Relational Database System Implementation

CS122 - Lecture 12

Winter Term, 2017-2018

Hash Indexes

- B+-tree indexes are very effective in most situations
 - Direct access only requires small number of block-reads
 - Also provides sequential traversal of records in search-key order
 - Most databases provide B+-tree indexes
 - Many <u>only</u> provide B+-tree indexes
- Can also build indexes based on hashing the search key
 - For lookups based on equality, should require a very small number of block-accesses
 - Hash indexes cannot improve range-query performance, and do not allow traversal in search-key order

Hash Index Challenges

- Hash-indexes group entries into buckets based on hash function applied to key
- Want our hash function to generate a uniform, random distribution of records when applied to search-key
 - Want all hash buckets to be equally full
- Can fail to achieve this for two reasons:
 - Hash function doesn't map search-key values uniformly
 - May have many records with the same search-key value
- Produces bucket skew
 - Some buckets overflow while others still have free space

Hash Index Challenges (2)

- Biggest challenge is how to handle bucket overflows
 - More records map to a bucket than the bucket can hold
- Open addressing (a.k.a. closed hashing):
 - If a key hashes to a bucket that is already full, search through hash-table until an empty bucket is found
- Overflow chaining (open hashing, closed addressing):
 - If a key hashes to a bucket that is already full, link an overflow bucket to the full bucket, and put it in there

Hash Index Challenges (3)

- Generally, open addressing works best in memory
 - Can often exploit memory caches very effectively
 - On disk, requires many block IOs
- Hash file organizations and hash index files usually rely on overflow chaining
 - Requires far fewer disk accesses than open addressing
 - Also tends to simplify hash-table restructuring over time
- If bucket overflow reaches a certain level, simply want to increase number of buckets in hash structure
 - Ideally, will relieve overflow issues, but it doesn't always do so (e.g. if many records have same key-value)

Static Hashing

- Previously discussed static hashing:
 - Number of buckets n_h is <u>fixed</u> when hash file is created
 - Apply a hash function h(K) to produce a bucket b, $0 \le b < n_b$
 - Entry is stored in this bucket
 - If a bucket overflows, use chaining to store overflow records
- Static hashing isn't effective if number of entries increases over time, or if distribution of key-values changes over time
 - Performance will slowly degrade as number of overflow records increases
 - Rehashing entire file to increase n_b will be very slow, requiring many disk IOs to complete

Dynamic Hashing

- To handle hash indexes that change over time, need some form of dynamic hashing mechanism
- Idea: make incremental changes to hash structure, instead of large-scale changes
 - Increase number of buckets by small amount as needed;
 change hash function slightly to accommodate change
 - Amount of data that must be rehashed is kept very small, so maintenance overhead is acceptably low
- Today, two dynamic hashing mechanisms:
 - Extendable hashing and linear hashing

Extendable Hashing

- In static hashing, h(K) maps keys to a (smallish) fixed number n_b
 - e.g. $h(K) = h'(K) \mod n_h$
 - Not easy to change this hash function incrementally
- For extendable hashing, choose a hash function that produces a wide range of values
 - h(K) produces b-bit integers, e.g. where b = 32
- Provide a mapping from hash values to buckets, using a bucket address table
 - Can incrementally change this table as needed

Bucket Address Table

- The bucket address table maps the top i bits of hash values into buckets that hold those entries
- Example: i = 2

- Bucket address table has 2ⁱ entries in it
 - Note: may be fewer than 2ⁱ buckets

Bucket Address Table (2)

• Example: i = 2

- To look up a value *V*:
 - Compute *h(V)*
 - Use the top *i* most significant bits to look up address of bucket that will contain records with search-key value *V*

Adjacent Bucket-Table Entries

• Example: i = 2

- Adjacent table entries can reference the same bucket, if they share a common bit-prefix
 - Here, first two entries share hash-code prefix "0···", so they can refer to the same bucket

Adjacent Bucket-Table Entries (2)

• This configuration is <u>invalid</u>:

Entries don't have a common prefix

Adjacent Bucket-Table Entries (3)

• Example: i = 2

- Adjacent entries don't affect lookup procedure at all...
- Does allow us to split a bucket into two, when it overflows!
 - Simply create a new bucket, update bucket address table, and rehash contents of overflowed bucket

Adjacent Bucket-Table Entries (4)

• Example: i = 2

- When a bucket is split, we are examining one more bit in the hash-code (e.g. " $0\cdots$ " values are split into " $00\cdots$ ", " $01\cdots$ ")
 - If hash function is uniform/random, should see approx. half of records stay in old bucket, and half move to new bucket

Extendable Hash Buckets

• Each hash-bucket j has its own i_j :

- Specifies the actual size of the hash-prefix used for that bucket (i.e. number of leading bits used from hash value)
 - In our example: i = 2
 - $i_1 = 1$, $i_2 = 2$, and $i_3 = 2$

Extendable Hash Buckets (2)

Plugging actual values into our example:

- When bucket j overflows: if $i_j < i$
 - Multiple adjacent table entries refer to the bucket
 - We can split the bucket without increasing the table size

Extendable Hash Buckets (3)

- When bucket j overflows: if $i_j < i$
 - We can split the bucket without increasing size of table
 - New bucket will have a prefix-value $i_j + 1$
 - Also, split bucket's i_j is incremented
- Records in bucket j are rehashed
- Note:
 - Bucket address table may have > 2 entries pointing to bucket j
 - <u>All</u> affected entries must be properly updated

Extendable Bucket Table

• Our example:

- When bucket *j* overflows: if $i_j = i$
 - Only one table entry refers to the hash bucket ☺
 - Must increase size of address table to split bucket

Extendable Bucket Table

- Increase i by 1
 - Each bucket address table entry is expanded into two
 - Now, can split overflowing bucket and rehash contents, as before

Extendable Bucket Table

- Sometimes, splitting a bucket doesn't help
 - All rows in old bucket still end up in one bucket
- Need to be careful to properly diagnose these situations!
- If all entries in a bucket have same search-key value, there's no point in splitting it
 - In these cases, use overflow chaining to handle new additions to the bucket
- If entries in a bucket have different key-values, can attempt to re-split bucket
 - Multiple re-splits may be necessary before bucket size shrinks

Hash Mapping Tables

- Both static hashing and extendable hashing have a common feature:
 - They both must dedicate storage space to an index mapping hash-values to buckets
- Extendable hashing can run into issues as this grows:
 - Bucket address table doubles in size each time
 - As extendable hash index grows, table will occupy more and more blocks, incurring more and more disk IO cost

Linear Hashing

- Linear hashing doesn't require a mapping table
- Instead, it maintains *two* active hash functions at once
- Given a b-bit hash function h(K), as before
- Linear hash table initially starts with N buckets
 - As usual, need to map our hash function h(K) to the bucket address-space [0..N)
 - $h_0(K) = h(K) \mod N$
- As hash-table grows, must increase number of buckets
 - Aim to <u>double</u> number of buckets: $h_1(K) = h(K) \mod 2N$
 - Only expand the linear hash-table one bucket at a time!!!

Linear Hashing (2)

- The current bucket address-space, and the next bucket address-space, are called *levels*
 - Linear hash table's contents are hashed based on both the current level of splitting, and the next level
- For a given level: $h_{level}(K) = h(K) \mod (N \times 2^{level})$
 - $h_0(K) = h(K) \mod N$
 - $h_1(K) = h(K) \mod 2N$
 - $h_2(K) = h(K) \mod 4N$
 - $h_3(K) = h(K) \mod 8N$

Address space is [0..N)

Address space is [0..2N)

Address space is [0..4N]

Address space is [0..8N)

• ...

Linear Hashing (3)

- Linear hash table initially starts with N buckets
- For a given level: $h_{level}(K) = h(K) \mod (N \times 2^{level})$
- Examine $h_1(K)$ and $h_2(K)$:
 - $h_1(K) = h(K) \mod 2N$
 - $h_2(K) = h(K) \mod 4N$
- If we are given that for a specific value V, h(V) < 2N:
 - $h_2(V) = h_1(V)$
- If given that $h(V) \ge 2N$:
 - $h_2(V) = h_1(V) + 2N$

Linear Hashing (4)

- For a given level: $h_{level}(K) = h(K) \mod (N \times 2^{level})$
 - $h_1(K) = h(K) \mod 2N$
 - $h_2(K) = h(K) \mod 4N$
- For $h_1(K)$ and $h_2(K)$, we expect <u>one</u> of these to be true:
 - $h_2(K) = h_1(K)$
 - $h_2(K) = h_1(K) + 2N$
- If h(K) gives a uniform, random distribution of values, can expect either case to occur with equal likelihood
- Generalize: $h_{i+1}(K) = h_i(K)$, or $h_{i+1}(K) = h_i(K) + N \times 2^i$

Linear Hash Table Structure

- Our hash table has N buckets initially
 - Initial level is 0. $h_0(K) = h(K) \mod N$
 - Example: N = 3. K are integers, with h(K) = K.
- If a particular bucket overflows, don't just increase N
 - Instead, use overflow chains when a bucket overflows
- Expand buckets in a round-robin fashion
 - A "next" value records which bucket will be split next

Linear Hash Table: Splits

- Can use various criteria to govern when to split the next bucket
- Example: packing factor (a.k.a. load factor)
 - Ratio of records stored to available storage locations
 - Doesn't include overflow pages, so ratio can exceed 1.0
- If packing factor grows beyond a specific limit (e.g. 80%), split the next node in the hash table
 - Given a uniform, random hash function and a reasonable limit, will maintain an upper bound on number of overflow pages.

Linear Hash Table: Splits (2)

- Example: split bucket 0
 - Add another bucket to the linear hash table (bucket 3), and rehash contents of bucket 0
 - Current level is 0, next level is 1
 - Split bucket 0 using next-level hash function: $h_1(K) = h(K) \mod 2N$

 $h_1(K) = h(K) \mod 2N$

Linear Hash Table: Splits (3)

- Example: split bucket 0
- As stated earlier, $h_i(K)$ and $h_{i+1}(K)$ are related
 - Specifically, $h_1(K)$ will either be $h_0(K)$, or $h_0(K) + N$
- Values in bucket 0 will either remain in bucket 0, or they will hash into bucket 3
 - This is what allows us to split buckets one at a time

 $h_1(K) = h(K) \mod 2N$

Linear Hash Table: Splits (4)

After splitting, move next value forward

- Next time a bucket needs to be split, split the bucket specified by the next value
 - Again, bucket 1 values hash to bucket 1, or to bucket 4

Linear Hash Table: Splits (5)

Again, move next value forward

- This process continues until *next* = $N \times 2^{level}$
 - At that point, all buckets at current level have been split!
 - Increment level, and reset next = 0
- After splitting bucket 2, increment level, reset next:

Linear Hash Table: Lookups

- At any given time, <u>two</u> hash functions are in effect!
- Example:

- $h_0(K)$ is in effect, and only hashes to buckets 0..2
- $h_1(K)$ is also in effect, and hashes to buckets 0..5
 - (although bucket 5 doesn't exist yet...)
- How do we look up the entry for a key-value V?

Linear Hash Table: Lookups (2)

• Example:

- When looking up the entry for a key-value *V*:
 - Compute $m = h_{level}(V)$
 - Use hash-function for current level
 - If *m* < *next*:
 - The bucket has already been split!
 - Recompute $m = h_{level+1}(V)$ to get the actual bucket for V
 - Otherwise, if $m \ge next$, bucket hasn't been split yet
 - $h_{level}(V)$ will be the correct hash-function to find bucket for V

Linear Hash Table: Lookups (3)

• Example:

- Look up entry for V = 22
 - Start out with hash-function for the current level
 - $h_0(22) = h(22) \mod N \times 2^0 = 22 \mod 3 = 1$
 - Clearly, 22 isn't in bucket 1!
 - <u>But</u>: 1 < next, so the bucket has already been split. Need to use $h_1(22)$ instead.
 - Recompute $h_1(22) = h(22) \mod N \times 2^1 = 22 \mod 6 = 4$

Hash vs. Sequential Indexes

- Hash indexes can be extremely effective for speeding up performance of equality-based retrievals
 - Can often find records in 1-2 disk reads
 - Equivalent B+-tree indexes could take 3-5 or more disk reads to find the record (ignoring caching)
- Unfortunately, generally limited in their usefulness
 - Can't help with range queries, which are very common
 - I/O cost-savings isn't *that* impressive...
- Few commercial databases provide hash indexes
 - Interestingly, both PostgreSQL and MySQL have them...