Relational Database

System Implementatlon

i

Last Time: B*-Tree Insertion

Last time, discussed insertion into B*-trees:
e Ifinserting into a full node, must split the node into two

e Need to add new node into parent-node’s pointer-list
« May require the parent to be split as well

e Can even increase tree-depth, if root node is split
General principle:

e When a node is split into two, need to promote second node’s
first key-value up to the parent-node’s table

e e.g. if splitting node N into N and N’, promote N’.K, up to
parent(N’)

e N and N’ have the same parent, of course
e This may also result in the parent node being split

/\\/
B*-Trees: Deletion

Deletion is much more complicated than insertion
(Non-root) nodes must always be at least 50% full
For our tree with n = 4:

e Non-leaf nodes must have at least 2 pointers and 1 key
e Leaf nodes must have at least 2 pointers and 2 keys

Often we won't hit the node-size constraints
e In these cases, deletion is easy

t{rat|?

¥ Vi
1|dot| 1| off |1 1| vat|y
- - -
t|bib|1|cat *T"(1|dot| t|gut| ¢|not| > 1| off | | pit *T™ 1| rat| | tin *T™ 1| vat|1|yak| t|zap

Y Y Y Y Y Y Y \ A Y Y Y \4
N e A e R e M

4 /
/\\/
=

B*-Trees: Deletion (2)

Example: delete “dot” from the index
e Find leaf-node containing “dot” and remove the record

t|rat|¢
| iy
1|dot| 7| off |1 1| vat|s
= ¢/ \¢ =
¢ |bib|¢|cat > ¢|dot| ¢ |gut|t|n | off | ¢ | pit > ¢|rat|¢|tin = ¢|vat|¢|yak]| t|zap
| | | | | | | || | | || || |

Removing “dot” doesn’t cause node to be under-full, so

I
we're done! SR
% i
dot off 1| vat|s
— ¢/ \¢ ey
? |bib| | cat > [not | off | ¢| pit | ¢|rat|¢|tin —¢|vat|¢|yak|t|zap

\i \i \i Y Y

R Bl Y A v]

e

B*-Trees: Deletion (3)

Our B*-tree index now contains a curious situation:

trat|¢

I i)
¢ |dot ! off ! 1 vat !
T = =
¢ |bib|¢|cat > ?|gut| ?|not = ¢| off | | pit ¢ rat|¢|tin —¢|vat|t|yak|t|zap
Ell Eol o P e e
Value “dot” is no longer in the leaf nodes, but still

appears in the non-leaf nodes

We don'’t care about this, as long as our node-fullness
requirements are satisfied

e Doesn’t affect lookups at all

6 /
/\\/
=

B*-Trees: Deletion (4)

If a node becomes too empty, we have several choices

t{rat|?

5 oy
? | dot ! off ! ! vat !
T = .
¢|bib|¢|cat > ?|gut| ?|not = ¢| off | 2| pit > t|rat|¢|tin —¢|vat|t|yak|t|zap
Bamlaey Eaie peiam Wl) e ey
If a node’s sibling has extra values, redistribute values

across both nodes to satisfy space requirements
e (Sibling nodes must share the same parent node.)

e e.g. if we delete “tin”, can move “vat” left to ensure both
nodes have enough entries

7

/

—————————
B*-Trees: Deletion (5)

e

If a node becomes too empty, we .

t{rat|?

have several choices

5 oy
? | dot ! off ! ! vat !
T = .
¢|bib|¢|cat > ?|gut| ?|not = ¢| off | 2| pit > ¢|rat|?|tin —¢|vat|t|yak|t|zap
Bamlaey Eaie peiam Wl) e ey
If a node’s sibling is also half-full, could coalesce the

two nodes together into a single node

e (Again, sibling nodes must share the same parent node.)

e e.g.if we delete “gut”, can coalesce the leaf-node together
with either sibling to produce a single node

: _—

—————————
B*-Trees: Deletion (6)

When we redistribute values between two nodes, or

when two nodes are coalesced, parent node(s) are
clearly affected!

Unfortunately, these behaviors are rather complex
e Due to differences between leaf and non-leaf nodes

e When deleting/rearranging leaf nodes, updates to parent
nodes are more straightforward

e When deleting/rearranging non-leaf nodes, updates are
more involved

Will examine leaf-node behaviors first, then non-leaf
node behaviors

2

/

——
Delete at Leaf: Redistribute

i

(g ")
Delete “tin”: tlraty
Vi R
?|dot 1 off ! 1| vat|s
- = -
¢ |bib|¢|cat > ¢ (gut|?|not = ¢| off | ¢| pit | ¢|rat||tih o= ¢|vat|¢|yak]| t|zap
I o W R § B IV R B B

The leaf-node is now under-full!
e Can’t coalesce with sibling since sibling is completely full

¢|rat|?
v R
1|dot| 1| off |1 1| vat|t
= =y .y
? |bib| | cat > ¢ |gut| ¢ [not | off | | pit | rat —¢|vat|¢|yak|t|zap
EEREE A ER N B] R B

N/
Delete at Leaf: Redistribute (2)

After delete: o[rat[y
F %
dot off vat
= ¢/ \¢ ¢/ \¢
? |bib|¢|cat > [not | off | ¢| pit | rat |vat| ¢|yak| 1 |zap
ol : R E e

Move an entry from sibﬂking into the under-full node:

t|rat|?
v R
1|dot| 7| off |1 1| vat|s
¢ |bib|¢|cat ok Inot | off | 1| pit > ¢|rat|¢|vat ¢ lyak|t|zap

N/

i

Delete at Leaf: Redistribute (3)

After redistribute: Tl
£ v
?|dot 1 off ! vat| 1
— = s
? |bib|¢|cat *> ¢ |gut| ? [not | off | | pit | ¢|rat|¢|vat = ¢|yak|t|zap
\i \i \i \i \i Y \i \i \i \i

Parent-node entry is clearly wrong now

Given a pair of sibling leaf-nodes N and N
e Nis the immediate predecessor to N’

e Redistributing values between N and N’
« Either moving a value from N to N’, or from N to N

e In parent, replace key between N and N’ with N'.K,

Delete at Leaf: Redistribute (4)

After redistribute and fix-up of parent node:

t{rat|?

Vi i)
dot off yak
= ¢/ \4 ¢/ \¢
? |bib|¢|cat *> ¢ |gut| ¢t [not | off | ¢| pit | ¢|rat|¢|vat ? [yak| ¢|zap

Y Y Y \ 4 Y Y Y Y Y Y

13

/

m————

i

Delete at Leaf: Coalesce

Next, delete “gut”: olrat]y
£ 4
dot off yak
I ¢/ \¢ ¢/ \¢
? |bib|¢|cat - [not | off | ¢| pit > ¢|rat|¢|vat ? lyak| ¢|zap
Clearly leaves the leaf-node under-full:
?irat|?
Fv 9
dot off yak
I ¢/ \¢ ¢/ \¢
? |bib| | cat - | off | ¢| pit > ¢|rat|¢|vat ? lyak| ¢|zap

14

/

P

Delete at Leaf: Coalesce Left

Tree after deletion: [;[ads
£ 4
dot off yak
I ¢/ \¢ ¢/ \¢
? |bib|¢|cat - | off | ¢| pit > ¢|rat|¢|vat ? lyak| ¢|zap
Coalesce leaf-node with its left sibling:
?irat|?
F v
dot off yak
? |bib|¢|cat||not|® | off | ¢| pit > ¢|rat|¢|vat ? [yak| ¢|zap
e |_||_| el |_||_|

15

/

——

i

Delete at Leaf: Coalesce Left (2)

Tree after coalesce: [i]ras
Vi .
TdOtT offT TyakT
v |
? |bib|¢|cat||not|® > ¢ | off | ¢| pit > ¢|rat|¢|vat = ¢|yak|t|zap
| Y | | Y | | Y | Y Y Y Y \i \i

Clearly need to modify parent-node contents
e No longer need “dot” entry, or pointer to deleted node

¢t rat|¢

v i

? | off ! 1 yak 1
fv =y =
? |bib|¢|cat||not|® > ¢ | off | ¢| pit > ¢|rat|¢|vat = ¢|yak|t|zap
| || || |

16 /
N/
Delete at Leaf: Coalesce Right

Before coalesce: [rat[y
Vi .
?|dot 1 off ! 1 yak 1
f > -
? |bib|¢|cat > ?|not | off | | pit | ¢|rat|¢|vat = ¢|yak|t|zap
Y Y Y Y Y Y Y \i \i

This time, coalesce leaf-node with its right sibling:

?lrat|e
| iy
?|dot ! off ! ! yak !
= = e
¢ |bib|¢|cat . > ¢(not|¢| off | ¢| pit| e ¢|rat|¢|vat ¢ |yak|t|zap

\i \i \i Y \i \i Y Y Y
BN VT Y o N BV |

17

P

/

Delete at Leaf: Coalesce Right (2)

Tree after coalesce: [,

rat|¢
I Ve
?|dot ! off ! 1 yak 1
I ey T
? |bib|¢|cat > ¢(not|¢| off | ¢| pit|*T= ¢|rat|¢|vat = ¢|yak|t|zap
e e e i R
This time, need to delete “off” from parent, not “dot”
*irat|?
I Ve
?|dot 1 ! yak 1
L e oy
¢ |bib|¢|cat . > ¢(not|¢| off | ¢| pit|*T= ¢ |rat|¢|vat 1 ¢|yak|t|zap
N e e e e M iy

N/

i

Delete at Leaf: Coalesce Nodes

When coalescing two sibling leaf-nodes N and N".

e Nis the immediate predecessor to N’
The two siblings will be separated by a key-value in
their shared parent-node

e Coalesce the two sibling nodes into one, then remove the
key in their parent that
separated these two nodes 7|dot| 1 oft |y

e (along with the pointer to - Ly

¢ bib| ¢ ’ . >l ¢ ff | : 4
the now-deleted node) LA R | off| 1| pit

\ \ \ \ \
VY

! dotT off !

- =

¢ |bib|¢|cat . > ¢ [not| ¢ | off | 1| pit|*T>

Y Y \i \i \i
] e e Y

/\\/

i

Deletes at Internal Nodes

Another B*-tree with more nodes:

turn|?

P o
? |dot ! off 1/pop| 1 1 yak 1
SRR B
. } ‘ P }
bib| | cat > |gut| |not = | off | | pit | |pop| | rat > lurn| |vat = |yak| |zap

e Won't show record pointers, etc. due to space limitations
Delete “vat” from the index

e Leaf node becomes too empty, but it has a sibling

e Can'tredistribute values: sibling doesn’t have enough

e Coalesce node with its sibling (we know how to do that)

N/
Deletes at Internal Nodes

After deleting “vat”, coalescing leaf-nodes, and
removing intervening key and pointer:

turn| ¢

(= = —mm—m - === P \
I‘ ?|dot ! off 1ipop|1 ! I
— -_-—-{ _____________ e
{ { |
bib| | cat > |gut| |not | off | | pit | |pop| | rat | lurn| |yak| [zap

Problem: now internal node is too empty

e For n =4, internal nodes must have at least 2 pointers
Can’t coalesce in this situation:

e Left sibling already has 4 pointers

e Can only redistribute values

21

/

——
Deletes at Internal Nodes (2)

Need to redistribute key/pointer values:

i

turn

*

vy o
1|dot| 1| off | t|pop| 1 ?
=
bib| | cat > |gut| |not | off | | pit *— |pop| | rat > |urn| yak| |zap
In this situation, would Ilke right sibling to point to

both “pop/rat” leaf and

“urn/yak/zap” leaf

e Can move rightmost pointer in left node to right node

turn

¥ Vi
t |dot ! off 1{pop 1722)1
RN, A
, P } P }
bib| | cat > |gut| |not > | off | | pit > [pop| [rat | lurn| |yak| [zap

N/

i

Deletes at Internal Nodes (3)

What we want:

tlurn|t
A\
57 P !
Tidotiy ot ¥ inep) skt i et > 1117771
b R
P } - }
bib| | cat = |gut| |not | off | | pit | |pop| | rat | lurn| |yak| [zap

Where do we move the search-key values?

Can’t move “pop” straight across to right sibling!
e Right sibling should get “urn” as its key

Move “pop” to parent node, “urn” to right sibling

General principle:

e When redistributing pointers between internal nodes,
keys must be rotated through the parent node

N

Deletes at Internal Nodes (4)

Final result:

? [pop|t

=
¢t dot ! off ! tlurn|t
T =

bib| | cat = |gut| |not | off | | pit | |pop| | rat | lurn| |yak| [zap

N/

i

Redistribute across Internal Nodes

Redistributing pointers between sibling internal nodes:

e As with leaf nodes, siblings are separated by a single key in
their shared parent-node

Let N and N’ be sibling internal nodes

e Nisimmediate predecessor to N’

e K’is the search-key value between N and N’ pointers in parent
[f moving pointer N.P,, to N’ (insert before N'.P,):

e N'.K,issetto K’

e N.K_,replaces K’in parent node

e Both NX_,and N.P,, are removed from N

[f moving pointer N’.P; to N (append after N.P,), same idea

N/

i

Coalesce at Internal Nodes

After also deleting “yak”:

?pop| ¢
o)
?|dot 1 off ! tlurn|t
l\ |\
= ‘» - ‘»
bib| | cat = |gut| |not | off | | pit *— |pop| | rat | lurn| |zap
Next, delete “rat”: Sl
P v
1|dot| 1| off |1 T|urn|s
l\
. } =
bib| | cat > |gut| |not = | off | | pit | [pop| | rat | lurn| |zap

e Causes leaf node to become too empty...
e Need to coalesce leaf nodes:; handle as usual

26

Coalesce at Internal Nodes (2)

After delete and coalesce:

o PR e F == === = \
i1 dot|¢| off |1 ! |
‘ reesEn e e
bib| | cat > |gut| |not off | | pit | |pop| |urn| (zap
Could redistribute from left sibling as before, but this

time we can coalesce the two internal nodes together

27 /
N/
Coalesce at Internal Nodes (3)

As before, the two internal nodes being coalesced are
separated by a key in the parent node

- !
1|dot| 1| off |1 gy 1
l\
- } =
bib| | cat > |gut| |not | off | | pit | |pop| |urn| (zap

When coalescing internal nodes’ contents, use key from
parent to separate the combined contents

Tpop ®
e 1
t |dot ! off 1/pop| 1
-
bib| | cat > |gut| |not | off | | pit | |pop| |urn| (zap

N/

i

Coalesce at Internal Nodes (4)

Also as before, remove pointer to deleted node, and
also remove the key that separated them:

(/

?|dot ! off 1ipop| 1

‘ﬁ \,;

bib| | cat > |gut| |not | off | | pit | [pop| |urn| (zap
Finally, if the root node only has one pointer, we don’t
need it anymore

e Node pointed to by old root’s lone pointer becomes the
new root

?|dot ! off 1/pop| 1

‘ﬁ \,;

bib| | cat = |gut| |not | off | | pit | |pop| |urn| (zap

N/

i

Sketch of Delete Algorithm (1)

delete(value K, pointer P): coalesce(N, N'):
find leaf node L containing (K, P) K’ = key that separates N and N’
delete_entry(L, K, P) in parent(N)
delete_entry(node N, value K, pointer P): /* Details of coalesce depend on
find and remove (K, P) from N * whether leaves or internal nodes
if N is root and has only one * are being combined; e.g. coalesce
child-pointer: * will use K’ for internal nodes.
make child the new root 4
delete N combine contents of N and N’
else if N isn’t full enough: /* Assuming N’ was the node
try to coalesce N with * that ends up empty...
either sibling of N 4
else, redistribute N’s contents delete_entry(parent(N’), K’, N')

with either sibling of N delete node N’

30 | /
N/

i

Sketch of Delete Algorithm (2)

delete(value K, pointer P): redistribute(N, N’):
find leaf node L containing (K, P) K’ = key that separates N and N’
delete_entry(L, K, P) in parent(N)
delete_entry(node N, value K, pointer P): /* Details of redistribute depend on
find and remove (K, P) from N * whether leaves or internal nodes
if N is root and has only one * are involved; e.g. use K’ for nonleatf.
child-pointer: * Also, may move ptr from N to N’,
make child the new root *or from N'to N... ugh...
delete N 4
move a pointer/key pair
else if N isn't full enough: from fuller node to emptier node
try to coalesce N with
either sibling of N replace K’ in parent(/N) with
else, redistribute N’s contents appropriate new key-value

with either sibling of N

31 , /
/\\/

i

B*-Tree Delete Algorithm

Glossed over many details in sketch of algorithm

e Mainly boring bookkeeping details, not hard to figure
out, but quite tedious!

Delete has a lot of similar but slightly different cases:
e Can coalesce with either left or right sibling (if it exists!)

e Can redistribute values with either left or right sibling -
value may move in either direction

Captured general principles in sketch and in examples

32 | /
/\\/

i

Deletes and Duplicate Values

B*-tree deletion removes a specific record from index
e delete(value K, pointer P)

e We know the record we want to remove (P), and the
search-key value it contains (K)

Simplified examples by disallowing duplicate values

Main change when duplicate keys are allowed:

e When looking for a specific (K, P) pair in leaf nodes,
we may have multiple index-entries to examine

e [f K appears many times, may have to traverse multiple
leaf-nodes to find the specific value of P that was given

3 | /
N/

e

Deletes and Duplicate Values (2)

A simple solution to this issue:

e Add a uniquifier attribute to the search-key that always
guarantees search-key values will be unique in the index

Example: record-pointer would be a good uniquifier
e Can easily compare and order record-pointers
e [s readily available when inserting or deleting records
When inserting or deleting on the index:

e Include the unigqifier attribute when making placement
decisions, when splitting/coalescing nodes, etc.

e Specifically with deletion, use unigqifier to navigate to leaf
directly; avoids any searching through leaf nodes

34 , /
/\\/

i

Deletes and Duplicate Values (3)

When searching on the index:
e Usually, uniquifier will not be specified for searches

Can write search logic to ignore uniquifier component
of index’s search-key values

Can pad input search-key V with “min-value” for the
uniquifier
e e.g. smallest possible value for a record-pointer

This technique will reduce branching factor of non-leaf
nodes

e But, will improve performance when search-key values
are repeated many times

35 /
/\\/

=

B*-Trees and String Keys

B*-tree search key could also include large strings:

e Large key values will negatively impact branching factor
of each node

e Large keys can also greatly hamper tree restructuring
Can use a prefix compression technique
e Non-leaf nodes only store a prefix of the search string

e Size of prefix must be large enough to distinguish
reasonably well between values in each subtree

Similarly, many databases allow user to specify how
much of string index-components to use:

CREATE INDEX idx_customer_name
ON customers (last_name(4), first_name(4));

