
CS122	– Lecture	14
Winter	Term,	2017-2018

Database	Limitations
� Can	create	a	pretty	sophisticated	database	by	now

� Can	parse,	plan,	and	execute	SQL	queries
� Provide	faster	access-paths	to	records	using	indexes
� Perform	query-plan	optimization

� Our	database	still	lacks	an	essential	set	of	capabilities:
� The	database	isn’t	reliable	when	failures	occur!

� Logical	failures	– an	operation	against	the	database	
violates	some	constraint	and	cannot	be	completed

� System	failures	– the	hardware	or	OS	suffers	a	failure
� The	database	also	cannot	handle	concurrent	access

2

Transaction	Processing
� Databases	provide	transactions	to	properly	handle	
these	situations

� A	transaction is	a	collection	of	one	or	more	operations	
that	form	a	single	logical	unit	of	work

� Clients	must	tell	DB	when	a	transaction	begins	or	ends
� Start	a	transaction:

� Standard:		START	TRANSACTION
� Also:		BEGIN	[TRANSACTION	|	WORK]

� Complete	a	transaction:
� Standard:		COMMIT	[WORK]
� Also:		COMMIT	TRANSACTION,	END	[TRANSACTION	|	WORK]

3

Transaction	Processing	(2)
� A	transaction	is	a	single	logical	unit	of	work

� Should	be	indivisible:		either	all operations	affect	the	
database,	or	none of	them	do

� Clients	can	abort an	in-progress	transaction:
� Client	tells	DB	to	undo	all	changes	made	by	transaction
� Also	called	rolling	back a	transaction
� Commands:

� Standard:		ROLLBACK	[WORK]
� Also:		ROLLBACK	TRANSACTION,
ABORT	[TRANSACTION	|	WORK]

� The	DB	itself	can	also	abort	transactions,	in	some	cases
� e.g.	if	a	constraint	is	violated	during	a	transaction

4

ACID	Properties
� Transaction	processing	systems	should	satisfy	specific	
properties,	called	the	ACID	properties

� ACID	properties	were	originally	devised	by	Jim	Gray
� A	critical	contribution	to	databases	and	transaction	
processing	systems

� Gray	won	a	Turing	award	in	1998	for	this	work
� “ACID”	acronym	was	later	coined	by	other	researchers

5

ACID	Properties	(2)
� Atomicity

� Either	all operations	in	the	transaction	are	reflected	in	
the	database,	or	none of	them	are

� Consistency
� Execution	of	the	transaction	(in	isolation	from	any	other	
transactions)	preserves	all	database	constraints

� Given:		the	database	starts	in	a	consistent	state
� The	completed	transaction	should	also	leave	the	
database	in	a	consistent	state

6

ACID	Properties	(3)
� Isolation

� When	multiple	transactions	are	executed	concurrently,	
they	must	appear	to	execute	in	isolation	of	each	other

� For	every	pair	of	transactions	Ti and	Tj,	it	appears	that	
either	Ti completes	before	Tj starts,	or	that	Tj completes	
before	Ti starts

� Durability
� After	a	transaction	completes	successfully	(i.e.	after	it	is	
reported	as	committed),	all	changes	it	made	are	
persistent,	even	if	there	are	system	failures

7

Example:		Account	Transfer
� Classic	transaction-processing	example:		transfer	
money	from	one	bank	account	to	another	account

� Database	transactions	involve	complex	SQL	statements
� Model	them	as	a	sequence	of	read	and	write	operations
� Example:		transfer	$50	from	account	A to	account	B

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

8

Example:		Account	Transfer	(2)
� Consistency:

� If	database	was	in	a	consistent	state	before	the
transaction,	it	will	still	be	consistent	afterward

� Often	involves	constraints	that	aren’t
specifically	modeled	in	the	database

� Example:		sum	of	account	balances	A +	B
should	be	unchanged	by	this	transaction

� May	have	other	constraints	as	well,	such	as:
� All	accounts	must	have	a	non-NULL	balance
� Account	balance	is	not	allowed	to	be	negative

� DB	may	be	able	to	enforce	some	of	these	constraints,	but	
the	application	is	also	responsible	for	ensuring	consistency!

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

9

Example:		Account	Transfer	(3)
� Scenario	1:		In	the	process	of	this
transaction,	a	failure	occurs	after
write(A),	but	before	write(B)
� e.g.	perhaps	account	B doesn’t	exist,
or	the	system	crashes,	etc.

� Atomicity:
� Either	all of	the	transaction’s	operations	complete,	or	
none of	them	do

� In	this	case,	if	atomicity	is	violated:
� The	database	loses	$50!		Consistency	is	also	violated.

� The	database	enters	into	an	inconsistent	state

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

10

Example:		Account	Transfer	(4)
� Scenario	2:		This	time	the	transaction
completes,	but	then the	system	crashes
� e.g.	power	failure,	disk	crash,
BSOD/kernel-panic,	or	database
software	crashes	(least	likely!	J)

� Durability:
� If	the	transaction	is	durable	then	the	database	will	still	
reflect	the	changes	after	recovery	has	been	completed

� The	client	doesn’t	need	to	repeat	the	transaction	again
� When	DB	responds	that	the	transaction	is	committed,	
this	is	a	guarantee that	the	changes	will	persist

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

11

Example:		Account	Transfer	(5)
� Most	DBs allow	concurrent	access	by	multiple	clients

� Multiple	transactions	can	occur	at	the	same	time
� Two	account	transfers	occurring	at	the	same	time:

� Isolation:
� Txns must	appear	to	execute	in	isolation	of	each	other
� Either	Ti executes	and	then	Tj executes,	or	vice	versa

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);

12

Example:		Account	Transfer	(6)
� Database	could	literally	follow	this	rule:

� Either	Ti executes	and	then	Tj executes,	or	vice	versa
� Execute	only	one	transaction	at	a	time

� Called	a	serial execution	schedule
� Problem:		this	is	really slow

� Doesn’t	maximize	utilization
of	database	server	resources

� Transaction	throughput	will	be	really	low
� Most	of	the	time,	transactions	work	with	completely	
different	records.		Why	slow	things	down?!

Ti: read(A);
A :=	A – 50;
write(A);
read(B);
B :=	B +	50;
write(B);

Tj: read(A);
A :=	A – 30;
write(A);
read(C);
C :=	C +	30;
write(C);

13

Example:		Account	Transfer	(7)
� Most	databases	interleave	transaction	operations

� Simply	must	ensure	that	the	transactions	appear to	
execute	in	isolation	of	each	other

� Example:		what	if	Ti and	Tj
are	executed	like	this?

� This	will	properly	maintain
transaction	isolation
� It	is	equivalent	to a	serial
execution	schedule

� It	is	a	serializable schedule

Ti: read(A);
A :=	A – 50;
write(A);

read(B);
B :=	B +	50;
write(B);

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);

14

Example:		Account	Transfer	(8)
� What	if	Ti and	Tjwere	are	executed	like	this	instead?
� This	execution	schedule	will
produce	an	inconsistent	state!
� Ti clobbers	Tj’s update	of	A
� In	this	case,	our	database
creates	$30	out	of	thin	air…

� Transaction	isolation	is	very
important	when	a	database
supports	concurrent	access

Ti: read(A);
A :=	A – 50;

write(A);
read(B);

B :=	B +	50;
write(B);

Tj: read(A);
A :=	A – 30;
write(A);

read(C);
C :=	C +	30;
write(C);

15

Implementing	ACID	Properties
� Atomicity,	Consistency	and	Durability	are	important	
whether	the	database	is	single-user	or	multi-user
� Still	need	these	transaction	properties	even	when	
database	is	only	used	by	one	client	at	a	time!

� Isolation	is	only	important	when	a	database	can	be	
used	by	multiple	clients	at	the	same	time
� (And	it’s	much	more	complicated…)

� Will	discuss	Atomicity,	Consistency	and	Durability	first
� Talk	about	Isolation	afterward

16

Transaction	States
� Each	transaction	goes	through	a	series	of	states
� Initially,	transactions	are	in	the	Active	state

� More	operations	can	be	performed	in	the	context	of	this	
transaction

� When	last	operation	has	been	performed,	transaction	
enters	the	Partially	Committed	state
� e.g.	client	issues	COMMIT
� No	more	operations	can	be
performed	in	the	transaction

� Database	still	has	work	to	do!

active

partially
committed

17

Transaction	States	(2)
� Partially	Committed	state:

� Client	can’t	do	anything	else,	but	database	must	now	commit	
the	transaction

� Transaction’s	state-changes	may	still	reside	in	memory
� Database	may	still	need	to	write	data	to	disk
� DB	may	need	to	verify	constraints	that	have	been	deferred	to
the	end	of	the	transaction

� If	these	operations	succeed,	transaction
enters	the	Committed	state
� DB	has	recorded	that	the
transaction	is	committed

� Txn will	be	durable	and	atomic

active

partially
committed committed

18

Transaction	States	(3)
� If	database	cannot	complete	commit-operations,	the	
transaction	enters	the	Failed	state

� Transaction	can	also	enter	the	Failed	state	while	Active
� Will	occur	if	an	operation	violates	a	database	constraint
� Or,	client	may	issue	a	ROLLBACK	command

� At	this	point,	the	DB	must	ensure
that	all	state-changes	have	been
rolled	back	to	previous	state
� Once	this	is	done,	the	txn
enters	the	Aborted	state

active

partially
committed committed

failed aborted

19

Storage	Characteristics
� Ability	to	implement	durable	and	atomic	transactions	
depends	on	characteristics	of	storage	media

� Previously	discussed	storage	hierarchy
� Primary	storage	– main	memory,	caches

� This	storage	is	volatile:		data	won’t	survive	a	power	loss
� Also	usually	doesn’t	survive	through	a	system	crash

� Secondary/tertiary	storage	– disks,	SSD,	tapes,	optical
� This	storage	is	nonvolatile:		data	survives	loss	of	power
� Can	still	suffer	data	corruption	or	data	loss,	e.g.	if	a	hard	
disk	crashes,	or	if	the	system	crashes	during	a	write

20

Storage	Characteristics	(2)
� Storage	characteristics	broken	down	by	reliability:

� Volatile	storage	– doesn’t	survive	system	failure
� Nonvolatile	storage	– survives	a	system	failure,	but	still	
susceptible	to	data	loss

� A	third	category	of	storage	reliability:
� Stable storage	– data	is	never lost	or	corrupted

� Stable	storage	is	an	“ideal”	to	strive	for
� Requires	very	careful	engineering	to	achieve
(e.g.	redundant	storage	devices,	off-site	backups,	etc.)

� Most	systems	don’t	require	that	data	is	never lost;	just	
aim	to	ensure	that	data	loss	is	extremely	unlikely

21

Storage	Characteristics	(3)
� Transacted	operations	are	usually	performed	in	
volatile	memory
� Supports	fast	random	access,	use	in	computations

� To	make	a	transaction	durable:
� Must	ensure	that	all	effects	are	properly	recorded	in	
nonvolatile	storage	(or	stable	storage,	ideally)

� To	make	a	transaction	atomic:
� Must	record	transaction’s	effects	to	nonvolatile	storage	
in	such	a	way	that	all effects	become	“committed”	at	
once

22

Platform	Requirements
� To	make	a	transaction	durable:

� Must	ensure	that	all	effects	are	properly	recorded	in	
nonvolatile	storage	(or	stable	storage,	ideally)

� Most	platforms	provide	caching	between	memory	and	disk
� Dramatically	improves	performance	by	avoiding	I/O	
operations	that	can	be	completed	using	data	in	memory

� Platform/OS	must provide	a	way	to	force	all	cached	writes	
to	nonvolatile	storage
� When	operation	completes,	platform	guarantees	that	all	
modified	data	has	been	written	to	nonvolatile	storage

� e.g.	UNIX	has	fsync()	operation	– synchronizes	a	file	to	disk
� If	system	crashes	after	fsync()	completes,	data	is	still	there	
(barring	filesystem corruption,	of	course)

23

Platform	Requirements	(2)
� To	make	a	transaction	atomic:

� Must	record	transaction’s	effects	to	nonvolatile	storage	
in	such	a	way	that	all effects	become	“committed”	at	
once

� Platform/OS	must	ensure	that	certain	operations	
against	nonvolatile	storage	are	also	atomic
� The	operation	either	completes	successfully,	or	it	doesn’t	
complete	at	all	(no	partial	failures!)

� e.g.	most	UNIX	file-IO	operations	are	atomic,	such	as	
write()	(for	certain	data	sizes),	rename(),	unlink(),	…

� Also	atomic	in	the	context	of	concurrent	usage

24

Platform	Requirements	(3)
� Platform/OS	can’t	always	guarantee	that	operations	
against	nonvolatile	storage	will	be	atomic	in	context	of	
operating	system	or	hardware	failures
� e.g.	during	a	fsync()	or	write()	operation,	power	fails
� File	being	written	may	sustain	a	limited	amount	of
data-loss	or	corruption

� Can	employ	some	strategies	to	mitigate	this	issue…
� (Aim	to	provide	as	much	durability	as	possible)

� Database	server	is	really	only	as	good	as	the	operating	
system	and	hardware	that	it’s	running	on
� e.g.	want	journaling	filesystem,	RAID,	reliable	power,	etc.

25

Atomic,	Durable	Transactions
� Tables	usually	live	in	different	files…

� Multiple	files	may	be	written	by	a	given	transaction
� A	transaction	may	write	to	multiple	parts	of	a	given	file

� Really	isn’t	a	way	to	update	or	modify	multiple	files	in	a	
single	atomic	operation

� Example	commit	operation:
� Database	writes	each	dirty	page	to	disk,	then	calls	fsync()	on	
each	modified	table	file	in	order…

� …but	if	the	database	or	operating	system	crashes	during	this	
process,	the	transaction	will	not	be	durable	or	atomic!		L

� Instead,	we	must	find	a	way	to	turn	our	“commit”	operation	
into	a	single	atomic	update	against	a	single	file

26

Another	Strategy
� For	this	strategy,	require	only	one	transaction	at	a	time
� When	a	transaction	modifies	the	database,	the	DB	
server	creates	a	complete	copy	of	the	database
� All	table	files,	all	indexes,	etc.

� The	DB	server	keeps	track	of	the	“current”	database	
with	a	single	pointer	to	which	copy	is	current
� Initially	points	to	the	original	set	of	files

Original	DB
db-pointer

Copy	of	DB
copy!

27

Another	Strategy	(2)
� All	reads	and	writes	are	performed	against	copy	of	DB
� At	commit	time,	DB	server	performs	this	sequence:

� Write	all	dirty	pages	to	disk,	and	fsync()	each	data	file
� db-pointer	is	updated	to	point	to	new	copy

� db-pointer	is	updated	on	disk,	and	then	fsync()ed as	well
� At	this	point,	the	transaction	is	considered	“committed”

� Finally,	old	copy	of	DB	is	deleted

db-pointer
Original	DB Copy	of	DB

writesCommit!

28

Another	Strategy	(3)
� If	a	transaction	must	be	aborted,	DB	server	simply	
deletes	the	new	copy	of	the	database
� All	changes	were	made	against	the	copy
� Original	version	is	still	completely	unchanged

� Satisfies	our	requirements	for	transaction	atomicity

db-pointer
Original	DB Copy	of	DB

writes
Abort!

29

Shadow	Copies
� This	approach	is	called	shadow-copy
� Obviously	very	slow…

� Can	be	greatly	improved	by	dividing	data	into	pages,	and	
then	employing	a	copy-on-write	strategy	with	pages

� Called	shadow-paging
� Main	issue	is	it	only	allows	one	transaction	at	a	time

� This	strategy	is	rarely	employed	due	to	this	limitation

db-pointer
Original	DB Copy	of	DB

writes

30

Shadow	Copies	(2)
� Too	limited	for	general	use,	but	still	captures	the	
essential	requirement:
� Committing	a	transaction	must	involve	a	single	atomic	
operation	against	non-volatile	storage

� Made	all	changes	into	a	copy	of	the	database
� Final	commit	operation	simply	required	updating	the	db-
pointer	value,	then	syncing	it	to	disk

� If	system	crashes	before	db-pointer	is	sync’d	to	disk:
� At	recovery,	DB	considers	the	transaction	to	be	aborted
� (It	has	to,	because	there	is	no	other	record	that	the	
transaction	completed	successfully.)

31

