component needed for the stack frame:

• The return address for when the signal handler returns
• Need the signal handler to return to the kernel:

• Allow kernel to complete final signal-
handling tasks, and restore the
interrupted process’ original context

• The kernel inserts address of code
to invoke the sigreturnsyscall
• i.e. a wrapper to code that executes

“mov NR_sysreturn, %eax; int $0x80”
• sigreturnhas a single purpose:

• Perform the final task of restoring the
interrupted process’ CPU context from
its location on the stack
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Delivering Signals (11)
• Since user stack was modified, must update caller’s esp
• Finally, do_signal() is done

• do_signal returns to its caller inside the kernel…
• The kernel returns to user mode…
• Register state of the user process is

restored from the kernel stack…
• User process begins executing the

signal handler!

• Signal handler can make system
calls with no problems
• Original CPU context of the interrupted

process is safely stored on user stack
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Delivering Signals (12)
• When the signal handler returns, the sysreturn system 

call is invoked
• Note:  again the kernel thread stack contains user-process details

• The sysreturn syscall copies the
original CPU context of interrupted
process back into the kernel stack
• (along with any changes to the CPU

context made by the signal handler)
• Then, sysreturn returns back to

the user process
• Resumes process execution at the point

where the signal interrupted the process
• User stack pointer is restored as well,

eliminating now-unneeded stack data
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Signals and System Calls
• Process may be blocked on a syscall when signal occurs

• The system call is interrupted by the signal
• Generally, some action must be taken by the kernel in this case
• e.g. the system call might return EINTR as its error code

• Some system calls can be automatically restarted when 
the signal occurs
• e.g. read() or write() may be automatically restarted if they 

hadn’t performed any work by the time the signal occurs

• Some system calls must report that they were interrupted
• e.g. if nanosleep() is interrupted by a signal, it returns EINTR, 

and records the amount of time remaining in the sleep interval
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Signals and System Calls (2)
• If a process is in a system call when it receives a signal:

• It was previously in kernel code when the signal is delivered…
• It entered the kernel by performing an int $0x80 trap operation

(or a fast system-call, e.g. using sysenter instruction)

• The signal delivery mechanism will
see the interrupt # in process’ state
• Original value of eax is also stored,

indicates which syscall was interrupted
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Signals and System Calls (3)
• Depending on the process’ configuration, and on system call 

that was interrupted, kernel takes one of two actions:
• Option 1:  the kernel modifies the interrupted process’ CPU 

context to show the system call as interrupted
• Sets the process’ eax register to
-EINTR

• The process will see the system call
return this error code

• Option 2:  the kernel modifies process’
CPU context to rerun the system call
• Sets the process’ eax register to the

original system call number
• Subtracts 2 from process’ eip register

to force int $0x80 (or sysenter) to
run again
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Signal Handlers and siglongjmp
• Signal handlers can use siglongjmp() to jump to 

another part of the user program
• Effectively terminates the signal handler and resumes execution of 

the user program at a different point
• Described as a “non-local goto”

• In fact, could use longjmp() or
siglongjmp()
• sigsetjmp / siglongjmp are strongly

preferred because they can optionally
save and restore blocked-signals mask

• In practice, that is the only difference
between setjmp and sigsetjmp
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Signal Handlers and siglongjmp (2)
• Does performing a siglongjmp from a signal handler 

break the kernel’s signal-delivery machinery at all?
• Answer should be obvious from the stack state, and from 

previous discussion
• Recall:

• When a pending signal is dequeued by
do_signal(), process’ state is updated
to show the signal as no longer pending

• Kernel doesn’t require the signal handler
to return in order to “complete” processing
• As far as kernel is concerned, signal is done!
• Only task is to restore blocked signal mask

(which siglongjmp can also take care of)
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Signal Handlers and siglongjmp (3)
• Also:  kernel will always check for pending signals to 

deliver, when returning to the user process
• Any pending signals will likely be delivered the next time the 

scheduler starts running the process again
• Finally, the kernel’s signal-delivery

mechanism leaves no state on the
kernel stack
• All state for both the signal handler and

the interrupted point in the process is
contained within the user stack

• If a user process long-jumps out of
signal handler, it will have no effect
on delivery of any future signals
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Signal Handlers and siglongjmp (4)
• Why would a process long-jump out of signal handler?

• Needs to have a jump-buffer that records the CPU state at some 
earlier point in stack

• A process that long-jumps out of a
signal handler doesn’t want to
restore the old execution state!
• The process doesn’t want to resume

executing the code that was interrupted
when the signal occurred

• Long-jump will discard all intervening
execution state, including CPU state
saved by the kernel at signal delivery

• No need to invoke sysreturn; the long-
jump will restore the desired CPU state
• And, siglongjmp will restore the blocked-

signal mask to an appropriate state
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Next Time
• Kernels maintain complex structures

on behalf of user processes…
• Kernel has a very limited amount of

memory for dynamic allocation
• Kernel has a fixed memory area for

data that pertains to all processes
• And allocation needs to be fast

• Next time:  kernel allocators
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Next Time
• Begin discussing virtual memory management
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