
CS122	– Lecture	12
Winter	Term,	2017-2018



2

Hash	Indexes
� B+-tree	indexes	are	very	effective	in	most	situations

� Direct	access	only	requires	small	number	of	block-reads
� Also	provides	sequential	traversal	of	records	in
search-key	order

� Most databases	provide	B+-tree	indexes
� Many	only provide	B+-tree	indexes

� Can	also	build	indexes	based	on	hashing	the	search	key
� For	lookups	based	on	equality,	should	require	a	very
small	number	of	block-accesses

� Hash	indexes	cannot	improve	range-query	performance,	
and	do	not	allow	traversal	in	search-key	order



3

Hash	Index	Challenges
� Hash-indexes	group	entries	into	buckets	based	on	hash	
function	applied	to	key

� Want	our	hash	function	to	generate	a	uniform,	random	
distribution	of	records	when	applied	to	search-key
� Want	all	hash	buckets	to	be	equally	full

� Can	fail	to	achieve	this	for	two	reasons:
� Hash	function	doesn’t	map	search-key	values	uniformly
� May	have	many	records	with	the	same	search-key	value

� Produces	bucket	skew
� Some	buckets	overflow	while	others	still	have	free	space



4

Hash	Index	Challenges	(2)
� Biggest	challenge	is	how	to	handle	bucket	overflows

� More	records	map	to	a	bucket	than	the	bucket	can	hold

� Open	addressing	(a.k.a.	closed	hashing):
� If	a	key	hashes	to	a	bucket	that	is	already	full,	search	
through	hash-table	until	an	empty	bucket	is	found

� Overflow	chaining	(open	hashing,	closed	addressing):
� If	a	key	hashes	to	a	bucket	that	is	already	full,	link	an	
overflow	bucket	to	the	full	bucket,	and	put	it	in	there



5

Hash	Index	Challenges	(3)
� Generally,	open	addressing	works	best	in	memory

� Can	often	exploit	memory	caches	very	effectively
� On	disk,	requires	many block	IOs

� Hash	file	organizations	and	hash	index	files	usually	rely	
on	overflow	chaining
� Requires	far	fewer	disk	accesses	than	open	addressing
� Also	tends	to	simplify	hash-table	restructuring	over	time

� If	bucket	overflow	reaches	a	certain	level,	simply	want	
to	increase	number	of	buckets	in	hash	structure
� Ideally,	will	relieve	overflow	issues,	but	it	doesn’t	always	
do	so	(e.g.	if	many	records	have	same	key-value)



6

Static	Hashing
� Previously	discussed	static	hashing:

� Number	of	buckets	nb is	fixed when	hash	file	is	created
� Apply	a	hash	function	h(K)	to	produce	a	bucket	b,	0	≤	b <	nb

� Entry	is	stored	in	this	bucket
� If	a	bucket	overflows,	use	chaining	to	store	overflow	records

� Static	hashing	isn’t	effective	if	number	of	entries	increases	
over	time,	or	if	distribution	of	key-values	changes	over	time
� Performance	will	slowly	degrade	as	number	of	overflow	
records	increases

� Rehashing	entire	file	to	increase	nbwill	be	very slow,	requiring	
many	disk	IOs	to	complete



7

Dynamic	Hashing
� To	handle	hash	indexes	that	change	over	time,	need	
some	form	of	dynamic	hashingmechanism

� Idea:		make	incremental changes	to	hash	structure,	
instead	of	large-scale	changes
� Increase	number	of	buckets	by	small	amount	as	needed;	
change	hash	function	slightly	to	accommodate	change

� Amount	of	data	that	must	be	rehashed	is	kept	very	small,	
so	maintenance	overhead	is	acceptably	low

� Today,	two	dynamic	hashing	mechanisms:
� Extendable	hashing and	linear	hashing



8

Extendable	Hashing
� In	static	hashing,	h(K)	maps	keys	to	a	(smallish)	fixed	
number	nb
� e.g.	h(K)	=	h’(K)	mod nb
� Not	easy	to	change	this	hash	function	incrementally

� For	extendable	hashing,	choose	a	hash	function	that	
produces	a	wide	range	of	values
� h(K)	produces	b-bit	integers,	e.g.	where	b =	32

� Provide	a	mapping	from	hash	values	to	buckets,	using	a	
bucket	address	table
� Can	incrementally	change	this	table	as	needed



9

Bucket	Address	Table
� The	bucket	address	table	maps	the	top	i bits	of	hash	
values	into	buckets	that	hold	those	entries

� Example:		i =	2

� Bucket	address	table	has	2i entries	in	it
� Note:		may	be	fewer	than	2i buckets

bucket
address
table

00··

01··

10··

11··

i
i1

i2

i3

buckets



10

Bucket	Address	Table	(2)
� Example:		i =	2

� To	look	up	a	value	V:
� Compute	h(V)
� Use	the	top	imost	significant	bits	to	look	up	address	of	
bucket	that	will	contain	records	with	search-key	value	V

bucket
address
table

00··

01··

10··

11··

i
i1

i2

i3

buckets



11

Adjacent	Bucket-Table	Entries
� Example:		i =	2

� Adjacent	table	entries	can	reference	the	same	bucket,
if	they	share	a	common	bit-prefix
� Here,	first	two	entries	share	hash-code	prefix	“0···”,	so	
they	can	refer	to	the	same	bucket

bucket
address
table

00··

01··

10··

11··

i
i1

i2

i3

buckets



12

Adjacent	Bucket-Table	Entries	(2)
� This	configuration	is	invalid:

� Entries	don’t	have	a	common	prefix

bucket
address
table

00··

01··

10··

11··

i
i1

i2

i3

buckets



13

Adjacent	Bucket-Table	Entries	(3)
� Example:		i =	2

� Adjacent	entries	don’t	affect	lookup	procedure	at	all…
� Does	allow	us	to	split	a	bucket	into	two,	when	it	overflows!

� Simply	create	a	new	bucket,	update	bucket	address	table,	and	
rehash	contents	of	overflowed	bucket

00··

01··

10··

11··

i
i1

i2

i3

i4

re-hash



14

Adjacent	Bucket-Table	Entries	(4)
� Example:		i =	2

� When	a	bucket	is	split,	we	are	examining	one	more	bit	in	
the	hash-code	(e.g.	“0···”	values	are	split	into	“00··”,	“01··”)
� If	hash	function	is	uniform/random,	should	see	approx.	half	of	
records	stay	in	old	bucket,	and	half	move	to	new	bucket

00··

01··

10··

11··

i
i1

i2

i3

i4

re-hash



15

Extendable	Hash	Buckets
� Each	hash-bucket	j has	its	own	ij:

� Specifies	the	actual size	of	the	hash-prefix	used	for	that	
bucket	(i.e.	number	of	leading	bits	used	from	hash	value)
� In	our	example:		i =	2
� i1 =	1,	i2 =	2,	and	i3 =	2

bucket
address
table

00··

01··

10··

11··

i
i1

i2

i3

buckets



16

Extendable	Hash	Buckets	(2)
� Plugging	actual	values	into	our	example:

� When	bucket	j overflows:		if	ij <	i
� Multiple	adjacent	table	entries	refer	to	the	bucket
� We	can	split	the	bucket	without	increasing	the	table	size

bucket
address
table

00··

01··

10··

11··

2
1

2

2

buckets



17

Extendable	Hash	Buckets	(3)
� When	bucket	j overflows:		if	ij <	i

� We	can	split	the	bucket	without	increasing	size	of	table
� New	bucket	will	have	a	prefix-value	ij +	1
� Also,	split	bucket’s	ij is	incremented

� Records	in	bucket	j
are	rehashed

� Note:
� Bucket	address	table
may	have	>	2	entries
pointing	to	bucket	j

� All affected	entries
must	be	properly	updated

00··

01··

10··

11··

2
1

2

2

2

2



18

Extendable	Bucket	Table
� Our	example:

� When	bucket	j overflows:		if	ij =	i
� Only	one	table	entry	refers	to	the	hash	bucket	L
� Must	increase	size	of	address	table	to	split	bucket

bucket
address
table

00··

01··

10··

11··

2
1

2

2

buckets



19

Extendable	Bucket	Table
� Increase	i by	1

� Each	bucket	address	table	entry	is	expanded	into	two
� Now,	can	split	overflowing	bucket	and	rehash	contents,	
as	before

3

2

2

000·

001·

010·

011·

3

100·

101·

110·

111·

1

3



20

Extendable	Bucket	Table
� Sometimes,	splitting	a	bucket	doesn’t	help

� All	rows	in	old	bucket	still	end	up	in	one	bucket

� Need	to	be	careful	to	properly	diagnose	these	situations!

� If	all	entries	in	a	bucket	have	same	search-key	value,	there’s	
no	point	in	splitting	it
� In	these	cases,	use	overflow	chaining	to	handle	new	additions	to	the	
bucket

� If	entries	in	a	bucket	have	different	key-values,	can	attempt	
to	re-split	bucket
� Multiple	re-splits	may	be	necessary	before	bucket	size	shrinks



21

Hash	Mapping	Tables
� Both	static	hashing	and	extendable	hashing	have	a	
common	feature:
� They	both	must	dedicate	storage	space	to	an	index	
mapping	hash-values	to	buckets

� Extendable	hashing	can	run	into	issues	as	this	grows:
� Bucket	address	table	doubles	in	size	each	time
� As	extendable	hash	index	grows,	table	will	occupy	more	
and	more	blocks,	incurring	more	and	more	disk	IO	cost



22

Linear	Hashing
� Linear	hashing	doesn’t	require	a	mapping	table
� Instead,	it	maintains	two active	hash	functions	at	once
� Given	a	b-bit	hash	function	h(K),	as	before
� Linear	hash	table	initially	starts	with	N buckets

� As	usual,	need	to	map	our	hash	function	h(K)	to	the	
bucket	address-space	[0..N)

� h0(K)	=	h(K)	mod N
� As	hash-table	grows,	must	increase	number	of	buckets

� Aim	to	double number	of	buckets:		h1(K)	=	h(K)	mod 2N
� Only	expand	the	linear	hash-table	one	bucket	at	a	time!!!



23

Linear	Hashing	(2)
� The	current	bucket	address-space,	and	the	next	bucket	
address-space,	are	called	levels
� Linear	hash	table’s	contents	are	hashed	based	on	both	
the	current	level	of	splitting,	and	the	next	level

� For	a	given	level:		hlevel(K)	=	h(K)	mod (N × 2level)
� h0(K)	=	h(K)	mod N Address	space	is	[0..N)
� h1(K)	=	h(K)	mod 2N Address	space	is	[0..2N)
� h2(K)	=	h(K)	mod 4N Address	space	is	[0..4N)
� h3(K)	=	h(K)	mod 8N Address	space	is	[0..8N)
� …



24

Linear	Hashing	(3)
� Linear	hash	table	initially	starts	with	N buckets
� For	a	given	level:		hlevel(K)	=	h(K)	mod (N × 2level)
� Examine	h1(K)	and	h2(K):

� h1(K)	=	h(K)	mod 2N
� h2(K)	=	h(K)	mod 4N

� If	we	are	given	that	for	a	specific	value	V,	h(V)	<	2N:
� h2(V)	=	h1(V)

� If	given	that	h(V)	≥	2N:
� h2(V)	=	h1(V)	+	2N



25

Linear	Hashing	(4)
� For	a	given	level:		hlevel(K)	=	h(K)	mod (N × 2level)

� h1(K)	=	h(K)	mod 2N
� h2(K)	=	h(K)	mod 4N

� For	h1(K)	and	h2(K),	we	expect	one of	these	to	be	true:
� h2(K)	=	h1(K)
� h2(K)	=	h1(K)	+	2N

� If	h(K)	gives	a	uniform,	random	distribution	of	values,	
can	expect	either	case	to	occur	with	equal	likelihood

� Generalize:		hi+1(K)	=	hi(K),	or	hi+1(K)	=	hi(K)	+	N×2i



26

Linear	Hash	Table	Structure
� Our	hash	table	has	N buckets	initially

� Initial	level	is	0.		h0(K)	=	h(K)	mod N
� Example:		N =	3.		K are	integers,	with	h(K)	=	K.

� If	a	particular	bucket	overflows,	don’t	just	increase	N
� Instead,	use	overflow	chains	when	a	bucket	overflows

� Expand	buckets	in	a	round-robin	fashion
� A	“next”	value	records	which	bucket	will	be	split	next

9
36
15

16
22

11
44
2

N	=	3
level	=	0

Bucket	0 Bucket	1 Bucket	2

next

next	=	0



27

Linear	Hash	Table:		Splits
� Can	use	various	criteria	to	govern	when	to	split	the	
next	bucket

� Example:		packing	factor	(a.k.a.	load	factor)
� Ratio	of	records	stored	to	available	storage	locations
� Doesn’t	include	overflow	pages,	so	ratio	can	exceed	1.0

� If	packing	factor	grows	beyond	a	specific	limit
(e.g.	80%),	split	the	next	node	in	the	hash	table
� Given	a	uniform,	random	hash
function	and	a	reasonable	limit,
will	maintain	an	upper	bound
on	number	of	overflow	pages.

9
36
15

16
22

11
44
2

N	=	3
level	=	0
next	=	0

Bucket	0 Bucket	1 Bucket	2

next



28

Linear	Hash	Table:		Splits	(2)
� Example:		split	bucket	0

� Add	another	bucket	to	the	linear	hash	table	(bucket	3),	
and	rehash	contents	of	bucket	0

� Current	level	is	0,	next	level	is	1
� Split	bucket	0	using	next-level	hash	function:
h1(K)	=	h(K)	mod 2N

9
36
15

16
22

11
44
2

N	=	3
level	=	0
next	=	0

Bucket	0 Bucket	1 Bucket	2

next

Bucket	3
h1(K)	=	h(K)	mod 2N



29

Linear	Hash	Table:		Splits	(3)
� Example:		split	bucket	0
� As	stated	earlier,	hi(K)	and	hi+1(K)	are	related

� Specifically,	h1(K)	will	either	be	h0(K),	or	h0(K)	+	N
� Values	in	bucket	0	will	either	remain	in	bucket	0,	or	
they	will	hash	into	bucket	3
� This	is	what	allows	us	to	split	buckets	one	at	a	time

9
36
15

16
22

11
44
2

N	=	3
level	=	0
next	=	0

Bucket	0 Bucket	1 Bucket	2

next

Bucket	3
h1(K)	=	h(K)	mod 2N

9
15✔



30

Linear	Hash	Table:		Splits	(4)
� After	splitting,	move	next value	forward

� Next	time	a	bucket	needs	to	be	split,	split	the	bucket	
specified	by	the	next value
� Again,	bucket	1	values	hash	to	bucket	1,	or	to	bucket	4

36
42
0

16
22
25

11
44
2
17

N	=	3
level	=	0
next	=	1

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3
h1(K)	=	h(K)	mod 2N

36 16
22

11
44
2

N	=	3
level	=	0
next	=	1

Bucket	0 Bucket	1 Bucket	2

next

9
15

Bucket	3

Bucket	4

16
22

✔



31

Linear	Hash	Table:		Splits	(5)
� Again,	move	next value	forward

� This	process	continues	until	next =	N×2level
� At	that	point,	all	buckets	at	current	level	have	been	split!
� Increment	level,	and	reset	next =	0

� After	splitting	bucket	2,	increment	level,	reset	next:

36
42
0

25 11
44
2
17

N	=	3
level	=	0
next	=	2

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3

16
22

Bucket	4

36
42
0

25 44
2

N	=	3
level	=	1
next	=	0

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3

16
22

Bucket	4

11
17

Bucket	5



32

Linear	Hash	Table:		Lookups
� At	any	given	time,	two hash	functions	are	in	effect!
� Example:

� h0(K)	is	in	effect,	and	only	hashes	to	buckets	0..2
� h1(K)	is	also in	effect,	and	hashes	to	buckets	0..5

� (although	bucket	5	doesn’t	exist	yet…)
� How	do	we	look	up	the	entry	for	a	key-value	V ?

36
42
0

25 11
44
2
17

N	=	3
level	=	0
next	=	2

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3

16
22

Bucket	4

h1(K)	=	h(K)	mod 2N
h0(K)	=	h(K)	mod N



33

Linear	Hash	Table:		Lookups	(2)
� Example:

� When	looking	up	the	entry	for	a	key-value	V:
� Compute	m =	hlevel(V)

� Use	hash-function	for	current	level
� If	m <	next:

� The	bucket	has	already	been	split!
� Recomputem =	hlevel+1(V)	to	get	the	actual	bucket	for	V

� Otherwise,	if	m ≥	next,	bucket	hasn’t	been	split	yet
� hlevel(V)	will	be	the	correct	hash-function	to	find	bucket	for	V

36
42
0

25 11
44
2
17

N	=	3
level	=	0
next	=	2

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3

16
22

Bucket	4



34

Linear	Hash	Table:		Lookups	(3)
� Example:

� Look	up	entry	for	V =	22
� Start	out	with	hash-function	for	the	current	level
� h0(22)	=	h(22)	mod N×20 =	22	mod 3	=	1
� Clearly,	22	isn’t	in	bucket	1!
� But:		1	<	next,	so	the	bucket	has	already	been	split.
Need	to	use	h1(22)	instead.

� Recompute h1(22)	=	h(22)	mod N×21 =	22	mod 6	=	4

36
42
0

25 11
44
2
17

N	=	3
level	=	0
next	=	2

Bucket	0 Bucket	1 Bucket	2

next

9
15
33

Bucket	3

16
22

Bucket	4

h1(K)	=	h(K)	mod 2N
h0(K)	=	h(K)	mod N



35

Hash	vs.	Sequential	Indexes
� Hash	indexes	can	be	extremely	effective	for	speeding	
up	performance	of	equality-based	retrievals
� Can	often	find	records	in	1-2	disk	reads
� Equivalent	B+-tree	indexes	could	take	3-5	or	more	disk	
reads	to	find	the	record	(ignoring	caching)

� Unfortunately,	generally	limited	in	their	usefulness
� Can’t	help	with	range	queries,	which	are	very	common
� I/O	cost-savings	isn’t	that impressive…

� Few	commercial	databases	provide	hash	indexes
� Interestingly,	both	PostgreSQL and	MySQL	have	them…


