
CS122	– Lecture	11
Winter	Term,	2017-2018



2

Last	Time:		B+-Tree	Insertion
� Last	time,	discussed	insertion	into	B+-trees:

� If	inserting	into	a	full	node,	must	split	the	node	into	two
� Need	to	add	new	node	into	parent-node’s	pointer-list

� May	require	the	parent	to	be	split	as	well
� Can	even	increase	tree-depth,	if	root	node	is	split

� General	principle:
� When	a	node	is	split	into	two,	need	to	promote	second	node’s	
first	key-value	up	to	the	parent-node’s	table

� e.g.	if	splitting	node	N into	N and	N’,	promote	N’.K1 up	to	
parent(N’)
� N and	N’ have	the	same	parent,	of	course

� This	may	also	result	in	the	parent	node	being	split



3

B+-Trees:		Deletion
� Deletion	is	much	more	complicated	than	insertion
� (Non-root)	nodes	must	always	be	at	least	50%	full
� For	our	tree	with	n =	4:

� Non-leaf	nodes	must	have	at	least	2	pointers	and	1	key
� Leaf	nodes	must	have	at	least	2	pointers	and	2	keys

� Often	we	won’t	hit	the	node-size	constraints
� In	these	cases,	deletion	is	easy

bib cat dot gut not off pit rat tin

dot off

vat yak zap

vat

rat



4

B+-Trees:		Deletion	(2)
� Example:		delete	“dot”	from	the	index

� Find	leaf-node	containing	“dot”	and	remove	the	record

� Removing	“dot”	doesn’t	cause	node	to	be	under-full,	so	
we’re	done!

bib cat dot gut not off pit rat tin

dot off

vat yak zap

vat

rat

bib cat gut not off pit rat tin

dot off

vat yak zap

vat

rat



5

B+-Trees:		Deletion	(3)
� Our	B+-tree	index	now	contains	a	curious	situation:

� Value	“dot”	is	no	longer	in	the	leaf	nodes,	but	still	
appears	in	the	non-leaf	nodes

� We	don’t	care	about	this,	as	long	as	our	node-fullness	
requirements	are	satisfied
� Doesn’t	affect	lookups	at	all

bib cat gut not off pit rat tin

dot off

vat yak zap

vat

rat



6

B+-Trees:		Deletion	(4)
� If	a	node	becomes	too	empty,	we	have	several	choices

� If	a	node’s	sibling	has	extra	values,	redistribute values	
across	both	nodes	to	satisfy	space	requirements
� (Sibling	nodes	must share	the	same	parent	node.)
� e.g.	if	we	delete	“tin”,	can	move	“vat”	left	to	ensure	both	
nodes	have	enough	entries

bib cat gut not off pit rat tin

dot off

vat yak zap

vat

rat



7

B+-Trees:		Deletion	(5)
� If	a	node	becomes	too	empty,	we	have	several	choices

� If	a	node’s	sibling	is	also	half-full,	could	coalesce the	
two	nodes	together	into	a	single	node
� (Again,	sibling	nodes	must share	the	same	parent	node.)
� e.g.	if	we	delete	“gut”,	can	coalesce	the	leaf-node	together	
with	either	sibling	to	produce	a	single	node

bib cat gut not off pit rat tin

dot off

vat yak zap

vat

rat



8

B+-Trees:		Deletion	(6)
� When	we	redistribute	values	between	two	nodes,	or	
when	two	nodes	are	coalesced,	parent	node(s)	are	
clearly	affected!

� Unfortunately,	these	behaviors	are	rather	complex
� Due	to	differences	between	leaf	and	non-leaf	nodes
� When	deleting/rearranging	leaf	nodes,	updates	to	parent	
nodes	are	more	straightforward

� When	deleting/rearranging	non-leaf	nodes,	updates	are	
more	involved

� Will	examine	leaf-node	behaviors	first,	then	non-leaf	
node	behaviors



9

Delete	at	Leaf:		Redistribute
� Delete	“tin”:

� The	leaf-node	is	now	under-full!
� Can’t	coalesce	with	sibling	since	sibling	is	completely	full

bib cat gut not off pit rat tin

dot off

vat yak zap

vat

rat

bib cat gut not off pit rat

dot off

vat yak zap

vat

rat



10

Delete	at	Leaf:		Redistribute	(2)
� After	delete:

� Move	an	entry	from	sibling	into	the	under-full	node:

bib cat gut not off pit rat

dot off

vat yak zap

vat

rat

bib cat gut not off pit rat vat

dot off

yak zap

vat

rat



11

Delete	at	Leaf:		Redistribute	(3)
� After	redistribute:

� Parent-node	entry	is	clearly	wrong	now
� Given	a	pair	of	sibling	leaf-nodes	N and	N’:

� N is	the	immediate	predecessor	to	N’
� Redistributing	values	between	N and	N’

� Either	moving	a	value	from	N to	N’,	or	from	N’ to	N
� In	parent,	replace	key	between	N and	N’with	N’.K1

bib cat gut not off pit rat vat

dot off

yak zap

vat

rat

yak



12

Delete	at	Leaf:		Redistribute	(4)
� After	redistribute	and	fix-up	of	parent	node:

bib cat gut not off pit rat vat

dot off

yak zap

yak

rat



13

Delete	at	Leaf:		Coalesce
� Next,	delete	“gut”:

� Clearly	leaves	the	leaf-node	under-full:

bib cat gut not off pit rat vat

dot off

yak zap

yak

rat

bib cat not off pit rat vat

dot off

yak zap

yak

rat



14

Delete	at	Leaf:		Coalesce	Left
� Tree	after	deletion:

� Coalesce	leaf-node	with	its	left	sibling:

bib cat not off pit rat vat

dot off

yak zap

yak

rat

bib cat not off pit rat vat

dot off

yak zap

yak

rat



15

Delete	at	Leaf:		Coalesce	Left	(2)
� Tree	after	coalesce:

� Clearly	need	to	modify	parent-node	contents
� No	longer	need	“dot”	entry,	or	pointer	to	deleted	node

bib cat not off pit rat vat

dot off

yak zap

yak

rat

bib cat not off pit rat vat

off

yak zap

yak

rat



16

Delete	at	Leaf:		Coalesce	Right
� Before	coalesce:

� This	time,	coalesce	leaf-node	with	its	right sibling:

bib cat not off pit rat vat

dot off

yak zap

yak

rat

bib cat not off pit rat vat

dot off

yak zap

yak

rat



17

Delete	at	Leaf:		Coalesce	Right	(2)
� Tree	after	coalesce:

� This	time,	need	to	delete	“off”	from	parent,	not	“dot”

bib cat not off pit rat vat

dot

yak zap

yak

rat

bib cat not off pit rat vat

dot off

yak zap

yak

rat



18

Delete	at	Leaf:		Coalesce	Nodes
� When	coalescing	two	sibling	leaf-nodes	N and	N’:

� N is	the	immediate	predecessor	to	N’
� The	two	siblings	will	be	separated	by	a	key-value	in	
their	shared	parent-node
� Coalesce	the	two	sibling	nodes	into	one,	then	remove	the	
key	in	their	parent	that
separated	these	two	nodes

� (along	with	the	pointer	to
the	now-deleted	node) bib cat not off pit

dot off

bib cat not off pit

dot off



19

Deletes	at	Internal	Nodes
� Another	B+-tree	with	more	nodes:

� Won’t	show	record	pointers,	etc.	due	to	space	limitations
� Delete	“vat”	from	the	index

� Leaf	node	becomes	too	empty,	but	it	has	a	sibling
� Can’t	redistribute	values:		sibling	doesn’t	have	enough
� Coalesce	node	with	its	sibling	(we	know	how	to	do	that)

bib cat gut not off pit urn vat

dot off pop

yak zap

yak

urn

pop rat



20

Deletes	at	Internal	Nodes
� After	deleting	“vat”,	coalescing	leaf-nodes,	and	
removing	intervening	key	and	pointer:

� Problem:		now	internal	node	is	too	empty
� For	n =	4,	internal	nodes	must	have	at	least	2	pointers

� Can’t	coalesce	in	this	situation:
� Left	sibling	already	has	4	pointers
� Can	only	redistribute	values

bib cat gut not off pit urn yak zap

dot off pop

urn

pop rat



21

Deletes	at	Internal	Nodes	(2)
� Need	to	redistribute	key/pointer	values:

� In	this	situation,	would	like	right	sibling	to	point	to	
both	“pop/rat”	leaf,	and	“urn/yak/zap”	leaf
� Can	move	rightmost	pointer	in	left	node	to	right	node

bib cat gut not off pit urn yak zap

dot off pop

urn

pop rat

bib cat gut not off pit urn yak zap

dot off pop ???

urn

pop rat



22

Deletes	at	Internal	Nodes	(3)
� What	we	want:

� Where	do	we	move	the	search-key	values?
� Can’t	move	“pop”	straight	across	to	right	sibling!

� Right	sibling	should	get	“urn”	as	its	key
� Move	“pop”	to	parent	node,	“urn”	to	right	sibling
� General	principle:

� When	redistributing	pointers	between	internal	nodes,	
keys	must	be	rotated	through	the	parent	node

bib cat gut not off pit urn yak zap

dot off pop ???

urn

pop rat



23

Deletes	at	Internal	Nodes	(4)
� Final	result:

bib cat gut not off pit urn yak zap

dot off urn

pop

pop rat



24

Redistribute	across	Internal	Nodes
� Redistributing	pointers	between	sibling	internal	nodes:

� As	with	leaf	nodes,	siblings	are	separated	by	a	single	key	in	
their	shared	parent-node

� Let	N and	N’ be	sibling	internal	nodes
� N is	immediate	predecessor	to	N’
� K’ is	the	search-key	value	between	N and	N’ pointers	in	parent

� If	moving	pointer	N.Pm to	N’ (insert	before	N’.P1):
� N’.K1 is	set	to	K’
� N.Km-1 replaces	K’ in	parent	node
� Both	N.Km-1 and	N.Pm are	removed	from	N

� If	moving	pointer	N’.P1 to	N (append	after	N.Pm),	same	idea



25

Coalesce	at	Internal	Nodes
� After	also	deleting	“yak”:

� Next,	delete	“rat”:

� Causes	leaf	node	to	become	too	empty…
� Need	to	coalesce	leaf	nodes;	handle	as	usual

bib cat gut not off pit urn zap

dot off urn

pop

pop rat

bib cat gut not off pit urn zap

dot off urn

pop

pop rat



26

Coalesce	at	Internal	Nodes	(2)
� After	delete	and	coalesce:

� Could	redistribute	from	left	sibling	as	before,	but	this	
time	we	can	coalesce	the	two	internal	nodes	together

bib cat gut not off pit

dot off

pop

pop urn zap



27

Coalesce	at	Internal	Nodes	(3)
� As	before,	the	two	internal	nodes	being	coalesced	are	
separated	by	a	key	in	the	parent	node

� When	coalescing	internal	nodes’	contents,	use	key	from	
parent	to	separate	the	combined	contents

bib cat gut not off pit

dot off

pop

pop urn zap

bib cat gut not off pit

dot off pop

pop

pop urn zap



28

Coalesce	at	Internal	Nodes	(4)
� Also	as	before,	remove	pointer	to	deleted	node,	and	
also	remove	the	key	that	separated	them:

� Finally,	if	the	root	node	only	has	one	pointer,	we	don’t	
need	it	anymore
� Node	pointed	to	by	old	root’s	lone	pointer	becomes	the	
new	root

bib cat gut not off pit

dot off pop

pop urn zap

bib cat gut not off pit

dot off pop

pop urn zap



29

Sketch	of	Delete	Algorithm	(1)
delete(value K,	pointer	P):
find	leaf	node	L containing	(K,	P)
delete_entry(L,	K,	P)

delete_entry(node N,	value	K,	pointer	P):
find	and	remove	(K,	P)	from	N
if	N is	root	and	has	only	one

child-pointer:
make	child	the	new	root
delete	N

else	if	N isn’t	full	enough:
try	to	coalesce	Nwith

either	sibling	of	N
else,	redistribute	N’s	contents

with	either	sibling	of	N

coalesce(N,	N’):
K’ =	key	that	separates	N and	N’

in	parent(N)

/*	Details	of	coalesce	depend	on
*	whether	leaves	or	internal	nodes
*	are	being	combined;	e.g.	coalesce
*	will	use	K’ for	internal	nodes.
*/
combine	contents	of	N and	N’

/*	Assuming	N’was	the	node
*	that	ends	up	empty…
*/
delete_entry(parent(N’),	K’,	N’)
delete	node	N’



30

Sketch	of	Delete	Algorithm	(2)
delete(value K,	pointer	P):
find	leaf	node	L containing	(K,	P)
delete_entry(L,	K,	P)

delete_entry(node N,	value	K,	pointer	P):
find	and	remove	(K,	P)	from	N
if	N is	root	and	has	only	one

child-pointer:
make	child	the	new	root
delete	N

else	if	N isn’t	full	enough:
try	to	coalesce	Nwith

either	sibling	of	N
else,	redistribute	N’s	contents

with	either	sibling	of	N

redistribute(N,	N’):
K’ =	key	that	separates	N and	N’

in	parent(N)

/*	Details	of	redistribute	depend	on
*	whether	leaves	or	internal	nodes
*	are	involved;	e.g.	use	K’ for	nonleaf.
*	Also,	may	move	ptr from	N to	N’,
*	or	from	N’ to	N…		ugh…
*/
move	a	pointer/key	pair

from	fuller	node	to	emptier	node

replace	K’ in	parent(N)	with
appropriate	new	key-value



31

B+-Tree	Delete	Algorithm
� Glossed	over	many details	in	sketch	of	algorithm

� Mainly	boring	bookkeeping	details,	not	hard	to	figure	
out,	but	quite	tedious!

� Delete	has	a	lot	of	similar	but	slightly	different	cases:
� Can	coalesce	with	either	left	or	right	sibling	(if	it	exists!)
� Can	redistribute	values	with	either	left	or	right	sibling	–
value	may	move	in	either	direction

� Captured	general	principles	in	sketch	and	in	examples



32

Deletes	and	Duplicate	Values
� B+-tree	deletion	removes	a	specific	record	from	index

� delete(value K,	pointer	P)
� We	know	the	record	we	want	to	remove	(P),	and	the
search-key	value	it	contains	(K)

� Simplified	examples	by	disallowing	duplicate	values
� Main	change	when	duplicate	keys	are	allowed:

� When	looking	for	a	specific	(K,	P)	pair	in	leaf	nodes,
we	may	have	multiple	index-entries	to	examine

� If	K appears	many times,	may	have	to	traverse	multiple	
leaf-nodes	to	find	the	specific	value	of	P that	was	given



33

Deletes	and	Duplicate	Values	(2)
� A	simple	solution	to	this	issue:

� Add	a	uniquifier attribute	to	the	search-key	that	always
guarantees	search-key	values	will	be	unique	in	the	index

� Example:		record-pointer	would	be	a	good	uniquifier
� Can	easily	compare	and	order	record-pointers
� Is	readily	available	when	inserting	or	deleting	records

� When	inserting	or	deleting	on	the	index:
� Include	the	uniqifier attribute	when	making	placement	
decisions,	when	splitting/coalescing	nodes,	etc.

� Specifically	with	deletion,	use	uniqifier to	navigate	to	leaf	
directly;	avoids	any	searching	through	leaf	nodes



34

Deletes	and	Duplicate	Values	(3)
� When	searching	on	the	index:

� Usually,	uniquifier will	not	be	specified	for	searches
� Can	write	search	logic	to	ignore	uniquifier component	
of	index’s	search-key	values

� Can	pad	input	search-key	Vwith	“min-value”	for	the	
uniquifier
� e.g.	smallest	possible	value	for	a	record-pointer

� This	technique	will reduce	branching	factor	of	non-leaf	
nodes
� But,	will	improve	performance	when	search-key	values	
are	repeated	many	times



35

B+-Trees	and	String	Keys
� B+-tree	search	key	could	also	include	large	strings:

� Large	key	values will	negatively	impact branching	factor	
of	each	node

� Large	keys	can	also greatly	hamper	tree	restructuring
� Can	use	a	prefix	compression technique

� Non-leaf	nodes	only	store	a	prefix	of	the	search	string
� Size	of	prefix	must	be	large	enough	to	distinguish
reasonably	well	between	values	in	each	subtree

� Similarly,	many	databases	allow	user	to	specify	how	
much	of	string	index-components	to	use:
CREATE	INDEX	idx_customer_name
ON	customers	(last_name(4),	first_name(4));


