Relational Database

System Implementatlon

e

Transaction Processing

Last time, introduced transaction processing

ACID properties:
e Atomicity, consistency, isolation, durability

Began talking about implementing atomicity and durability

Shadow-copy technique:

e When a transaction first writes to the database, make a
complete copy of the database

e A “db-pointer” refers to the current copy of the database
e All writes go against the new copy of the database

e At commit time, sync all files in the new copy, then update and
sync the db-pointer

Primary limitation of shadow copies is that database can
only have one transaction in progress at a time

3 /
/\\/
=

Write-Ahead Logging

Instead of duplicating the entire database and writing to a
copy, would like to write to database files in-place

To provide atomicity and durability, maintain a single log
file describing all changes made to the database

e OS allows us to update this single file atomically
e Can interleave changes from different txns in the log

Require that the log file must reflect all data changes, sync’d
to disk, before any table files are written

e This technique is called write-ahead logging (WAL)

When DB writes to the log that a txn is committed, it is!
e This write must also make it to the disk itself (e.g. fsync())
e A single atomic operation against persistent storage

4 /
N/
=

Data Access

As before, don’t model transactions at the SQL level!

e Rather, model simple operations against data items
Also, must buffer disk access to improve performance
Two-level storage hierarchy:

e Database transactions interact with buffer pages

e Buffer pages are transferred to and from disk storage
input(B) - transfer physical block B to main memory

e Data is transferred into a page of the Buffer Manager
output(B) - transfer physical block B back to disk

e May or may not also include a sync of the file that B is in

=

Data Access (2)

Transactions perform computations in local variables,
and simply read/write data items in buffer pages

read(X) - read data item X into a local variable

e If block By that X resides in isn’t in memory, database
also issues input(By) to read into memory

write(X) — write a local variable into data item X
e Does not require block By to be written back to disk!

If DB crashes after write(X), the change could be lost!

e To ensure new X is recorded, database must eventually
force By to be stored to disk, by calling output(By)

. N//

e

Database Modifications

Could require that a transaction does not modify any
database state until it is committed

e Called deferred modification
Presents several challenges:
e A transaction must make local copies of everything it modifies

e [f a transaction reads a value it has written, must make sure it
reads the local copy, not the original value

Could also allow a transaction to modify database state
before it is committed

e Called immediate modification

With immediate modification, must ensure we can properly
roll back all changes that any transaction might make!

e

Write-Ahead Log Records

Log-file records important transaction state-changes
Transaction-status log records:

o <T,start> Transaction T; has been started
e <T.commit> Transaction T; has been committed
e <T:abort> Transaction T; has been aborted

Every transaction has a unique ID
e (usually a 32-bit or 64-bit integer value)

Completed transactions will have a <T; start> record,
and either <T; commit> or <7, abort>, in the log file

Incomplete transactions will only have a <T; start>
record in the log file

8/\\//

i

Write-Ahead Log Records (2)

Log file also records all modifications to database state
Update log records: <T, X, V;, V,>

e Transaction T; wrote to value X;

* Old value of X; was V;, and new value is V,
X; specifies the data item that was written

e In discussion, usually think of X; as a specific column

* In implementations, X; is actually usually a page of a
specific data file

- e.g. store file, block no., old and new state of the block as deltas
Other kinds of database updates too!
e e.g. create a new data file; extend a file's size by one page

i

Write-Ahead Log Records (3)

Write-ahead logging supports multiple concurrent
transactions

e Records for different transactions are interleaved in the
log file
Database is responsible for ensuring that transactions
don’t interfere with each other in nasty ways

* i.e. that read(X)) and write(X;) operations from different
txns are properly scheduled to maintain isolation

e Mechanism is called concurrency-control
e For now, we will assume this is properly taken care of!

/\\/

i

Logging Operations

Write-ahead log records every database state-change

e Log is always written and synchronized to disk before
any other data files are modified on disk

Earlier example: transfer $50 from account A to B

e Every write to a data item must be preceded by a record
written to write-ahead log

e Commit record must be written to log before transaction
is reported as committed!

T,: read(A); Write-Ahead Log:
A:=A-50: T,: start ©)
write(4); ® T;: A,100,50 @
read(B); T,: B, 40,90 @
B:=B+50; T,: commit ®
write(B); ®

commit. @

1 /
N/
Rolling Back a Transaction

We can rollback transactions with our write-ahead log!

Transfer $50 from account A to B:
e This time, transaction is aborted at attempt to read(B)
e Must undo all state-changes made in the transaction

Scan backward through write-ahead log, undoing all
changes made by transaction T,

e Stop when we reach <T;: start>record

T,: read(A); Write-Ahead Log:
A:=A-50; T,: start @
write(4); @ @) | T,: A 100,50 @

read(B); @

12 /
N/
Rolling Back a Transaction (2)

Update record specifies that A was 100 before write...
e Roll back the change by restoring A to 100

When undoing change, write a compensation log record
to the write-ahead log

e Compensates for previous state-change being undone

e Also called a redo-only log record: this write is rolling
back a state-change, so it will never be undone

Write-Ahead Log:

T,: read(4);
A:=A-50; T,: start @
write(4); @ @) | T,: A, 100,50 @
read(B); @ T, redo-only A: 100 | ®
A:=100;

write(4); ®

13 /
N/
Rolling Back a Transaction (3)

When all T, state-changes have been reversed, record
<T,: abort> record to the log

Transaction is now aborted.
e All state changes have been rolled back

e Write-ahead log records both the compensating writes,
and the final transaction status

Write-Ahead Log:

T,: read(A);

1 A :=,£1—)50; w T,: start @
write(4); ® (T.: A, 100,50 @
read(B); @ T, redo-only A: 100 | ®
A :=100; T,: abort @
write(4); ®

abort.

= | /
/\\/
>

Force, or No-Force?

Write-ahead logging rule (a.k.a. WAL rule):

e All database state changes must be recorded to the log on
disk, before any table-files are changed on disk

At commit time, are we required to force all modified table-
pages out to disk?

e In other words, can a transaction be reported to the client as
“committed,” if not all table files have been written?

We are not required to write all modified table pages at
commit time, if the database follows the WAL rule

e We know that all changes are recorded in log file on disk, even
if the table pages themselves haven’t yet been flushed to disk

e Won't violate durability by reporting transaction “committed”

15 /
/\\/
il

Force, or No-Force? (2)

Force policy:
e Database force-outputs all dirty table-pages before a
transaction is reported as “committed”
No-force policy:

e Database can report a transaction as “committed” before
all dirty table-pages are output

No-force policy is much faster than force policy:

e Writes from multiple transactions can be performed
against in-memory table pages without incurring disk IO

As long as the DB records all data-changes to the WAL
on disk at commit time, it can use the no-force policy

16 /
/\\/
=

Steal, or No-Steal?

A similar question:

Are we forbidden from writing modified table-pages
out to disk before a transaction commits?

e In other words, can we allow table changes performed
by an incomplete transaction to reach the disk?

We are not forbidden from writing dirty table-pages for
active txns, as long as we follow the WAL-rule:

e Not only does the log record the new value for each
modified value, but it also records the old value

e Log will always contain sufficient information, on disk, to
undo any state changes written to table pages on disk

/\\/

i

Steal, or No-Steal? (2)

Steal policy:

e Database is allowed to write dirty table-pages to disk, even if
the transaction is still active

No-steal policy:

e Database is not allowed to write dirty table-pages to disk until
the transaction is being committed

Steal policy allows much larger database updates to be
performed

e Doesn’t require a large amount of buffer memory to hold
uncommitted changes

e Modified pages can be written to disk to free up buffer space
As long as DB follows WAL rule, it can use the steal policy

18 /
/\\/
=

Crash Recovery!

Write-ahead logging rule:

e All database state changes must be recorded to the log
on disk, before any table-files are changed on disk

If the system crashes, all important state changes will
already be recorded to the log file

e All completed transactions will record:
« All modifications performed by the transaction

o A<T;: commit>or <T;: abort>record for the transaction

e All incomplete transactions will record:
- All modifications performed by transaction before the crash

Table files won’t necessarily reflect all of these changes

19 /
N/
Crash Recovery! (2)

The recovery process performs two critical tasks:

e [t synchronizes the current state of all data files with the
current state of the write-ahead log

e [t completes all incomplete transactions

Policy for incomplete transactions:
e Atrecovery, incomplete transactions are aborted

N/

e

Crash Recovery! (3)

Completed transactions:
e Log will contain a <T;: start> record, plus a matching

1

<T;: commit> or <T;: abort>record

1
e Ensure that data files properly reflect all transaction
state-changes

Incomplete transactions:
e Log will contain a <T;: start> record, but no matching

1

<T;: commit>or <T;: abort>record

e Ensure that all transaction state-changes are properly
removed from the data files

Recovery is performed in two phases

N/

e

Recovery Processing

Phase 1: redo phase

e Scan forward through log, redoing updates from all txns,
in the exact order they appear in the transaction log

* For every update record <T;, X, V;, V,> in the log, set X; to

the new value V, recorded in the log
e For every redo-only record <T, X] V>, seth tolV/
e This is called repeating history
During this phase, maintain a set of incomplete txns:
e When a <T;: start>record is found, add T; to incompletes

1

e When a <T;: commit> or <T;: abort> record is found,

1
remove T; from incompletes

N/

e

Recovery Processing (3)

Phase 2: undo phase
e Scan backward through log, rolling back incomplete txns
e Procedure is identical to rolling back a single transaction

If record’s transaction ID is in the set of incompletes:

e If the record is a normal update record: <T, X, V;, V,>

« Write a redo-only record <T;, Xj, V,> to end of log
» Undo the state change: Restore X; to the old value V,

e Ifthe record is a <T.: start>record:

1
« Write a <T;: abort>record to end of log

1

« Remove transaction T; from the set of incompletes
Undo phase is done when the incomplete-set is empty

N/

e

Redo-Only Records

Redo-only logs greatly simplify recovery processing

To rollback a transaction, must undo its state-changes in
reverse order of its updates

e A txn may write to a given data item multiple times...

e At end of rollback, item must reflect the original value
Cannot handle previously aborted txns in the undo phase:

e Could undo a write performed by another committed txn!
Example: Write-Ahead Log:

e T, changes A from 100 to 200, then aborts. Ty: start

e T, changes A from 100 to 50, then commits. n ke

: : T;: abort
e Rolling back T, in undo phase would T,: start
overwrite T,’s write to 4 in redo phase ® T, 4,100, 50

T,: commit

//é44;;;;;;;:::::::::::::::::::=====———~___"__‘____________—__”’///,////

i

Redo-Only Records (2)

In cases of previously-aborted transactions, must undo
the transaction’s writes during the redo phase

e Scan backwards through the log file, undoing all changes
made specifically by T,...
e Very slow - introduces many extra disk seeks!

Redo-only records make it fast to replay
Write-Ahead Log:

the rollback of previously aborted txns T,

: start

e Just keep scanning forward through the | 7:: 4,100,200

log, applying redo-only records for T, ;1 :fa"rit
=

T,: A,100, 50
T,: commit

N/

e

Crashes During Recovery

System could also crash during recovery...

e Must still be able to recover, even if the last crash
occurred during recovery processing!

Recovery procedure must be idempotent:

e Results of recovery processing must be the same,
whether it is applied once or multiple times

As described, this recovery procedure is idempotent
e We record the actual old and new values of data items
e Logged values aren’t relative to other operations

e Worst case is that a data item will be “restored” multiple
times (extra writes, but we don’t mind)

N/

i

Read-Only Transactions

Frequently have many transactions that only read the
database

e Nothing to redo or undo for such transactions...
e No need to represent them in the write-ahead log!

Only record a transaction to the write-ahead log when
it actually changes state in the database

e e.g. at first state-change, write <T;: start> and also the
first update-record to the log

N/

e

Logging Performance

So far, assumed that new write-ahead log records are
always written and sync’d to the log file immediately

Imposes a very expensive 10 penalty on the system!
Would rather write multiple log records to disk at once
e Log file is written in units of blocks, just like table files
Database loads pages of table-files into buffer space...
e Table data is modified in memory

Database system can control when these buffer pages are
flushed back to disk

e Database can coordinate the output of table blocks, with the
writing of log records

N/

e

Logging Performance (2)

A transaction T; cannot be reported as “committed” until:
e A <T;: commit>record is written to the log, and sync’d to disk

1

Before the <T;: commit> record can be logged:

1

e All other log records for T; must also be written to the WAL
e These can be sync'd at same time <T;: commit> is sync’d

1
e (In other words, these can remain in buffer until it is time to

write the <T;: commit> record.)

For this to work, must constrain that a table-page cannot be
flushed from the Buffer Manager to disk until:

e All write-ahead log records for that page have been written to
the log file, and sync’d to disk

e (This is the WAL rule)

N/

e

Logging Performance (3)

General rules:

e Before a transaction is reported as “committed”, must ensure
that all logs have been sync’d to disk

e Before a dirty table-page is flushed to disk, must ensure that
all logs pertaining to that page have been sync’'d to disk

These rules specify the absolute latest that log records must
be written and sync’d to disk

e If current log-page is only partially full at this point, write it
out anyway! Required for atomicity, durability.

Can certainly write logs to disk earlier, if we need to free up
buffer space

e Still don’t require syncing until one of the conditions above

