Relational Database

System Implementatlon

; /
N/
=

Indexes

Many queries only need a small number of records
e Records with a specific value
e Records with a specific range of values

Most queries involve join operations
e Correlate values of a column across two or more tables

So far we have used simple file scans
e Prohibitively slow for large data sets

Better databases use indexes to speed access to
records with specific values

/\\/
Indexes (2)

An index is a separate access structure associated
with a particular table

e e.g. tables and their indexes are usually stored in
separate files

e Much smaller, and structured for faster lookups
Each index has an associated search key

e Attribute (or set of attributes) used to look up records

e This kind of “key” is completely separate from primary
keys, candidate keys, etc.

A table can have multiple indexes
e Each index will have its own search key

Indexes (3)

Several kinds of indexes with different capabilities:

Access patterns and access time
e Types of access that are supported efficiently
e Time it takes to access a particular item or set of items

Indexes must be kept in sync with their table
e Time it takes to insert a new data item
e Time it takes to delete a data item

Indexes also consume extra space!

e Additional space overhead taken by the index

e Usually, extra space taken by index is far outweighed by
the performance improvement

=

Index Types

Two main categories of indexes

Ordered indexes maintain a sorted ordering based
on search key values

e Logarithmic time for finding a specific record, or a
boundary of a range

e Can retrieve values in search key order
Hash indexes use a hash function to distribute
search key values across buckets

e Constant time for finding a specific record, or a group of
records with same value

e Very inefficient for retrieving a range of values

6N//

i

Sequential Files and Indexes

Sequential files are also stored in search key order

An index on the search key can still be useful!

e An index lookup can be much faster than doing a binary
search on the table itself

« Index entries are much smaller than tuples
« e.g. 2-3 block reads, vs. 10+ block reads
Primary indexes:

e Ordered indexes that are in the same search-key order as
their associated tables

e Also called clustering indexes
e (Has nothing to do with primary keys!!!)
Sequential file + primary index = index-sequential file

e

Dense and Sparse Indexes

For a sequential file with a primary index, the index
can be either dense or sparse

Dense indexes store an entry for every distinct value in
the search key
e Easy to find any particular value; all are represented in index
e Index can easily become very large, for large tables

Sparse indexes only store entries for a subset of the
values in the search key

e To find a specific record, find index entry with largest value
less than desired value

e Then, scan through sequential file from that location, until the
record is found

; N//

et
Secondary Indexes

Secondary indexes don’t share the same search key
as their associated table

e Table may have a different search key order

e Table may be a heap file with no specific order!

Secondary indexes must be dense
e Must include an entry for every value of search key
e Must include a pointer to every record in the table

e Since table is in a different order from the index, the
index won't be generally useful if it isn’t dense

9 /
N/
=

B-Tree Indexes

Most widely used index structure is the B-tree family of
index structures

e A multilevel indexing structure built as a balanced tree
e Supports both sequential access and direct access!

Depth of tree grows automatically as required by the
table being indexed

Space within disk blocks is managed automatically; all
blocks at least 50% full, no overflow needed (usually)

Branching factor is very large (normally hundreds),
producing an extremely broad, flat tree

e Disk accesses required is proportional to depth of tree

/\\/

=

B-Tree Indexes (2)

Not clear what the “B” stands for in B-trees...
e Definitely not “binary” - these are multiway trees
e “Balanced,” “broad,” “bushy” have all been suggested
e Developed by “Bayer” (and McCreight) while at “Boeing”
e Who knows... (Who cares?)

Different versions vary in rather important ways:
e How full are tree-nodes allowed to get before splitting?
e [s indexing and storage kept together or separate?

Of all B-tree variants, most widely used is B*-tree
e When people say “B-tree”, they usually mean B*-tree

N/

e

B*-Tree Indexes

B*-trees separate indexing structure s
and data records e
e Original B-tree structure mixes these! data records

Main implication:
e Internal nodes have different structure than leaf nodes
e Internal nodes only store keys (plus structural data)
e Leaf nodes store keys and data records as well

B*-trees (and other variants) can be used for storing
sequential files as well as for indexes

e In indexes, “records” are simply file-pointers into table

/\\/
=

B*-Tree Indexes (2)

Other relevant details:
e All tree-nodes must be at least 50% full (except for root)
e Every path from root to leaf is the same length

e Key-values may be repeated in different tree-nodes
(original B-tree eliminates this redundancy, but mixes
the indexing and data records)

B*-trees are often used for filesystems
e Index built on top of sequential file laid out on disk

e Allows rapid mapping of logical file-location to physical
cylinder/sector on disk

e Also facilitates sequential access of file contents

13

/

/\\/ '

e

B*-Tree Nodes

Tree nodes have up to n children

e Simplification: n is fixed for an entire tree
« Value of n depends on block size, key size, and pointer size

« Can often be large, e.g. a few hundred!

A node stores n pointers and n - 1 values

Py

K

P,

K,

Py

Pn-l

K, |P

e K are search-key values
e P.are pointers that specify the tree’s structure

* Key values are kept in sorted order: ifi <jthen K; < K;
* (In case of duplicate key values, may have neighboring K; = K;)

- ///%44’;

P
B*-Tree Leaf Nodes

For leaf nodes:

P | K P, | K, P, P | K_, |P

e Pointer P, refers to a record with search-key value K;

If search key is a candidate key, only one record in the
table will have the key-value K;

e A common case - indexes built on primary keys for
enforcing key and referential integrity constraints

e P.points to the record with key value K.

. ///%44’;

——

i

B*-Tree Leaf Nodes (2)

For leaf nodes:

P, | K, {P,| K, |P P | K_, |P

e e e e e e e e e e e e e e e e e e s e e e ————) 7) e e e e o o o o o o

e Pointer P, refers to a record with search-key value K;

If search key is not a candidate key, multiple records in
the table will have the same key-value K.

e Unfortunately, also a common case...
Two options:
e Can simply repeat search-key value multiple times

e Or, have P; point to a bucket containing pointers for all
records with key-value K, (complicated; adds /O costs)

16

i
B*-Tree Leaf Nodes (3)

i

For leaf nodes:

P,

K,

P,

K;

Py

Pn—l

Kn—l

e Pointer P, points to the next leaf-node in the sequence

Within a node, key values are kept in sorted order
e (ifi<jthenK; < K))

Leaves contain non-overlapping ranges of key/record

associlations

B*-tree orders leaves in increasing sequential order
e Allows very easy traversal of dataset in search-key order

17

m————

i

B*-Tree Non-Leaf Nodes

For non-leaf nodes:

!

K,

P,

K,

Py

Pn—l

e All pointers P, refer to other B*-tree nodes

Forl<i<n:

e Pointer P; points to subtree containing search-key values
of at least K, ;, but less than K,

boyril = | oni = I

e Pointer P; points to subtree with search-key values less
than K,

e Pointer P, points to subtree containing search-key values

of atleast K, ,

18

/

m————

i

B*-Tree Non-Leaf Nodes (2)

For non-leaf nodes:

!

K,

P,

K,

Py

Pn—l

e All pointers P, refer to other B*-tree nodes
In other words:

e P, points to subtree with search-keys in range
e P, points to subtree with search-keys in range
e P points to subtree with search-keys in range

-0, K,)
K, K,)
K, K3)

e P, points to subtree with search-keys in range K, ,, K, ;)
e P, points to subtree with search-keys in range [K,,_;, +0)

/\\/

i

Non-Full B*-Tree Nodes

B*-tree nodes must be at least 50% full

e Specified in terms of n, number of pointers in each node

e (Can also state this constraint as number of bytes used)
The root node is not required to be at least 50% full

e (Often simply don’t have enough data to enforce this.)
Non-leaf nodes must have at least| n/2 | pointers

o Must contain at least/| n / 21 keys

e e.g. for tree with n = 5:
e | n/2 =3 ptrs and 2 keys, minimum

N/

Non-Full B*-Tree Nodes (2)

Leaf nodes always use P, to point to next leaf-node...
Don't count this “next leaf-node” pointer in the
measure of whether a leaf is half-full

e Each P, points to a row with value K;

e Must have at least |_(n -1)/ 2 pointers and keys

e e.g. tree with n = 4:
o [(n-1)/21=2 ptrs and 2 keys, minimum

///4;;;,;;::::::::::::::=======—-‘_‘_\ﬁ__________—_’///////
Example B*-Tree

Will use a tree with low n for sake of simplicity
e Easy to comprehend
e Will provoke frequent need to split and join nodes
A simple tree with n = 4:
e Non-leaf nodes must have at least 2 pointers and 1 key
e Leaf nodes must have at least 2 pointers and 2 keys

e
i P (rat|? index|
| ile!
| (5 i 1
l 1|dot|1] off |1 1|vat|y i
|
I |
L s e '
I |
} bib| | cat > 1|dot| t|gut| 1 not| > 1| off | 1| pit = t|rat|¢|tin = t|vat|1|yak]t|zap i
|
A AN P AAAAAAAAAAAAS AR AAASAAAAIA APAAAAAAIA AAAAAAAAAA AAAAAAAAAAAS At I AN AP ISP AAIIIIA A A A A AP A PIAIARA AR AAAAAIA AN AAAAA A |
Y Y \ tablejl
R

///4;;;,;;::::::::::::::=======—-‘_‘_\ﬁ__________—_’///////
Example B*-Tree (2)

Also specify that search-key values are unique

e Don’t need to worry about runs of entries with the same
search-key value. (We'll handle this later.)

Finally, specify that this is a dense index
e Every single value in table also appears in the index
e No additional search needed once we reach leaf record

e
| (rat|¢ index|
| ile!
| E i 1
l 1|dot|1] off |1 1|vat|y i
|
| |
L s e '
| |
} bib| | cat > 1|dot| t|gut| 1 not| > 1| off | 1| pit = t|rat|¢|tin = t|vat|1|yak]t|zap i
|

|

23 /
/\\/
il

B*-Trees: Querying

Look up the record with the search-key value IV

Given the value V, can follow tree structure to find the
exact leaf-node where V should be stored

e [f Visn't in that leaf node, then Visn’t in the index

e
| (rat|¢ index|
| ile!
: E i 1
l 1|dot|1| off |1 1|vat|t i
|

I |
L s e '
| |
} bib| ¢ |cat > 1|dot| t|gut| 1 not| > 1| off | 1| pit > t|rat|t|tin > 1|vat|t|yak|t|zap i
|

A AN P AAAAAAAAAAAAS AR AAASAAAAIA APAAAAAAIA AAAAAAAAAA AAAAAAAAAAAS At I AN AP ISP AAIIIIA A A A A AP A PIAIARA AR AAAAAIA AN AAAAA A |

- /
//%45;;;,;:::::::::::::::=======——~___="\N‘_____________’,//,,///
B*-Trees: Querying (2)

Navigate non-leaf nodes separately from leaf-node
Each non-leaf node has m pointers, P, .. P,, (1 < m < n)
For a given non-leaf node, start with i = 1:

o If V<K, follow pointer P,

e If V=K, follow pointer P;,,

e Ifi + 1 <m, increment i and repeat; otherwise follow P,

e
| (rat|¢ index|
| ile!
| (5 i 1
l 1|dot|1| off |1 1|vat|t i
|
I |
L s e '
I |
} bib| ¢ |cat > 1|dot| t|gut| 1 not| > 1| off | 1| pit > t|rat|t|tin > 1|vat|t|yak|t|zap i
|
A AN P AAAAAAAAAAAAS AR AAASAAAAIA APAAAAAAIA AAAAAAAAAA AAAAAAAAAAAS At I AN AP ISP AAIIIIA A A A A AP A PIAIARA AR AAAAAIA AN AAAAA A |
Y Y Y tablejl
R

25 /
/\\/
=

B*-Trees: Querying (3)

Once we reach a leaf node, it's easy
Find K, that equals V; P; points to record with value I/

[f node doesn’t contain any K, that equals V, then the
table simply doesn’t contain a record with value V

e Don’t need to go to next leaf-node, or anything like that

| B*-tree
| (rat|¢ index|
| ile!
| (5 i 1
l 1|dot|1| off |1 1|vat|t i
|

| |
L s e '
| |
} bib| ¢ |cat dot|1|gut|t|not| e 1| off | 1| pit rat|¢|tin vat|1|yak|1|zap i
|

A AN P AAAAAAAAAAAAS AR AAASAAAAIA APAAAAAAIA AAAAAAAAAA AAAAAAAAAAAS At I AN AP ISP AAIIIIA A A A A AP A PIAIARA AR AAAAAIA AN AAAAA A |
rEE R A T A R NS table

26 /
N/
B*-Trees: Querying (4)

Algorithm to find record with search-key value V:
C = root node
while Cis a non-leaf node:
m = number of pointersin C;i=1
SearchNode:
if V< K; then set C = C.P;
else if V=K, then set C = C.P,,,
else if i + 1 < m then i++; goto SearchNode
else set C=C.P,

/* Now, Cis a leaf node */

[terate over all K; in leaf-node C:
if V= K; then return P,

If no K; found then return null

27 7 /
N/
/

“Go Right On Equality!”

For non-leaf nodes:

P, K, P, K, P, P, .| K,, |P
e All pointers P, refer to other B*-tree nodes

Structural rules:
e P, points to subtree with search-keys in range [-00, K,)
e P, points to subtree with search-keys in range [K;, K,)

Specifically, if we are looking for search-key value V:
e If K; =V, follow pointer to the right of K;
e Some B*-tree impls. handle this case by going left
e (Always pay attention to the implementation details...)

N/

e

B*-Trees: Insertion

Insertion is easy, except when a node overflows
e Since n is generally large, overflows occur infrequently
Simplest case: inserting into an empty B*-tree index
e |n this case, the root node will also be a leaf node
Example: Insert “cat” into empty index

t|cat

L
Note that the leaf-node is < 509% full

e Simply don’t have enough data to satisfy requirement
e Since it’s also the root node, we don’t mind

29

m————

i

B*-Trees: Insertion (2)

/

Similarly, inserting other records into a single-node
B*-tree is easy, as long as there is room in the node

Example: Insert “bib” into our index

e B*-tree before insertion:

t|cat

=
Must keep K values in increasing order...

e Slide “cat” over in the node, to make room for “bib”

¢|bib|¢|cat

vy
R Y

30

i
Splitting the Leaf-Node

i

/

If a leaf node overflows, must split it into two nodes!
Our index after also inserting a “gut” record:

¢ bib|*

cat|?

gut

Y \
R

Y

Next we want to insert “dot”, but there isn't room

e Split the node into two nodes
e Approx. half of the values remain in left node, and the

rest are moved to the right node
e The two leaf-nodes are chained together

¢ bib|*

cat|?

dot

gut

split! >

¢ bib|*

cat

—

¢ |dot!|*

gut

\i Y

\i Y

31

_——

i

Splitting the Leaf-Node (2)

We aren’t done yet...

e We need a new parent node
to reference the two leaves

e Will contain one key: “dot”
General principle:

/

1|dot|1
¢ |bib|¢|cat . — ¢ |dot| ¢ |gut
PP PP

e When a node is split into two, need to promote the new
node’s first key-value up to the parent-node’s table

e Note: New node is always to right of the node being split

If there isn’t a parent-node:

e The root node is being split!

e Create a new root node, and increase tree’s depth by 1

32 | /
N/

i

Insertion Example, Cont.

Our tree after also inserting “off”: 1[do]

y/ =\¢

dot| ¢ |gut| | off

Now, want to insert “pit” = e

e Again, split leaf node in two, and divide the leaf’s values
across the two nodes

e Promote new node’s first key-value to the parent

Result:
? dot off
o ¢/ \¢
¢ |bib|¢|cat ¢ |dot| ¢ |gut | off | 1| pit

\i \i \i Y \i Y

33 | /
/\\/

i

B*-Tree Insertion Algorithm

Algorithm is generally straightforward to implement

When splitting a leaf node, simplify process by using a temp
memory area T that can hold overflowed node’s contents

Example: L is a full leaf-node
e Want to add key K and associated record-pointer P to node L

Implementation:
e Copy contents of L into temporary memory block T
e Insert new pair K, Pinto T (it can hold the extra record)
e Create new empty leaf-node L’
e Set L'P,=L.P,and setL.P, =L (chain leaves together)

* Clear L, and copy Py, K, thru P,), K7, 1 from T into L
* Copy Pr, /011 Kryj214q thru P, K, from T into L

34 /
N/
= 3 2
B*-Tree Insertion Algorithm

insert(value K, pointer P): insert_in_parent(node N, value K’, node N’):
if tree is empty: if N is root of tree:
L = new empty leaf node R = new empty non-leaf node
else: set R contents to (N, K’, N’
L = find leaf where K should go, make R the new root

using earlier search algorithm
if L has less than n - 1 keys:

insert_in_leaf(L, K, P) P = parent(N)
if P has less than n pointers:

else:

else:
split node L into L, L’ using insert (K’, N’) into P, just after N
mechanism on prev. slide else:
K’ = smallest key in Ll copy P to temporary block T
insert_in_parent(L, K’, L") insert (K’, N’) into T, just after N
create new node P’; clear P
in§ert_in_leaf(node L, value K, pointer P): copy Py, K, thru Pr,, 3, K, 51 from T into P
if K<L.K;: copy P, K, ,7thru P, K from T into P’
: : (n/2b B n/2l n “*n
insert P, K into L before L.P, K”=P'K,

else:
find largest K, in L less than K
insert P, K into L after L.K;

insert_in_parent(P, K”, P")

35 | /
/\\/

i

B*-Tree Implementation Details

Several additional details need to be maintained
e e.g. type of node stored in each page (leaf/non-leaf/empty)

Additionally, need to keep track of which node is B*-tree’s
root node

e As with table files, can store such details in page 0, and start
the actual index pages with page 1

Seems appealing to store additional structural details in
B*-tree nodes

e The node’s parent, siblings, etc.

e Unfortunately, dramatically increases number of nodes that
must be modified when manipulating the tree

e Added complexity of using this simple structure is less costly
than the additional 10s that would be required (!!!)

36

/

m————

i

Implementation Details (2)

. ; _
Our simple B*-tree example: Taod o] P

{ = ¢/ \¢

¢ |bib|¢|cat Y ¢ |dot|t|gut | off | 1| pit

Index file is still a linear sequence of pages

e Pages in data file are in order of addition to the B*-tree...

e Over time, physical page order in data file will deviate
widely from logical page order specified by the index

o (particularly the sequential traversal part)

e Periodically need to reorganize index pages to minimize
number of disk seeks incurred by access/traversal

