
CS122	– Lecture	15
Winter	Term,	2017-2018



2

Index	Optimizations
� So	far,	only	discussed	implementing	relational	algebra	
operations	to	directly	access	heap	files

� Indexes	present	an	alternate	access	path for	finding	
specific	records

� Use	indexes	to	create	optimized	implementations	of	
relational	algebra	operations

� Apply	index-based	accesses	in	query	plans	where	it	
makes	sense	to	do	so
� Optimizer	needs	strategies	for	how	to	use	indexes
� Also	needs	accurate	cost-estimates	for	index	accesses



3

B+-Tree	Index	Optimizations
� Will	focus	primarily	on	B+-tree	indexes

� Virtually	all	databases	have	B+-tree	indexes
� Other	kinds	of	indexes	are	far	less	common
� (Not	hard	to	figure	out	the	details	yourself,	if	curious…)

� Virtually	all	database	indexes	are	secondary	indexes
� Order	of	index-entries	does	not correspond	to	order	of	
records	in	data	file	(which	is	usually	a	heap	file)

� Primary	indexes are	in	same	search-key	order	as	the	file	
they	are	built	against

� Looking	up	records	referenced	by	the	secondary	
index	will	likely	incur	many	additional	disk-seeks



4

Index	Scans
� Previously	discussed	file	scans

� Scan	through	entire	table	file,	evaluating	predicate	
against	every	record

� If	predicate	involves	equality	against	a	primary	key,	can	
stop	when	we	find	the	record

� If	a	suitable	index	exists	on	columns	referenced	in	the	
selection	predicate,	can	perform	an	index	scan instead
� Evaluate	some	portion	of	the	predicate	against	the	index,	
to	identify	which	rows	in	the	table	to	retrieve

� Index	contains	pointers to	the	records	to	retrieve
� If	a	suitable	index	is	not available,	must	use	a	file	scan



5

Index	Scans	(2)
� Can	use	indexes	for	different	kinds	of	predicates
� B+-tree	indexes:

� Equality-based	lookups
� SELECT	*	FROM	employees	WHERE	emp_id =	352103;

� Comparisons	(a.k.a.	range	queries)
� SELECT	*	FROM	employees	WHERE	annual_salary >=	85000;

� Hash	indexes:
� Equality-based	lookups	only

� Planner/optimizer	must	understand	what	kinds	of	
predicates	can	be	optimized	with	different	indexes



6

Index	Scan:		Equality	on	Key
� Index	scan;	equality	on	candidate-key	attribute:

� Know	that	we	will	retrieve	at	most	one	record	from	table
� Procedure	(and	associated	costs,	worst	case):

� Starting	with	root	node	in	index,	navigate	the	B+-tree	to	
find	the	entry	for	the	record
� One	disk	seek	and	one	block-read,	for	each	level	in	the	tree

� Finally,	use	index’s	record-pointer	to	retrieve	the	record
� One	more	disk	seek,	and	one	more	block-read

� Worst-case	estimate:		hi +	1	seeks,	hi +	1	block-reads
� hi denotes	the	height	of	the	index



7

Index	Scan:		Equality	on	Key	(2)
� Optimizers	can	often	assume	much	faster	index	access

� For	a	given	B+-tree,	not	unusual	for	non-leaf	nodes	to	
comprise	less	than	1-2%	of	the	tree

� Root,	and	many	non-leaf	nodes,	will	likely	be	in	memory
� Optimizers	can	probably	assume	that	only	the	leaf	nodes	
will	need	to	be	loaded	from	disk

� Previous	estimate:		hi +	1	seeks,	hi +	1	block-reads
� Assumes	no	index	nodes	are	in	memory

� A	more	optimistic	estimate:		2	seeks,	2	block-reads
� Assumes	all	non-leaf	index	nodes	are	already	loaded



8

Index	Scan:		Equality	on	Non-Key
� Can	have	indexes	on	non-key	columns	as	well

� Table	may	contain	many	rows	with	specified	value
� Index	contains	pointers	to	records	in	table	file
� Worst-case:		record-pointers	are	in	random	order,	and	all	
records	are	in	different	blocks
� Assume	n is	number	of	records	fetched	via	index
� Would	incur	up	to	n disk	seeks	and	n block	reads,	on	top	of	
cost	of	navigating	the	index	(hi seeks	and	hi block-reads)

� Normally	it	isn’t	nearly	this	bad…
� Required	blocks	of	table	file	may	already	be	in	memory

� If	record	pointer	is	used	as	a	uniquifier in	the	search-key,	
index	entries	for	a	given	value	will	not be	in	random	order!
� Reading	table-records	for	a	given	key	will	incur	minimal	seeks



9

Index	Scan:		Comparisons
� Range	scans	are	also	straightforward

� SELECT	*	FROM	employees	WHERE	salary	>	85000;
� Use	index	structure	to	navigate	to	starting	point	in	
sequence	of	leaf-nodes

� Traverse	sequence	of	leaf-nodes,	retrieving	records	
referenced	by	index	entries

� Example:		index	on	employees.salary,	in	increasing	
order	of	salary	values
� Navigate	tree	to	where	entries	have	salary	value	>	85000
� Traverse	leaf-node	entries	until	entire	index	is	scanned



10

Index	Scan:		Comparisons	(2)
� Can	also	perform	range-scans	with	<	or	≤	conditions
� Example:		index	on	employees.salary,	in	increasing	
order	of	salary	values
� SELECT	*	FROM	employees	WHERE	salary	<	40000;

� In	these	cases:
� Start	with	smallest	search-key	value	in	index
� Scan	through	leaf	records	until	¬(salary <	40000)

� Easily	use	index	to	satisfy	any	comparison	(>,	≥,	<,	≤)



11

Index	Scan:		Comparison	Costs
� Can	run	into	same	issue	as	with	equality-based	index	
lookup	on	a	non-key	column:
� Index-scan	retrieves	rows	that	include	record-pointers
� Index-scan	will	identify	multiple	rows
� Rows	are	almost	certainly	not in	the	same	physical	order	
as	the	logical	order	specified	by	the	index

� Will	likely	incur	a	large number	of	disk	seeks:
� Potentially	one	seek	per	record	retrieved

� (usually	isn’t	this bad,	but	still	imposes	a	very	heavy	cost)
� Potentially	one	seek	per	leaf-block	in	index,	as	well

� (assume	we	can	ignore	this,	if	indexes	are	well-maintained)



12

Index	Scan:		Comparison	Costs	(2)
� Given:

� hi is	height	of	the	B+-tree	index
� n rows	will	match	the	comparison	predicate
� Index	entries	for	matching	rows	occupy	b leaf-nodes

� Steps	and	their	costs:
� Navigate	to	starting-point	in	sequence	of	leaf	nodes

� hi disk	seeks	and	hi block	reads
� Read	through	b leaf-nodes

� b block	reads	(assume	index	has	leaves	in	roughly	sequential	order)
� Fetch	each	of	n records	from	table-file

� Up	to	a	maximum	of	n disk	seeks	and	n block	reads
� Overall	worst-case	cost:		hi +	n seeks,	hi +	n +	b block-reads



13

Index	Scan:		Comparison	Costs	(3)
� Could	apply	clever	techniques:

� Read	in	multiple	blocks	of	index	entries	that	satisfy	the	
selection	predicate

� Sort	entries	based	on	record	pointers
� Retrieve	the	records	in	that	order

� However,	results	will	no	longer	be	in	search-key	order
� Not	a	huge	issue,	but	interferes	with	Selinger-style	
optimization	techniques

� Can’t	take	advantage	of	records	in	search-key	order	
further	up	the	plan-tree



14

Index	Scan:		Comparison	Costs	(4)
� Generally,	optimizer	must	choose	when	to	use	an	index	very
carefully…

� A	simple	file-scan	will	read	every	disk	block,	but	will	also	
incur	far fewer	disk	seeks!
� A	disk	seek	can	be	as	expensive	as	10+	sequential	block-reads

� Index	scan	will	only	save	time	if	a	small	number	of	records	
are	being	fetched
� (Use	table	statistics	and	costing	estimates	to	guess	how	many	
rows	a	selection	predicate	might	produce.)

� Can	still	sometimes	use	indexes	for	fast	range-queries
� Index	entries	also	contain	search-key	values…
� Not	every	situation	requires	the	entire	record	to	be	fetched



15

Indexes
� Can	even	satisfy	some	queries	entirely	from	an	index
� Example:

� SELECT	department,	AVG(salary)	FROM	employees
GROUP	BY	department;

� Two-column	index	on	(department,	salary)
� This	is	often	called	a	covering	index
� In	cases	like	this,	most	databases	will	compute	the	
query	entirely	against	the	index
� Don’t	need	to	incur	accesses	to	the	table	at	all

� (Be	aware	of	this	when	you	design	databases,	too!		J)



16

Indexes	and	Complex	Selections
� Often	have	more	complex	selections:		σP1	∧	P2	∧	…(r)

� Conjunctive	selection
� Examine	individual	conditions	to	determine	if	an	index	
can	be	used	for	any	of	them

� If	a	single	condition	can	benefit	from	an	index,	e.g.	P1:
� σP1	∧	P2	∧	…(r)	=	σP2	∧	…(σP1(r))
� Use	index	to	optimize	selection	on	P1,	then	apply	other	
predicates	in	memory



17

Indexes	and	Complex	Selections	(2)
� An	index’s	search-key	may	include	multiple	attributes

� If	predicate	includes	multiple	comparisons	on	index-attrs,
we	can	sometimes leverage	index	to	speed	lookup

� Example:		table	T	with	columns	A,	B,	C,	D
� B+-tree	index	on	(A,	B,	C)

� SELECT	*	FROM	T	WHERE	A	=	5	AND	B	>	3;
� Rows	satisfying	these	conditions	will	be	adjacent	in	the	index

� SELECT	*	FROM	T	WHERE	B	=	45	AND	C	<	12;
� Can’t	use	index	for	this	predicate	L
� Index	entries	are	ordered	on	A	first,	then	B,	and	finally	C
� Entries	with	B	=	45	will	likely	be	scattered	throughout	index



18

Indexes	and	Complex	Selections	(3)
� Complex	selections:

� Conjunctive	selection:		σP1	∧	P2	∧	…(r)
� Disjunctive	selection:			σP1	∨	P2	∨	…(r)

� If	we	have	multiple	indexes	on	input	table:
� Can	perform	individual	selections,	then	apply	set	operations	
to	compute	complex	selection

� Example:		σA	=	15	∧	B	=	2(t)
� Two	different	indexes	on	t:		one	on	A,	another	on	B
� Perform	two	index-scans	to	get	record-pointers
� Use	set-intersection	on	pointers	to	compute	result

� (For	disjunctive	selection,	use	set-union	instead)
� Finally,	look	up	each	record	using	its	record-pointer

Ç

t t
a	=	15 b =	2



19

Join	Optimizations
� Joins	involve	row	lookups	based	on	column-values

� Can	frequently	leverage	indexes	to	improve	performance
� Indexed	Nested-Loop	Join:
for	each	tuple	tr in	r:
using	index	on	s,	iterate	over	tuples	ts in	s

that	satisfy	join	condition:
add	join(tr,	ts)	to	result

� Inner	loop	is	effectively	performing	index-based	
selection	against	s,	based	on	the	join	condition
� Estimate	cost	of	inner-loop	lookups	based	on	condition,	
and	on	whether	attributes	are	candidate	keys	or	not



20

Indexed	Nested-Loop	Join
� Worst	case:		database	can	only	hold	one	block	of	each	
table	in	memory

� Indexed	Nested-Loop	Join:
for	each	tuple	tr in	r:
using	index	on	s,	iterate	over	tuples	ts in	s

that	satisfy	join	condition:
add	join(tr,	ts)	to	result

� Requires	br seeks	and	block-reads	for	outer	loop
� Incurs	cost	nr × c for	inner	loop

� c =	cost	of	index-based	selection;	depends	on	index,	the	
join	predicate,	etc.



21

Indexed	Nested-Loop	Join	(2)
� Indexed	Nested-Loop	Join,	worst-case	cost:

� Requires	br seeks	and	block-reads	for	outer	loop
� Incurs	cost	nr × c for	inner	loop

� c =	cost	of	index-based	selection;	depends	on	index,	the	join	
predicate,	etc.

� Must	be	very	careful	to	consider	increased	seek-costs!
� If	an	index	is	available	on	both	sides	of	join,	generally	
makes	sense	to	put	smaller	table	on	outer	loop
� Must	perform	one	index-lookup	per	row	in	outer	table
� Large	fanout of	B+-tree	means	index-lookup	cost	will	
likely	be	about	same	regardless	of	which	is	outer	table



22

Hybrid	Merge-Join
� Sort-merge	join	requires	input	relations	to	be	sorted	
on	join-attributes

� Usually	will	not	be	the	case…
� Generally	store	our	records	in	heap	files

� But,	often	have	ordered	indexes	on	the	join-attributes,	
on	one	or	both	tables	involved	in	the	join

� Can	use	these	indexes	to	perform	a	hybrid	merge-join



23

Hybrid	Merge-Join	(2)
� Example:		one	relation	is	sorted,	other	is	unsorted

� Have	a	B+-tree	index	on	join-attrs of	unsorted	relation
� Procedure:

� Perform	a	merge	join	between	records	of	sorted	table	
and	leaf-entries	of	the	B+-tree	index	on	unsorted	table

� Intermediate	results	contain	records	from	one	table,	and	
record-pointers	into	the	other	table

� Sort	intermediate	results	on	the	record-pointers
� Minimize	disk-seek	costs	from	retrieving	referenced	records

� Retrieve	and	join	in	the	referenced	records



24

Hybrid	Merge-Join
� Example:

� Left	table	has	sorted	records
� B+-tree	on	right	table’s	records,
with	record-pointers	in	entries

� Merge-joined	result	contains
record	pointers

� Sort	results	on	record-pointers
� Load	and	join	in	referenced
records	in	an	order	that
minimizes	disk	seeks

Jones
Smith
Brown
Davis

34
37
36
28

301325
301792
302331
303155

… ……

Records	from	sorted	table

301792
301792
302126
302331

15:0723
37:2599
04:1578
21:0380

……

B+-tree	leaf	entries

Smith
Smith
Brown
…

37
37
36
…

301792
301792
302331
… …

15:0723
37:2599
21:0380

sort	on	record-pointers

Smith

Smith

Brown

…

37

37

36

…

301792

301792

302331

… …

15:0723

37:2599

21:0380

… …… …

Jenkins 29305908 33:2101

load	referenced	records

… …… … … …

record
pointers



25

Hybrid	Merge-Join	(4)
� Can	easily	extend	this	procedure	to	merge-join	two	
unsorted	relations	with	appropriate	ordered	indexes

� Benefits:
� Index	entries	are	often	much	smaller	than	records	themselves
� Sorting	the	index	entries	on	record-pointers	may	be	much
more	efficient	than	sorting	the	actual	records

� Drawbacks:
� Requires	multiple	sort/load	passes	to	minimize	disk	seeks

� Sort	on	left	table’s	record-pointers	to	load	left	table’s	tuples,	then	sort	
on	right	table’s	pointers	to	load	right	table’s	tuples

� May	be	faster	to	simply	sort	the	input	relations…
� Results	of	hybrid	merge-join	won’t	be	in	search-key	order



26

Multi-Column	Indexes
� Several	situations	where	multi-column	indexes	are	helpful
� Data	warehouses:

� Standard	data	warehouse	schema	design	has	a	few	large	fact	tables
surrounded	by	multiple	smaller	dimension	tables

� Relatively	small	number	of	records	in	each	dimension	table
� Fact	table	records	are	comprised	of:

� A	foreign-key	reference	to	a	row	in	each	dimension	table
� One	or	more	measures	corresponding	to	that	row’s	set	of	
dimension	values

� Queries	against	such	a
schema	require	many
joins!

dim_date fact_sales_data

dim_time

dim_region

dim_category

date_id
time_id
region_id
category_id
num_sales
total_revenue



27

Bitmap	Indexes
� Databases	can	provide	bitmap	indexes to	make	queries	
against	these	schemas	incredibly	fast

� A	bitmap	index	on	attribute	A	of	a	table	T:
� Build	a	separate	bitmap	for	every	distinct	value	of	A
� The	bitmap	contains	one	bit	for	every	record	in	T
� For	a	given	value	aj that	appears	in	column	A:

� If	tuple	ti holds	value	aj for	column	A,	the	bitmap	for	ajwill	store	a	1	
for	bit	i.		Otherwise,	bit	iwill	be	0.

� For	such	an	index	to	be	feasible:
� Attribute	A	shouldn’t	contain	too	many	distinct	values	(duh)
� Also,	it	must	be	easy	to	map	bit	i to	tuple	ti
� Specifically,	we	should	generally	only	add rows	to	table	T



28

Bitmap	Index	Example
� An	example	bitmap	index:

� Sales	data	warehouse,	with	bitmap
indexes	on	category	and	region

� Example	query:
� SELECT	SUM(total_revenue)
FROM	fact_sales_data NATURAL	JOIN

dim_region
WHERE	region_name =	'asia';

� Could	use	“region:asia”	bitmap;
only	fetch	records	with	a	1-bit

� But,	that’s	probably	not	actually
faster	than	just	doing	a	file-scan

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics
apparel

books

europe
asia

n.america
cookware asia

…
…
…
…
…
…
…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23
Jun	23

Category Region …Date

… … ……

Fact	table	contents:

1	0	0	0	0	0	0	1	…Category:		apparel

0	1	0	0	0	0	1	0	…Category:		electronics

0	0	1	0	1	0	0	0	…Category:		books
0	0	0	1	0	1	0	0	…Category:		cookware

0	1	1	0	0	1	0	1	…Region:		asia
1	0	0	0	0	0	1	0	…Region:		europe
0	0	0	1	1	0	0	0	…Region:		n.america

Bitmap	indexes:



29

Bitmap	Index	Example	(2)
� Reporting	queries	almost	always
include	multiple	conditions:
� SELECT	SUM(total_revenue)
FROM	fact_sales_data NATURAL	JOIN

dim_region NATURAL	JOIN
dim_category

WHERE	region_name =	'asia'	AND
category_name =	'books';

� Now	we	can	get	some	real	value
out	of	the	bitmap	indexes!
� Conjunctive	selection	predicate:
Only	include	rows	that	have	a	1-bit
in	all relevant	bitmap	indexes

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics
apparel

books

europe
asia

n.america
cookware asia

…
…
…
…
…
…
…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23
Jun	23

Category Region …Date

1	0	0	0	0	0	0	1	…

… … ……

Category:		apparel

0	1	0	0	0	0	1	0	…Category:		electronics

0	0	1	0	1	0	0	0	…Category:		books
0	0	0	1	0	1	0	0	…Category:		cookware

0	1	1	0	0	1	0	1	…Region:		asia
1	0	0	0	0	0	1	0	…Region:		europe
0	0	0	1	1	0	0	0	…Region:		n.america

Fact	table	contents:

Bitmap	indexes:



30

Bitmap	Index	Example	(3)
� Our	query:

� SELECT	SUM(total_revenue)
FROM	fact_sales_data NATURAL	JOIN

dim_region NATURAL	JOIN
dim_category

WHERE	region_name =	'asia'	AND
category_name =	'books';

� Compute	intersection	of	relevant
bitmap	indexes
� Only	retrieve	rows	that	have	a
1-bit	for	all	referenced	columns

� This	is	why	it	must	be	easy	to	find	ti given	i:		don’t	want	to	
have	to	access	rows	with	a	0-bit	at	all

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics
apparel

books

europe
asia

n.america
cookware asia

…
…
…
…
…
…
…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23
Jun	23

Category Region …Date

… … ……

0	0	1	0	0	0	0	0	…Intersection:

Fact	table	contents:

0	0	1	0	1	0	0	0	…Category:		books
0	1	1	0	0	1	0	1	…Region:		asia

Relevant	bitmap	indexes:



31

NULL	Attribute	Values
� If	a	row	has	NULL	for	the
indexed	column:
� Simply	store	0	for	all	bits	in
corresponding	bitmap	indexes

� Note:
� This	would	be	highly	unusual
in	a	data	warehouse	fact-table!

� Could	still	occur	in	other
situations

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics

NULL

books

europe

n.america

n.america
cookware asia

…
…
…
…
…
…

…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23

Jun	24

Category Region …Date

… … ……

Fact	table	contents:

1	0	0	0	0	0	0	1	0 …Category:		apparel

0	1	0	0	0	0	1	0	0	…Category:		electronics

0	0	1	0	1	0	0	0	0	…Category:		books
0	0	0	1	0	1	0	0	0	…Category:		cookware

0	1	1	0	0	1	0	1	0	…Region:		asia
1	0	0	0	0	0	1	0	0	…Region:		europe
0	0	0	1	1	0	0	0	1	…Region:		n.america

Bitmap	indexes:

apparel asia …Jun	23



32

Deleted	Rows
� If	rows	are	deleted	from	table:

� Still	need	to	easily	map	bit	at
index	i to	tuple	ti in	the	table!

� Need	a	way	to	represent	gaps
of	deleted	rows	in	bitmap	index

� Solution:		an	existence	bitmap
� Include	an	extra	bitmap	that
specifies	1	if	row	is	valid,	or
0	if	row	is	deleted

� Queries	that	use	bitmap	index	also
include	existence	bitmap	in	tests

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics

NULL

books

europe

n.america

n.america
cookware asia

…
…
…
…
…
…

…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23

Jun	24

Category Region …Date

1	0	0	0	0	0	0	1	0	…

… … ……

Category:		apparel

0	1	0	0	0	0	1	0	0	…Category:		electronics

0	0	1	0	1	0	0	0	0	…Category:		books
0	0	0	1	0	1	0	0	0	…Category:		cookware

0	1	1	0	0	1	0	1	0	…Region:		asia
1	0	0	0	0	0	1	0	0	…Region:		europe
0	0	0	1	1	0	0	0	1	…Region:		n.america

Fact	table	contents:

Bitmap	indexes:

apparel asia …Jun	23

1	1	0	1	1	1	1	1	0	…Existence



33

Compressed	Bitmaps
� Bitmap	indexes	aren’t	that large,
but	they	do	take	up	some	space

� Bitmap	indexes	will	usually
contain	large	runs	of	0- or	1-bits
� The	more	distinct	values	in	a
given	column,	the	more	0-bits
in	the	corresponding	bitmaps

� Very	suitable	to	compression!
� Could	use	standard	compression
mechanisms…
� Would	have	to	decompress	before
performing	bitwise	operations

books
cookware

apparel

asia
n.america

europe …
electronics asia

electronics

NULL

books

europe

n.america

n.america
cookware asia

…
…
…
…
…
…

…

Jun	21
Jun	21
Jun	21
Jun	22
Jun	22
Jun	23
Jun	23

Jun	24

Category Region …Date

1	0	0	0	0	0	0	1	0	…

… … ……

Category:		apparel

0	1	0	0	0	0	1	0	0	…Category:		electronics

0	0	1	0	1	0	0	0	0	…Category:		books
0	0	0	1	0	1	0	0	0	…Category:		cookware

0	1	1	0	0	1	0	1	0	…Region:		asia
1	0	0	0	0	0	1	0	0	…Region:		europe
0	0	0	1	1	0	0	0	1	…Region:		n.america

Fact	table	contents:

Bitmap	indexes:

apparel asia …Jun	23

1	1	0	1	1	1	1	1	0	…Existence



34

Compressed	Bitmaps	(2)
� Several	bitmap	compression	techniques	designed	to	
allow	efficient	bitwise	operations	on	compressed	data
� Doesn’t	achieve	as	high	a	compression	level,	but	queries	
don’t	incur	decompression	overhead

� Example:		Byte-aligned	Bitmap	Code	(BBC)
� Bitmap	is	divided	into	bytes
� Bytes	containing	all	1-bits	or	0-bits	are	“gap	bytes”
� Bytes	containing	a	mixture	are	called	“map	bytes”
� “Control	bytes”	specify	runs	of	gap-bytes	(run-length	
encoding),	and	also	identify	sequences	of	map-bytes



35

Compressed	Bitmaps	(3)
� Byte-aligned	Bitmap	Code	(BBC)	achieves	very	good	
compression,	and	is	still	quite	fast…
� …but	CPUs	work	most	optimally	with	words,	not	bytes.

� Word-aligned	Bitmap	Code	(WBC)	and	Word-Aligned	
Hybrid	(WAH)	code	divide	bitmaps	into	words
� Doesn’t	achieve	same	level	of	compression	as	BBC,	but	is	
much	faster	for	bitmap	operations

� One	research	result:
� WBC/WAH	used	50%	more	space	than	BBC	but	was	12x	faster

� Other	bitmap	compression	mechanisms	as	well


