Relational Database System Implementation CS122 - Lecture 10 Winter Term, 2017-2018

Indexes

- Many queries only need a small number of records
	- Records with a specific value
	- Records with a specific range of values
- Most queries involve join operations
	- Correlate values of a column across two or more tables
- So far we have used simple file scans
	- Prohibitively slow for large data sets
- **Better databases use** *indexes* to speed access to records with specific values

Indexes (2)

- An index is a separate access structure associated with a particular table
	- e.g. tables and their indexes are usually stored in separate files
	- Much smaller, and structured for faster lookups
- Each index has an associated *search key*
	- Attribute (or set of attributes) used to look up records
	- This kind of "key" is completely separate from primary keys, candidate keys, etc.
- A table can have multiple indexes
	- Each index will have its own search key

Indexes (3)

- Several kinds of indexes with different capabilities:
- Access patterns and access time
	- Types of access that are supported efficiently
	- Time it takes to access a particular item or set of items
- Indexes must be kept in sync with their table
	- \bullet Time it takes to insert a new data item
	- Time it takes to delete a data item
- Indexes also consume extra space!
	- Additional space overhead taken by the index
	- Usually, extra space taken by index is far outweighed by the performance improvement

Index Types

- Two main categories of indexes
- *Ordered indexes* maintain a sorted ordering based on search key values
	- Logarithmic time for finding a specific record, or a boundary of a range
	- Can retrieve values in search key order
- *Hash indexes* use a hash function to distribute search key values across buckets
	- Constant time for finding a specific record, or a group of records with same value
	- Very inefficient for retrieving a range of values

Sequential Files and Indexes

- Sequential files are also stored in search key order
- An index on the search key can still be useful!
	- An index lookup can be much faster than doing a binary search on the table itself
		- Index entries are much smaller than tuples
		- e.g. 2-3 block reads, vs. 10+ block reads
- *Primary indexes*:
	- Ordered indexes that are in the same search-key order as their associated tables
	- Also called *clustering indexes*
	- (Has nothing to do with primary keys!!!)
- Sequential file + primary index = *index-sequential file*

Dense and Sparse Indexes

- For a sequential file with a primary index, the index can be either dense or sparse
- Dense indexes store an entry for every distinct value in the search key
	- Easy to find any particular value; all are represented in index
	- Index can easily become very large, for large tables
- *Sparse indexes* only store entries for a subset of the values in the search key
	- To find a specific record, find index entry with largest value less than desired value
	- Then, scan through sequential file from that location, until the record is found

Secondary Indexes

- *Secondary indexes* don't share the same search key as their associated table
	- Table may have a different search key order
	- Table may be a heap file with no specific order!
- Secondary indexes *must* be dense
	- Must include an entry for every value of search key
	- Must include a pointer to every record in the table
	- Since table is in a different order from the index, the index won't be generally useful if it isn't dense

B-Tree Indexes

- Most widely used index structure is the *B-tree* family of index structures
	- A *multilevel* indexing structure built as a balanced tree
	- Supports both sequential access and direct access!
- Depth of tree grows automatically as required by the table being indexed
- Space within disk blocks is managed automatically; all blocks at least 50% full, no overflow needed *(usually)*
- Branching factor is *very* large (normally hundreds), producing an extremely broad, flat tree
	- Disk accesses required is proportional to *depth* of tree

B-Tree Indexes (2)

- Not clear what the "B" stands for in B-trees...
	- Definitely not "binary" these are multiway trees
	- "Balanced," "broad," "bushy" have all been suggested
	- Developed by "Bayer" (and McCreight) while at "Boeing"
	- Who knows... (Who cares?)
- Different versions vary in rather important ways:
	- How full are tree-nodes allowed to get before splitting?
	- Is indexing and storage kept together or separate?
- \bullet Of all B-tree variants, most widely used is B⁺-tree
	- When people say "B-tree", they usually mean B^+ -tree

B⁺-Tree Indexes

- \bullet B⁺-trees separate indexing structure and data records
	- Original B-tree structure mixes these!
- Main implication:

- Internal nodes have different structure than leaf nodes
- Internal nodes only store keys *(plus structural data)*
- Leaf nodes store keys and data records as well
- \bullet B⁺-trees (and other variants) can be used for storing sequential files as well as for indexes
	- In indexes, "records" are simply file-pointers into table

B⁺-Tree Indexes (2)

- Other relevant details:
	- All tree-nodes must be at least 50% full (except for root)
	- Every path from root to leaf is the same length
	- Key-values may be repeated in different tree-nodes (original B-tree eliminates this redundancy, but mixes the indexing and data records)
- \bullet B⁺-trees are often used for filesystems
	- Index built on top of sequential file laid out on disk
	- Allows rapid mapping of logical file-location to physical cylinder/sector on disk
	- Also facilitates sequential access of file contents

B+-Tree Nodes

• Tree nodes have up to *n* children

- Simplification: *n* is fixed for an entire tree
	- Value of *n* depends on block size, key size, and pointer size
	- Can often be large, e.g. a few hundred!
- A node stores *n* pointers and $n 1$ values

- \bullet *K_i* are search-key values
- \bullet P_i are pointers that specify the tree's structure
- Key values are kept in sorted order: if $i < j$ then $K_i \leq K_j$
	- (In case of duplicate key values, may have neighboring $K_i = K_j$)

B+-Tree Leaf Nodes

• For leaf nodes:

- Pointer P_i refers to a record with search-key value K_i
- If search key is a candidate key, only one record in the table will have the key-value K_i
	- A common case $-$ indexes built on primary keys for enforcing key and referential integrity constraints
	- P_i points to the record with key value K_i

B⁺-Tree Leaf Nodes (2)

• For leaf nodes:

- Pointer P_i refers to a record with search-key value K_i
- If search key is not a candidate key, multiple records in the table will have the same key-value K_i
	- Unfortunately, also a common case...
- Two options:
	- Can simply repeat search-key value multiple times
	- Or, have P_i point to a bucket containing pointers for all records with key-value K_i (complicated; adds I/O costs)

B⁺-Tree Leaf Nodes (3)

• For leaf nodes:

- Pointer P_n points to the next leaf-node in the sequence
- Within a node, key values are kept in sorted order
	- (if $i < j$ then $K_i \le K_j$)
- Leaves contain non-overlapping ranges of key/record associations
- B⁺-tree orders leaves in increasing sequential order
	- Allows *very* easy traversal of dataset in search-key order

B+-Tree Non-Leaf Nodes

• For non-leaf nodes:

• All pointers P_i refer to other B^+ -tree nodes

• For $1 < i < n$:

- Pointer P_i points to subtree containing search-key values of at least K_{i-1} , but less than K_i
- For $i = 1$ or $i = n$:
	- Pointer P_1 points to subtree with search-key values less than K_1
	- Pointer P_n points to subtree containing search-key values of at least K_{n-1}

B⁺-Tree Non-Leaf Nodes (2)

• For non-leaf nodes:

• All pointers P_i refer to other B^+ -tree nodes

• In other words:

- P_1 points to subtree with search-keys in range $[-\infty, K_1]$
- P_2 points to subtree with search-keys in range $[K_1, K_2]$
- P_3 points to subtree with search-keys in range $[K_2, K_3]$
- **.**
- P_{n-1} points to subtree with search-keys in range $[K_{n-2}, K_{n-1}]$
- P_n points to subtree with search-keys in range $[K_{n-1}, +\infty)$

Non-Full B⁺-Tree Nodes

- B⁺-tree nodes must be at least 50% full
	- Specified in terms of *n*, number of pointers in each node
	- (Can also state this constraint as number of bytes used)
- The root node is not required to be at least 50% full
	- (Often simply don't have enough data to enforce this.)
- Non-leaf nodes must have at least $\lceil n/2 \rceil$ pointers
	- Must contain at least $\lceil n/2 \rceil$ 1 keys
	- e.g. for tree with $n = 5$:
		- $\lceil n/2 \rceil$ = 3 ptrs and 2 keys, minimum

Non-Full B⁺-Tree Nodes (2)

- Leaf nodes always use P_n to point to next leaf-node...
- Don't count this "next leaf-node" pointer in the measure of whether a leaf is half-full
	- Each P_i points to a row with value K_i
	- Must have at least $\lceil (n-1)/2 \rceil$ pointers and keys
	- e.g. tree with $n = 4$:
		- $(n-1)/2$ = 2 ptrs and 2 keys, minimum

Example B⁺-Tree

- Will use a tree with low *n* for sake of simplicity
	- Easy to comprehend
	- Will provoke frequent need to split and join nodes
- A simple tree with $n = 4$:
	- Non-leaf nodes must have at least 2 pointers and 1 key
	- Leaf nodes must have at least 2 pointers and 2 keys

Example B⁺-Tree (2)

- Also specify that search-key values are unique
	- Don't need to worry about runs of entries with the same search-key value. (We'll handle this later.)
- Finally, specify that this is a dense index
	- Every single value in table also appears in the index
	- No additional search needed once we reach leaf record

B+-Trees: Querying

- Look up the record with the search-key value V
- Given the value *V*, can follow tree structure to find the exact leaf-node where *V* should be stored
	- If *V* isn't in that leaf node, then *V* isn't in the index

B⁺-Trees: Querying (2)

- Navigate non-leaf nodes separately from leaf-node
- Each non-leaf node has *m* pointers, P_1 .. P_m (1 < *m* ≤ *n*)
- For a given non-leaf node, start with $i = 1$:
	- If $V < K_i$, follow pointer P_i
	- If $V = K_i$, follow pointer P_{i+1}
	- If $i + 1 < m$, increment *i* and repeat; otherwise follow P_m

B⁺-Trees: Querying (3)

- Once we reach a leaf node, it's easy
- Find K_i that equals V ; P_i points to record with value V
- If node doesn't contain any K_i that equals V, then the table simply doesn't contain a record with value V
	- Don't need to go to next leaf-node, or anything like that

B⁺-Trees: Querying (4)

• Algorithm to find record with search-key value *V*: $C =$ root node while C is a non-leaf node: $m =$ number of pointers in *C*; $i = 1$ SearchNode: if $V < K_i$ then set $C = C.P_i$ else if $V = K_i$ then set $C = C.P_{i+1}$ else if $i + 1 < m$ then $i++$; goto SearchNode else set $C = CP_m$

/* Now, *C* is a leaf node $*/$ Iterate over all K_i in leaf-node C : if $V = K_i$ then return P_i If no K_i found then return *null*

"Go Right On Equality!"

• For non-leaf nodes:

• All pointers P_i refer to other B^+ -tree nodes

• Structural rules:

- *P*₁ points to subtree with search-keys in range $\lceil -\infty, K_1 \rceil$
- P_2 points to subtree with search-keys in range $[K_1, K_2]$
- **D.**
- Specifically, if we are looking for search-key value *V*:
	- If $K_i = V$, follow pointer to the <u>right</u> of K_i
	- Some B^+ -tree impls. handle this case by going left
	- (Always pay attention to the *implementation details...*)

B⁺-Trees: Insertion

- Insertion is easy, except when a node overflows
	- Since *n* is generally large, overflows occur infrequently
- Simplest case: inserting into an empty B^+ -tree index
	- In this case, the root node will also be a leaf node
- Example: Insert "cat" into empty index

- Note that the leaf-node is $\lt 50\%$ full
	- Simply don't have enough data to satisfy requirement
	- Since it's also the root node, we don't mind

B⁺-Trees: Insertion (2)

- Similarly, inserting other records into a single-node B^+ -tree is easy, as long as there is room in the node
- Example: Insert "bib" into our index
	- \bullet B⁺-tree before insertion:

- Must keep K_i values in increasing order...
	- Slide "cat" over in the node, to make room for "bib"

Splitting the Leaf-Node

- If a leaf node overflows, must split it into two nodes!
- Our index after also inserting a "gut" record:

- Next we want to insert "dot", but there isn't room
	- Split the node into two nodes
	- Approx. half of the values remain in left node, and the rest are moved to the right node
	- The two leaf-nodes are chained together

Splitting the Leaf-Node (2)

• We aren't done yet...

- We need a new parent node to reference the two leaves
- Will contain one key: "dot"
- General principle:

- *Note:* New node is always to right of the node being split
- If there isn't a parent-node:
	- The root node is being split!
	- Create a new root node, and increase tree's depth by 1

Insertion Example, Cont.

• Our tree after also inserting "off":

- Now, want to insert "pit"
	- Again, split leaf node in two, and divide the leaf's values across the two nodes
	- Promote new node's first key-value to the parent

Result:

B⁺-Tree Insertion Algorithm

- Algorithm is generally straightforward to implement
- When splitting a leaf node, simplify process by using a temp memory area T that can hold overflowed node's contents
- Example: *L* is a full leaf-node
	- Want to add key *K* and associated record-pointer *P* to node *L*

• Implementation:

- Copy contents of *L* into temporary memory block *T*
- Insert new pair *K*, *P* into *T (it can hold the extra record)*
- Create new empty leaf-node L'
- Set $L'P_n = L.P_n$, and set $L.P_n = L'$ *(chain leaves together)*
- Clear *L*, and copy P_1 , K_1 thru $P_{\lfloor n/2 \rfloor}$, $K_{\lfloor n/2 \rfloor}$ from *T* into *L*
- Copy $P_{\lceil n/2 \rceil+1}$, $K_{\lceil n/2 \rceil+1}$ thru P_n , K_n from *T* into *L'*

B⁺-Tree Insertion Algorithm

 $insert(value K, pointer P)$: if tree is empty:

 $L =$ new empty leaf node else:

L = find leaf where *K* should go,
using earlier search algorithm if *L* has less than $n - 1$ keys: $insert_in_leaf(L, K, P)$ else:

split node *L* into *L*, *L'* using mechanism on prev. slide K' = smallest key in L' $insert_in_parent(L, K', L')$

insert_in_leaf(node *L*, value *K*, pointer *P*): if $K < L.K_1$:

insert *P*, *K* into *L* before $L.P_1$

else:

find largest K_i in L less than K insert *P*, *K* into *L* after *L.K*_{*i*}

insert_in_parent(node *N*, value *K'*, node *N'*): if *N* is root of tree: R = new empty non-leaf node set R contents to (N, K', N') make *the new root* else: $P =$ parent(*N*) if *P* has less than *n* pointers: insert (K', N') into P, just after N else: copy *P* to temporary block *T* insert (K', N') into T, just after N create new node P' ; clear P copy P_1 , K_1 thru $P_{\lceil n/2 \rceil}$, $K_{\lceil n/2 \rceil}$ from *T* into *P* copy $P_{\lceil n/2 \rceil}$, $K_{\lceil n/2 \rceil}$ thru P_n , K_n from *T* into P' $K'' = P'$. K_1 $insert_in_parent(P, K'', P')$

B⁺-Tree Implementation Details

- Several additional details need to be maintained
	- e.g. type of node stored in each page (leaf/non-leaf/empty)
- Additionally, need to keep track of which node is B⁺-tree's root node
	- As with table files, can store such details in page 0, and start the actual index pages with page 1
- Seems appealing to store additional structural details in B^+ -tree nodes
	- The node's parent, siblings, etc.
	- Unfortunately, dramatically increases number of nodes that must be modified when manipulating the tree
	- Added complexity of using this simple structure is less costly than the additional IOs that would be required (!!!)

Implementation Details (2)

- Index file is still a linear sequence of pages
	- Pages in data file are in order of addition to the B^+ -tree...
	- Over time, physical page order in data file will deviate widely from logical page order specified by the index
		- *(particularly the sequential traversal part)*
	- Periodically need to reorganize index pages to minimize number of disk seeks incurred by access/traversal