Relational Database

System Implementatlon

e

Index Optimizations

So far, only discussed implementing relational algebra
operations to directly access heap files

Indexes present an alternate access path for finding
specific records

Use indexes to create optimized implementations of
relational algebra operations

Apply index-based accesses in query plans where it
makes sense to do so

e Optimizer needs strategies for how to use indexes

e Also needs accurate cost-estimates for index accesses

3 /
/\\/
=

B*-Tree Index Optimizations

Will focus primarily on B*-tree indexes
e Virtually all databases have B*-tree indexes
e Other kinds of indexes are far less common
e (Not hard to figure out the details yourself, if curious...)

Virtually all database indexes are secondary indexes

e Order of index-entries does not correspond to order of
records in data file (which is usually a heap file)

e Primary indexes are in same search-key order as the file
they are built against

Looking up records referenced by the secondary
index will likely incur many additional disk-seeks

4 /
N/
=

Index Scans

Previously discussed file scans

e Scan through entire table file, evaluating predicate
against every record

e [f predicate involves equality against a primary key, can
stop when we find the record

If a suitable index exists on columns referenced in the
selection predicate, can perform an index scan instead

e Evaluate some portion of the predicate against the index,
to identify which rows in the table to retrieve

e Index contains pointers to the records to retrieve
e [f a suitable index is not available, must use a file scan

5 | /
/\\/
=

Index Scans (2)

Can use indexes for different kinds of predicates

B*-tree indexes:

e Equality-based lookups
o SELECT * FROM employees WHERE emp_id = 352103;

e Comparisons (a.k.a. range queries)
« SELECT * FROM employees WHERE annual_salary >= 85000;

Hash indexes:
e Equality-based lookups only

Planner/optimizer must understand what kinds of
predicates can be optimized with different indexes

6/\\//

i

Index Scan: Equality on Key

Index scan; equality on candidate-key attribute:

e Know that we will retrieve at most one record from table

Procedure (and associated costs, worst case):

e Starting with root node in index, navigate the B*-tree to
find the entry for the record

» One disk seek and one block-read, for each level in the tree
e Finally, use index’s record-pointer to retrieve the record
» One more disk seek, and one more block-read
Worst-case estimate: h; + 1 seeks, h; + 1 block-reads
e h:denotes the height of the index

i

Index Scan: Equality on Key (2)

Optimizers can often assume much faster index access

e For a given B*-tree, not unusual for non-leaf nodes to
comprise less than 1-2% of the tree

e Root, and many non-leaf nodes, will likely be in memory

e Optimizers can probably assume that only the leaf nodes
will need to be loaded from disk

Previous estimate: h, + 1 seeks, h; + 1 block-reads
e Assumes no index nodes are in memory

A more optimistic estimate: 2 seeks, 2 block-reads
e Assumes all non-leaf index nodes are already loaded

/\\/
-
Index Scan: Equality on Non-Key

Can have indexes on non-key columns as well
e Table may contain many rows with specified value
Index contains pointers to records in table file

Worst-case: record-pointers are in random order, and all
records are in different blocks

e Assume n is number of records fetched via index

e Would incur up to n disk seeks and n block reads, on top of
cost of navigating the index (h; seeks and h; block-reads)

Normally it isn’t nearly this bad...
e Required blocks of table file may already be in memory

If record pointer is used as a uniquifier in the search-key,
index entries for a given value will not be in random order!

e Reading table-records for a given key will incur minimal seeks

e

Index Scan: Comparisons

Range scans are also straightforward
e SELECT * FROM employees WHERE salary > 85000;

Use index structure to navigate to starting point in
sequence of leaf-nodes

Traverse sequence of leaf-nodes, retrieving records
referenced by index entries

Example: index on employees.salary, in increasing
order of salary values

e Navigate tree to where entries have salary value > 85000
e Traverse leaf-node entries until entire index is scanned

10 /
N/
Index Scan: Comparisons (2)

Can also perform range-scans with < or < conditions

Example: index on employees.salary, in increasing
order of salary values

e SELECT * FROM employees WHERE salary < 40000;

In these cases:
e Start with smallest search-key value in index
e Scan through leaf records until —(salary <40000)

Easily use index to satisfy any comparison (>, 2, <, <)

/\\/

i

Index Scan: Comparison Costs

Can run into same issue as with equality-based index
lookup on a non-key column:

e Index-scan retrieves rows that include record-pointers
e Index-scan will identify multiple rows

* Rows are almost certainly not in the same physical order
as the logical order specified by the index
Will likely incur a large number of disk seeks:
e Potentially one seek per record retrieved
 (usually isn’t this bad, but still imposes a very heavy cost)

e Potentially one seek per leaf-block in index, as well
« (assume we can ignore this, if indexes are well-maintained)

12 | /
N/

Index Scan: Comparison Costs (2)

Given:

 h,is height of the B*-tree index
e n rows will match the comparison predicate

e Index entries for matching rows occupy b leaf-nodes
Steps and their costs:

e Navigate to starting-point in sequence of leaf nodes

 h;disk seeks and h; block reads
e Read through b leaf-nodes

« b block reads (assume index has leaves in roughly sequential order)
e Fetch each of n records from table-file

« Up to a maximum of n disk seeks and n block reads

Overall worst-case cost: h; + n seeks, h; + n + b block-reads

N/

i

Index Scan: Comparison Costs (3)

Could apply clever techniques:

e Read in multiple blocks of index entries that satisfy the
selection predicate

e Sort entries based on record pointers
e Retrieve the records in that order

However, results will no longer be in search-key order

e Not a huge issue, but interferes with Selinger-style
optimization techniques

e Can’t take advantage of records in search-key order
further up the plan-tree

N/

e

Index Scan: Comparison Costs (4)

Generally, optimizer must choose when to use an index very
carefully...

A simple file-scan will read every disk block, but will also
incur far fewer disk seeks!

e A disk seek can be as expensive as 10+ sequential block-reads

Index scan will only save time if a small number of records
are being fetched

e (Use table statistics and costing estimates to guess how many
rows a selection predicate might produce.)

Can still sometimes use indexes for fast range-queries
e Index entries also contain search-key values...
e Not every situation requires the entire record to be fetched

N/

w
Indexes

Can even satisfy some queries entirely from an index
Example:

e SELECT department, AVG(salary) FROM employees
GROUP BY department;

e Two-column index on (department, salary)
This is often called a covering index

In cases like this, most databases will compute the
query entirely against the index

e Don’t need to incur accesses to the table at all
(Be aware of this when you design databases, too! ©)

6 /
N/

Indexes and Complex Selections

Often have more complex selections: op; ,py 4 (T)

e Conjunctive selection

Examine individual conditions to determine if an index
can be used for any of them

If a single condition can benefit from an index, e.g. P1:

® Opiap2n. () = Opya (0py(r))

e Use index to optimize selection on P1, then apply other
predicates in memory

/\\/

i

Indexes and Complex Selections (2)

An index’s search-key may include multiple attributes

e I[f predicate includes multiple comparisons on index-attrs,
we can sometimes leverage index to speed lookup

Example: table T with columns A, B, C, D

e B*-tree index on (A, B, C)
SELECT * FROM T WHERE A =5 AND B > 3;

e Rows satisfying these conditions will be adjacent in the index
SELECT * FROM T WHERE B =45 AND C < 12;

e Can't use index for this predicate @

e Index entries are ordered on A first, then B, and finally C
e Entries with B = 45 will likely be scattered throughout index

8 /
N/

Indexes and Complex Selections (3)

Complex selections:
e Conjunctive selection: op; xps 4 (F)
e Disjunctive selection: opqypyy (T)
If we have multiple indexes on input table:

e Can perform individual selections, then apply set operations
to compute complex selection

Example: 0,_15,p-2(t)
e Two different indexes on t: one on A, another on B
e Perform two index-scans to get record-pointers

e Use set-intersection on pointers to compute result
» (For disjunctive selection, use set-union instead)

e Finally, look up each record using its record-pointer

19 /
/\\/
i

Join Optimizations

Joins involve row lookups based on column-values
e Can frequently leverage indexes to improve performance

Indexed Nested-Loop Join:
for each tuple ¢, in r:

using index on s, iterate over tuples ¢, in s
that satisfy join condition:

add join(t, t,) to result
Inner loop is effectively performing index-based
selection against s, based on the join condition

e Estimate cost of inner-loop lookups based on condition,
and on whether attributes are candidate keys or not

N/

i

Indexed Nested-Loop Join

Worst case: database can only hold one block of each
table in memory

Indexed Nested-Loop Join:
for each tuple ¢, in r:

using index on s, iterate over tuples ¢, in s
that satisfy join condition:

add join(t, t,) to result
Requires b, seeks and block-reads for outer loop

Incurs cost n, x ¢ for inner loop

e ¢ = cost of index-based selection; depends on index, the
join predicate, etc.

/\\/

i

Indexed Nested-Loop Join (2)

Indexed Nested-Loop Join, worst-case cost:
e Requires b, seeks and block-reads for outer loop

e Incurs cost n, x ¢ for inner loop

» ¢ = cost of index-based selection; depends on index, the join
predicate, etc.

Must be very careful to consider increased seek-costs!
If an index is available on both sides of join, generally
makes sense to put smaller table on outer loop

e Must perform one index-lookup per row in outer table

e Large fanout of B*-tree means index-lookup cost will
likely be about same regardless of which is outer table

N/

/
Hybrid Merge-Join
Sort-merge join requires input relations to be sorted

on join-attributes

Usually will not be the case...
e Generally store our records in heap files

But, often have ordered indexes on the join-attributes,
on one or both tables involved in the join

Can use these indexes to perform a hybrid merge-join

N/

Hybrid Merge-Join (2)

Example: one relation is sorted, other is unsorted

e Have a B*-tree index on join-attrs of unsorted relation

Procedure:

e Perform a merge join between records of sorted table
and leaf-entries of the B*-tree index on unsorted table

e Intermediate results contain records from one table, and
record-pointers into the other table

e Sort intermediate results on the record-pointers

« Minimize disk-seek costs from retrieving referenced records

e Retrieve and join in the referenced records

24

Hybrid Merge-Join '

Example:

Left table has sorted records

B*-tree on right table’s records,
with record-pointers in entries

Merge-joined result contains
record pointers

Sort results on record-pointers

Load and join in referenced
records in an order that
minimizes disk seeks

15
?

301792| Smith 37 115:0723
302331 Brown 36 [21:0380
305908| Jenkins | 29 [33:2101
301792| Smith 37 137:2599

sort on record-pointers

1
15

301792| Smith 37 115:0723
301792| Smith 37 137:2599
302331 Brown 36 [21:0380

i

-

301325| Jones 34
301792| Smith 37
302331| Brown 36
303155| Davis 28
(¢ J

Records from sortEd table

load referenced records

record

" pointers
1

v

301792

15:0723

301792

37:2599

302126

04:1578

302331

21:0380

|\

J

R4
B*-tree leaf entries

25 . /
N/
/

Hybrid Merge-Join (4)

Can easily extend this procedure to merge-join two
unsorted relations with appropriate ordered indexes
Benefits:

e Index entries are often much smaller than records themselves

e Sorting the index entries on record-pointers may be much
more efficient than sorting the actual records

Drawbacks:

e Requires multiple sort/load passes to minimize disk seeks

« Sorton left table’s record-pointers to load left table’s tuples, then sort
on right table’s pointers to load right table’s tuples

e May be faster to simply sort the input relations...
e Results of hybrid merge-join won'’t be in search-key order

P

Multi-Column Indexes

» Several situations where multi-column indexes are helpful
* Data warehouses:

e Standard data warehouse schema design has a few large fact tables

surrounded by multiple smaller dimension tables
e Relatively small number of records in each dimension table
e Fact table records are comprised of:

« A foreign-key reference to a row in each dimension table

e One or more measures corresponding to that row’s set of
dimension values

® Queries against such a
schema require many
joins!

> /
/\\/
Bitmap Indexes

Databases can provide bitmap indexes to make queries
against these schemas incredibly fast
A bitmap index on attribute A of a table T:

e Build a separate bitmap for every distinct value of A

e The bitmap contains one bit for every record in T

e For a given value g, that appears in column A:
 If tuple ¢; holds value a; for column A, the bitmap for a; will storea 1
for biti. Otherwise, bit i will be O.

For such an index to be feasible:
e Attribute A shouldn’t contain too many distinct values (duh)

e Also, it must be easy to map bit i to tuple ¢,
e Specifically, we should generally only add rows to table T

28 /
N/
Bitmap Index Example

An example bitmap index: Fact table contents:

e Sales data warehouse, with bitmap Date | Catepary [Repion

: : Jun 21| apparel europe
indexes on category and region Jun 21 electronics| _asia
Jun 21| books asia_

Example query: e 2 e
Jun 23| cookware asia

e SELECT SUM(total_revenue) Jun 23 lelectronics|_europe
o Jun 23| apparel asia

FROM fact_sales_data NATURAL JOIN
dim_region Bitmap indexes:

WHERE reglon—name = dasla ’ | Category: apparel |[10000001..

e Could use “region:asia” bitmap; [Category: books | 00101000..
A : | Category: cookware || 00010100 ...
only fetch records with a 1-bit

|
|
|
| Category: electronics | | 01000010... |
|
|
|

BUt, that,s prObably nOt aCtually | Reg?on: asia |[01100101..
faster than just doing a file-scan =

| Region: n.america | | 00011000...

29 /
N/
Bitmap Index Example (2)

Reporting queries almost always
include multiple conditions:

Fact table contents:

Date | Category | Region
Jun 21 1
e SELECT SUM(total_revenue) Jun 21 [electronics|asia
Jun21| book i
FROM faCt_SaleS_data NATURAL]OIN IEE 22 coo(l)<(\)/vasre n.a?rf;l"ica
7 : book 2 i
dim_region NATURAL JOIN i 25 pookare | ah
. un 23 |electronics| europe
dim_category e
o Jun 23| apparel asia
WHERE region_name = 'asia’ AND
category_name = 'books’; Bitmap indexes:
Now we can get some real value [Category: apparel_1[10000001...]
f h b i d I | Category: books |l 00101000... |
OUt O t e ltmap ln exes' | Category: cookware || 00010100... |
Only include rows that have a 1-bit R o P R
| Region: europe | | 10000010... |
|

11 a—ll relevant bltmap lndexes | Region: n.america | | 00011000...

N/

Bitmap Index Example (3)

Our query:. Fact table contents:
e SELECT SUM(total_revenue) Dite | Catagory | Reson
FROM fact_sales_data NATURAL JOIN fin jgieare. —curere
dim_region NATURAL JOIN i e
dim_category iz [ookime s
WHERE region_name = 'asia’ AND sl
category_name = 'books’;
Compute intersection of relevant Relevant bitmap indexes:

bitmap indexes | Region: asia |[01100101.. |

: | Category: books][00101000.. |

e Only retrieve rows that have a [Intersection: [00100000..]

1-bit for all referenced columns

e This is why it must be easy to find ¢; given i: don’t want to
have to access rows with a 0-bit at all

NULL Attribute Values

If a row has NULL for the S
indexed column: Date | Category | Region

Jun 21| apparel europe

e Simply store O for all bits in
corresponding bitmap indexes

Jun 21 [electronics asia

Jun 21

books

asia

Jun 22

cookware

n.america

Jun 22

books

n.america

Jun 23

cookware

asia

Jun 23

electronics

europe

Jun 23

apparel

asia

n.america

Jun 24| NULL

Note:

Bitmap indexes:

L ThlS WOUld be hlghly unusual | Category: apparel |1 100000010..
in a data warehouse fact-table! ~Categosy: books_ 1001010009

| Category: cookware | | 000101000...

P Could Stlll occur ln Other | Category: electronics || 010000100 ...
t t | Region: asia |[011001010..

Sl ua lonS | Region: europe |[100000100..

| Region: n.america | | 000110001 ...

. =
N/

Deleted Rows

If rows are deleted from table: Fact table contents:
: z A Date | Category | Region

e Still need to easily map bit at jun21]apparel | curope
index i to tuple ¢, in the table! gl bools ks

Jun 22| books |n.america

e Need a way to represent g4aps Jun 23 | cookware | asia
v v % Jun 23 |electronics| europe
of deleted rows in bitmap index Jun23[_apparel | _asia

Jun 24| NULL n.america

Solution: an existence bitmap

: Bitmap indexes:
e Include an extra bitmap that tmap indexes
[Category: apparel | [100000010 ..

SpeCIfleS 1 lf Fow 1S Vahd’ or | Category: books |/ 001010000..
O lf row IS deleted | Category: cookware || 000101000 ..

| Category: electronics | | 010000100...

e Queries that use bitmap index also

_ : : : | Region: asia |[011001010...
include existence bitmap in tests [Region: europe][100000100
| Region: n.america | | 000110001 ...

| Existence A o e i o S B L e

. =
N/
Compressed Bitmaps

Bitmap indexes aren’t that large, Fact table contents:

but they do take up some space Date [Category [Reglon
Bitmap indexes will usually igi B
contain large runs of 0- or 1-bits jn 22| bosks | nameric
e The more distinct values in a e
given column, the more 0-bits =

in the corresponding bitmaps

: ; Bitmap indexes:
Very suitable to compression!

| Existence e B R R by
COUld USG Standard COmpl‘eSSIOn | Category: apparel || 100000010...
mechanisms... | Category: books |1 001010000..

| Category: cookware | | 000101000...
| Category: electronics | | 010000100...

e Would have to decompress before

performing bitwise operations [Region: asia |[011001010..
| Region: europe || 100000100...
| Region: n.america | | 000110001 ...

34 | /
N/

e

Compressed Bitmaps (2)

Several bitmap compression techniques designed to
allow efficient bitwise operations on compressed data

e Doesn’t achieve as high a compression level, but queries
don’t incur decompression overhead

Example: Byte-aligned Bitmap Code (BBC)
e Bitmap is divided into bytes
e Bytes containing all 1-bits or 0-bits are “gap bytes”
e Bytes containing a mixture are called “map bytes”

e “Control bytes” specify runs of gap-bytes (run-length
encoding), and also identify sequences of map-bytes

35 | /
N/

e

Compressed Bitmaps (3)

Byte-aligned Bitmap Code (BBC) achieves very good
compression, and is still quite fast...

e ...but CPUs work most optimally with words, not bytes.
Word-aligned Bitmap Code (WBC) and Word-Aligned
Hybrid (WAH) code divide bitmaps into words

e Doesn’t achieve same level of compression as BBC, but is
much faster for bitmap operations

e One research result:
« WBC/WAH used 50% more space than BBC but was 12x faster

Other bitmap compression mechanisms as well

