
IMPLEMENTATION OF
SIGNAL HANDLING
CS124 – Operating Systems
Winter 2015-2016, Lecture 15

Signal Handling
• UNIX operating systems allow user processes to register

for and handle signals
• Provides exceptional control flow mechanism for user processes

• User program registers a signal handler via a system call
• Example:
typedef void (*sig_t)(int);

• sig_t is a function-pointer to a function that takes an int
argument and returns void

sig_t signal(int sig, sig_t func);

• This system call sets the signal handler for the specified signal
type, and returns the previous signal handler

• Declarations are in C standard header signal.h

2

Signal Handling: Example
/* Print a message, then request another SIGALRM. */
void handle_sigalrm(int sig) {

printf("Hello!\n");
alarm(1); /* Request another SIGALRM in 1 second. */

}

/* User typed Ctrl-C. Taunt them. */
void handle_sigint(int sig) {

printf("Ha ha, can't kill me!\n");
}

int main() {
signal(SIGINT, handle_sigint);
signal(SIGALRM, handle_sigalrm);
alarm(1); /* Request a SIGALRM in 1 second. */

while (1) pause(); /* Wait for signals in a loop. */

return 0;
}

3

Advanced Signal Handling Support
• UNIX also provides more advanced signal handling:
int sigaction(int sig, const struct sigaction *act,

struct sigaction *oact)

• sigaction struct specifies various details, including the kind
of handler function:
• Either the simple void handler(int sig) as before…
• Or, a more advanced handler function:
void sigact(int sig, siginfo *info, void *ctxt)

• The siginfo struct includes many details about signals
• e.g. sending process ID, memory address that caused fault, etc.

• ctxt points to a ucontext_t structure
• A platform/architecture-dependent machine context, containing the

CPU state of the user process, when it was interrupted by signal
• Facilitates e.g. user-space threading libraries

4

Pending and Blocked Signals
• The kernel maintains two bit-vectors for every process

• Every type of signal has a specific bit in this bit-vector
• pending bit-vector records what signals have yet to be

delivered to the process
• Note: if multiple instances of a given signal occur before a process

receives the signal, it will see only one instance of the signal
• Signals indicate one or more events of given type have occurred

• blocked bit-vector records what signals are currently not
allowed to be delivered to the process
• Can have a signal that is both blocked and pending
• When the signal is unblocked, it will be delivered to the process

• When a signal is delivered to a process, that type of
signal is automatically blocked for the process
• Prevents a given signal handler from interrupting itself
• One kind of signal can interrupt another kind of signal

5

The Kernel and Signal Handling
• How does the kernel provide signal handling to user

processes?
• When is a signal delivered to the receiving process?

• What if process is running on the CPU? What if ready or blocked?
• How does signal handling affect process scheduling?

• If a process has multiple signals pending, how does the
kernel dispatch all these signals to the process?

• Note: we are ignoring many issues caused by using
signals in multithreaded programs
• Individual threads can block signals so that only one thread

handles signals, etc.

6

Generating and Delivering Signals
• A process isn’t always running when a signal is sent to it

• e.g. kill() syscall is invoked by another process
• e.g. a child process dies, causing SIGCHLD to be sent to parent,

but a higher priority process currently preempts the parent

• Kernels make a distinction between generating a signal
and delivering the signal

• Signal generation: kernel updates the data structures of
the receiving process to record that the signal was sent

• Signal delivery: kernel forces the receiving process to
respond to the signal (e.g. by invoking a signal handler)

• Time may pass between generating and delivering signal

7

Process Signal Data Structures
• Already mentioned pending / blocked signal bit-vectors

• At a coarse-grain level of detail, records which signals need to be
delivered, and which signals are currently blocked from delivery

• Each process also has a linked list of pending signals
• siginfo_t struct records relevant details of the pending signal

• Each process also has an array of “signal action” structs
• Specifies how to handle each kind of signal
• e.g. “default action,” “ignore,”

or a user-space handler
• (Flags also record other

options for handling signals)

8

pending
blocked
signals
sighand

Process:

sigaction

sigaction

sigaction

…

siginfo
flags

siginfo
flags

…

Generating a Signal
• When a signal is sent to a process:

• The kernel invokes a specific function to update the process’ signal
structures, perform scheduling tasks, etc.

• e.g. Linux 2.6 has specific_send_sig_info() kernel function
• If the process already has a pending signal of that type,

the new signal is ignored
• For real-time signals, this test is skipped
• Every occurrence of a real-time signal is delivered

• If the process is ignoring
the signal, nothing is done
• No structures are updated
• No scheduling tasks occur

9

pending
blocked
signals
sighand

Process:

sigaction

sigaction

sigaction

…

siginfo
flags

siginfo
flags

…

Generating a Signal (2)
• Otherwise, new signal is appended to the signal queue

• The pending bit-vector is also updated
• If the process is currently blocked or suspended, it is

moved to the ready state

• Note: a few signal types are not added to signal queue
• e.g. SIGKILL, SIGSTOP
• These signals are enforced

immediately by the kernel the
next time the process runs

• Affects the process’ execution
state in the scheduler

10

pending
blocked
signals
sighand

Process:

sigaction

sigaction

sigaction

…

siginfo
flags

siginfo
flags

…

Delivering Signals
• Signals are only delivered to the currently running process

• Obvious; the process must hold the CPU to run the signal handler
• The kernel checks for pending signals when it is about to

return back to the user process
• Kernel checks the process’ signal state
• If there are pending signals to deliver,

they are delivered at this point
• Two ways a signal can be handled:
• Signal is ignored, or default action

is to be performed
• These signals are handled by the kernel

• Signal has a user-mode handler
• Kernel must invoke the user-mode handler

11

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

no yes

Handle signal(s)

Delivering Signals (2)
• Two ways a signal can be handled:

• Signal is ignored, or the default action
is to be performed

• Signal has a user-mode handler
• For kernel-handled signals, it can

handle as many as are pending
• For user-process-handled signals,

only one signal is handled
• Other pending signals will be delivered

the next time the scheduler is invoked
• In Linux 2.6 kernel, signal delivery

handled by do_signal() function
• This code has been greatly restructured

in subsequent Linux kernel releases

12

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

Handle signal

Kernel-handled
signal?
yes

yes

User process
signal handler

no

no

Delivering Signals (3)
• Several big signal delivery challenges
• Signal handler must return back to

the kernel so that previous user
process context can be restored

• Signals can interrupt system calls
• Particularly on preemptible kernels

• Handlers can make system calls
• When returning from syscall handler,

must return to the signal handler, not
the interrupted user process context

• Signals can siglongjmp() from
the signal handler back to another
part of the user process

13

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

Handle signal

Kernel-handled
signal?
yes

yes

User process
signal handler

no

no

Delivering Signals (4)
• Linux 2.6 do_signal() uses a loop:
• Try to find a pending signal to service

• If there are multiple pending signals,
kernel may choose to service them
in a different order from queue order

• (Some signals also cancel each other,
like SIGSTOP and SIGCONT)

• If no more pending signals, the
kernel returns to the user process

• If a pending signal was found, it is
removed from pending queue
• User process state is also updated to

mark the signal as no longer pending

14

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

Handle signal

Kernel-handled
signal?
yes

yes

User process
signal handler

no

no

Delivering Signals (5)
• Linux 2.6 do_signal(), cont.

• If signal is currently being ignored,
do_signalcontinues to next signal
• A signal may be ignored if the process

has set its handler to SIG_IGN
• Or, if signal’s handler is SIG_DFL and

default action is to ignore the signal,
the signal is ignored
• e.g. SIGCHLD is ignored by default

15

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

Handle signal

Kernel-handled
signal?
yes

yes

User process
signal handler

no

no

Delivering Signals (6)
• Linux 2.6 do_signal(), cont.

• Next, do_signalchecks if the
default action should be used
• Signal’s handler is set to SIG_DFL

(and default action is not to ignore)
• If so, do_signal carries out the action

• Default actions:
• Terminate – kill the process
• Dump – kill process, create a core dump
• Ignore – ignore signal (handled earlier)
• Stop – move process to suspended state
• Continue – move process to ready state

16

Kernel User Process

Pending signal(s)?

Process context

Return to
user process

Schedule a
user process

Handle signal

Kernel-handled
signal?
yes

yes

User process
signal handler

no

no

Delivering Signals (7)
• If none of the previous cases hold, do_signal must

invoke the user process’ signal handler
• Recall the state of our stacks within do_signal call:
• It’s easy to cause the user process

to run the signal handler…
• Just set the process’ EIP to the

address of the signal handler
• Problem: can’t just overwrite the

previous CPU state of the process
• When signal handler completes, must

return to whatever was interrupted in
the user process

• Must set up a new CPU context
for the signal handler to use

17

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of interrupted

process

Kernel Thread Stack

other kernel
stack data

Delivering Signals (8)
• Another problem: the CPU context of the user process’

interrupted execution is on the kernel stack…
• …but kernel stack will be emptied when kernel returns to user mode!

• Solution: do_signal copies some critical details to user stack
• CPU context of the user process before it was interrupted
• Other details necessary for properly

completing signal handler invocation
• e.g. a bit-vector of blocked signals, other

saved registers not in CPU context, etc.
• These details are used when the

signal handler returns:
• The kernel uses them to go back to the

previous point in the interrupted process
• Then, the kernel can change the CPU

context on the kernel stack to invoke
the signal handler

18

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of interrupted

process

Kernel Thread Stack

other kernel
stack data

register state
of interrupted

process

other signal
handler details

1

se
t r

eg
s-

>e
ip

 to
ha

nd
le

r a
dd

re
ss

2

Delivering Signals (9)
• Finally, do_signalmust set up the stack frame for signal

handler function to use
• If calling a 1-arg signal handler, just push signal # onto stack
• If calling a 3-arg signal handler, also push signal details onto stack

• Since the process’ interrupted CPU
context is already on the stack, the
“machine context” pointer is easy
• And, it allows signal handlers to modify

the process’ CPU state directly, e.g. to
implement user-mode threading libraries

19

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of signal
handler

Kernel Thread Stack

other kernel
stack data

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal

Delivering Signals (10)
• One last component needed for the stack frame:

• The return address for when the signal handler returns
• Need the signal handler to return to the kernel:

• Allow kernel to complete final signal-
handling tasks, and restore the
interrupted process’ original context

• The kernel inserts address of code
to invoke the sigreturnsyscall
• i.e. a wrapper to code that executes

“mov NR_sysreturn, %eax; int $0x80”
• sigreturnhas a single purpose:

• Perform the final task of restoring the
interrupted process’ CPU context from
its location on the stack

20

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of signal
handler

Kernel Thread Stack

other kernel
stack data

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr

Delivering Signals (11)
• Since user stack was modified, must update caller’s esp
• Finally, do_signal() is done

• do_signal returns to its caller inside the kernel…
• The kernel returns to user mode…
• Register state of the user process is

restored from the kernel stack…
• User process begins executing the

signal handler!

• Signal handler can make system
calls with no problems
• Original CPU context of the interrupted

process is safely stored on user stack

21

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of signal
handler

Kernel Thread Stack

other kernel
stack data

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr

Delivering Signals (12)
• When the signal handler returns, the sysreturn system

call is invoked
• Note: again the kernel thread stack contains user-process details

• The sysreturn syscall copies the
original CPU context of interrupted
process back into the kernel stack
• (along with any changes to the CPU

context made by the signal handler)
• Then, sysreturn returns back to

the user process
• Resumes process execution at the point

where the signal interrupted the process
• User stack pointer is restored as well,

eliminating now-unneeded stack data

22

User Process Stack

user process
stack contents
(before signal)

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip
error code

interrupt no.

register state
of signal
handler

Kernel Thread Stack

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr

Signals and System Calls
• Process may be blocked on a syscall when signal occurs

• The system call is interrupted by the signal
• Generally, some action must be taken by the kernel in this case
• e.g. the system call might return EINTR as its error code

• Some system calls can be automatically restarted when
the signal occurs
• e.g. read() or write() may be automatically restarted if they

hadn’t performed any work by the time the signal occurs

• Some system calls must report that they were interrupted
• e.g. if nanosleep() is interrupted by a signal, it returns EINTR,

and records the amount of time remaining in the sleep interval

23

Signals and System Calls (2)
• If a process is in a system call when it receives a signal:

• It was previously in kernel code when the signal is delivered…
• It entered the kernel by performing an int $0x80 trap operation

(or a fast system-call, e.g. using sysenter instruction)

• The signal delivery mechanism will
see the interrupt # in process’ state
• Original value of eax is also stored,

indicates which syscall was interrupted

24

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of interrupted

process

Kernel Thread Stack

other kernel
stack data

Signals and System Calls (3)
• Depending on the process’ configuration, and on system call

that was interrupted, kernel takes one of two actions:
• Option 1: the kernel modifies the interrupted process’ CPU

context to show the system call as interrupted
• Sets the process’ eax register to
-EINTR

• The process will see the system call
return this error code

• Option 2: the kernel modifies process’
CPU context to rerun the system call
• Sets the process’ eax register to the

original system call number
• Subtracts 2 from process’ eip register

to force int $0x80 (or sysenter) to
run again

25

caller’s ss
caller’s esp

caller’s eflags
caller’s cs
caller’s eip

User Process Stack

user process
stack contents
(before signal)

error code
interrupt no.

register state
of interrupted

process

Kernel Thread Stack

other kernel
stack data

Signal Handlers and siglongjmp
• Signal handlers can use siglongjmp() to jump to

another part of the user program
• Effectively terminates the signal handler and resumes execution of

the user program at a different point
• Described as a “non-local goto”

• In fact, could use longjmp() or
siglongjmp()
• sigsetjmp / siglongjmp are strongly

preferred because they can optionally
save and restore blocked-signals mask

• In practice, that is the only difference
between setjmp and sigsetjmp

26

(empty)

User Process Stack

user process
stack contents
(before signal)

Kernel Thread Stack

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr
signal handler

stack data

Signal Handlers and siglongjmp (2)
• Does performing a siglongjmp from a signal handler

break the kernel’s signal-delivery machinery at all?
• Answer should be obvious from the stack state, and from

previous discussion
• Recall:

• When a pending signal is dequeued by
do_signal(), process’ state is updated
to show the signal as no longer pending

• Kernel doesn’t require the signal handler
to return in order to “complete” processing
• As far as kernel is concerned, signal is done!
• Only task is to restore blocked signal mask

(which siglongjmp can also take care of)

27

(empty)

User Process Stack

user process
stack contents
(before signal)

Kernel Thread Stack

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr
signal handler

stack data

Signal Handlers and siglongjmp (3)
• Also: kernel will always check for pending signals to

deliver, when returning to the user process
• Any pending signals will likely be delivered the next time the

scheduler starts running the process again
• Finally, the kernel’s signal-delivery

mechanism leaves no state on the
kernel stack
• All state for both the signal handler and

the interrupted point in the process is
contained within the user stack

• If a user process long-jumps out of
signal handler, it will have no effect
on delivery of any future signals

28

(empty)

User Process Stack

user process
stack contents
(before signal)

Kernel Thread Stack

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr
signal handler

stack data

Signal Handlers and siglongjmp (4)
• Why would a process long-jump out of signal handler?

• Needs to have a jump-buffer that records the CPU state at some
earlier point in stack

• A process that long-jumps out of a
signal handler doesn’t want to
restore the old execution state!
• The process doesn’t want to resume

executing the code that was interrupted
when the signal occurred

• Long-jump will discard all intervening
execution state, including CPU state
saved by the kernel at signal delivery

• No need to invoke sysreturn; the long-
jump will restore the desired CPU state
• And, siglongjmp will restore the blocked-

signal mask to an appropriate state

29

(empty)

User Process Stack

user process
stack contents
(before signal)

Kernel Thread Stack

register state
of interrupted

process

other signal
handler details

void *uctxt
siginfo *info

int signal
sigreturn addr
signal handler

stack data

sigjmp_buf

Next Time
• Kernels maintain complex structures

on behalf of user processes…
• Kernel has a very limited amount of

memory for dynamic allocation
• Kernel has a fixed memory area for

data that pertains to all processes
• And allocation needs to be fast

• Next time: kernel allocators

30

Process-specific
data structures
Kernel stack

Kernel code
and global data

Mapping to
physical memory

0xc0000000

K
er

ne
l S

pa
ce

User stack

Memory mapped region
for shared libraries

0x40000000

%esp

brk
Run-time heap
(via malloc)

Uninitialized data (.bss)

U
se

r S
pa

ce

Forbidden

Initialized data (.data)
Program text (.text)0x08048000

0

Next Time
• Begin discussing virtual memory management

31

