
CS122	– Lecture	10
Winter	Term,	2017-2018



2

Indexes
�Many	queries only	need	a	small	number	of	records

� Records	with	a	specific	value
� Records	with	a	specific	range	of	values

�Most	queries	involve	join	operations
� Correlate values	of	a	column	across	two	or	more	tables

� So	far	we	have	used	simple	file	scans
� Prohibitively	slow	for	large	data	sets

� Better	databases	use	indexes to	speed	access	to	
records	with	specific	values



3

Indexes	(2)
� An	index	is	a	separate	access	structure	associated	
with	a	particular	table
� e.g.	tables	and	their	indexes	are	usually	stored	in	
separate	files

� Much	smaller,	and	structured	for	faster	lookups
� Each	index	has	an	associated	search	key

� Attribute	(or	set	of	attributes) used	to	look	up	records
� This	kind	of	“key”	is	completely	separate	from	primary	
keys,	candidate	keys,	etc.

� A	table	can	have	multiple	indexes
� Each	index	will	have	its	own	search	key



4

Indexes	(3)
� Several	kinds	of	indexes	with	different capabilities:
� Access	patterns	and	access	time

� Types	of	access	that	are	supported	efficiently
� Time	it	takes	to	access	a	particular	item	or	set	of	items

� Indexes	must	be	kept	in	sync	with	their	table
� Time	it	takes	to	insert	a	new	data	item
� Time	it	takes	to	delete	a	data	item

� Indexes	also	consume	extra	space!
� Additional	space	overhead	taken	by	the	index
� Usually,	extra	space	taken	by	index	is	far	outweighed	by	
the	performance	improvement



5

Index	Types
� Two	main	categories	of	indexes
� Ordered	indexes	maintain	a	sorted	ordering	based	
on	search	key	values
� Logarithmic	time	for	finding	a	specific	record,	or	a	
boundary	of	a	range

� Can	retrieve	values	in	search	key	order
� Hash	indexes	use	a	hash	function	to	distribute	
search	key	values	across	buckets
� Constant	time	for	finding	a	specific	record,	or	a	group	of	
records	with	same	value

� Very	inefficient	for	retrieving	a	range	of	values



6

Sequential	Files	and	Indexes
� Sequential	files are	also	stored	in search	key	order
� An	index	on	the	search	key	can	still	be	useful!

� An	index	lookup	can	be	much	faster	than	doing	a	binary	
search	on	the	table	itself
� Index	entries	are	much	smaller	than	tuples
� e.g.	2-3	block	reads,	vs.	10+	block	reads

� Primary	indexes:
� Ordered	indexes	that	are	in	the	same	search-key	order	as	
their	associated	tables

� Also	called	clustering	indexes
� (Has	nothing	to	do	with	primary	keys!!!)

� Sequential	file	+	primary	index	=	index-sequential	file



7

Dense	and	Sparse	Indexes
� For	a	sequential	file	with	a	primary	index,	the	index	
can	be	either	dense	or	sparse

� Dense	indexes store	an	entry	for	every	distinct	value	in	
the	search	key
� Easy	to	find	any	particular	value;	all	are	represented	in	index
� Index	can	easily	become very	large,	for	large	tables

� Sparse	indexes only	store	entries	for	a	subset	of	the	
values	in	the	search	key
� To	find	a	specific	record,	find	index	entry	with	largest	value	
less	than	desired	value

� Then,	scan	through	sequential	file	from	that	location,	until	the	
record	is	found



8

Secondary	Indexes
� Secondary	indexes don’t	share	the	same	search	key	
as	their	associated	table
� Table	may	have	a	different	search	key	order
� Table	may	be	a	heap	file	with	no	specific	order!

� Secondary	indexes	must be	dense
� Must	include	an	entry	for	every	value	of	search	key
� Must	include	a	pointer	to	every	record	in	the	table
� Since	table	is	in	a	different	order	from	the	index,	the	
index	won’t	be	generally	useful	if	it	isn’t	dense



9

B-Tree	Indexes
� Most	widely	used	index	structure	is	the	B-tree family	of	
index	structures
� A	multilevel indexing	structure	built	as	a	balanced	tree
� Supports	both sequential	access	and	direct	access!

� Depth	of	tree	grows	automatically	as	required	by	the	
table	being	indexed

� Space	within	disk	blocks	is	managed	automatically;	all	
blocks	at	least	50%	full,	no	overflow	needed	(usually)

� Branching	factor	is	very large	(normally	hundreds),	
producing	an	extremely	broad,	flat	tree
� Disk	accesses	required	is	proportional	to	depth of	tree



10

B-Tree	Indexes	(2)
� Not	clear	what	the	“B”	stands	for	in	B-trees…

� Definitely	not “binary”	– these	are	multiway trees
� “Balanced,”	“broad,”	“bushy”	have	all	been	suggested
� Developed	by	“Bayer”	(and	McCreight)	while	at	“Boeing”
� Who	knows…		(Who	cares?)

� Different	versions	vary	in	rather	important	ways:
� How	full	are	tree-nodes	allowed	to	get	before	splitting?
� Is	indexing	and	storage	kept	together	or	separate?

� Of	all	B-tree	variants,	most	widely	used	is	B+-tree
� When	people	say	“B-tree”,	they	usually	mean	B+-tree



11

B+-Tree	Indexes
� B+-trees	separate	indexing	structure
and	data	records
� Original	B-tree	structure	mixes	these!

� Main	implication:
� Internal	nodes	have	different	structure	than	leaf	nodes
� Internal	nodes	only	store	keys	(plus	structural	data)
� Leaf	nodes	store	keys	and	data	records	as	well

� B+-trees	(and	other	variants)	can	be	used	for	storing	
sequential	files	as	well	as	for	indexes
� In	indexes,	“records”	are	simply	file-pointers	into	table

index
structure

data	records



12

B+-Tree	Indexes	(2)
� Other	relevant	details:

� All	tree-nodes	must	be	at	least	50%	full	(except	for	root)
� Every	path	from	root	to	leaf	is	the	same	length
� Key-values	may	be	repeated	in	different	tree-nodes
(original	B-tree	eliminates	this	redundancy,	but	mixes	
the	indexing	and	data	records)

� B+-trees	are	often	used	for	filesystems
� Index	built	on	top	of	sequential	file	laid	out	on	disk
� Allows	rapid	mapping	of	logical	file-location	to	physical	
cylinder/sector	on	disk

� Also	facilitates	sequential	access	of	file	contents



13

B+-Tree Nodes
� Tree	nodes	have	up	to	n children

� Simplification:		n is	fixed	for	an	entire	tree
� Value	of	n depends	on	block	size,	key	size,	and	pointer	size
� Can	often	be	large,	e.g.	a	few	hundred!

� A	node	stores	n pointers	and	n – 1	values

� Ki are	search-key	values
� Pi are pointers	that	specify	the	tree’s	structure
� Key	values	are	kept	in	sorted	order:		if	i <	j then	Ki ≤	Kj

� (In	case	of	duplicate	key	values,	may	have	neighboring	Ki =	Kj)

P1 P2 PnK1 K2 P3 Kn-1Pn-1…



14

B+-Tree	Leaf	Nodes
� For	leaf	nodes:

� Pointer	Pi refers	to a	record	with	search-key	value	Ki
� If	search	key	is	a	candidate	key,	only	one	record	in	the	
table	will	have	the	key-value	Ki
� A	common	case	– indexes	built	on	primary	keys	for	
enforcing	key	and	referential	integrity	constraints

� Pi points	to	the	record	with	key	value	Ki

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



15

B+-Tree	Leaf	Nodes	(2)
� For	leaf	nodes:

� Pointer	Pi refers	to a	record	with	search-key	value	Ki
� If	search	key	is not a	candidate	key,	multiple	records	in	
the	table	will	have	the	same	key-value	Ki
� Unfortunately,	also	a	common	case…

� Two	options:
� Can	simply	repeat	search-key	value	multiple	times
� Or,	have	Pi point	to	a	bucket	containing	pointers	for	all	
records	with	key-value	Ki (complicated;	adds	I/O	costs)

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



16

B+-Tree	Leaf	Nodes	(3)
� For	leaf	nodes:

� Pointer	Pn points	to	the	next	leaf-node	in	the	sequence
� Within	a	node,	key	values	are	kept	in	sorted	order

� (if	i <	j then	Ki ≤	Kj)
� Leaves	contain	non-overlapping	ranges	of	key/record	
associations

� B+-tree	orders	leaves	in	increasing	sequential	order
� Allows	very easy	traversal	of	dataset	in	search-key	order

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



17

B+-Tree	Non-Leaf	Nodes
� For	non-leaf	nodes:

� All	pointers	Pi refer	to	other	B+-tree	nodes
� For	1	<	i <	n:

� Pointer	Pi points	to	subtree containing	search-key	values	
of	at	least	Ki-1,	but	less	than	Ki

� For	i =	1	or	i =	n:
� Pointer	P1 points	to	subtree with	search-key	values	less	
than	K1

� Pointer	Pn points	to	subtree containing	search-key	values	
of	at	least	Kn-1

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



18

B+-Tree	Non-Leaf	Nodes	(2)
� For	non-leaf	nodes:

� All	pointers	Pi refer	to	other	B+-tree	nodes
� In	other	words:

� P1 points	to	subtree with	search-keys	in	range	[-∞,	K1)
� P2 points	to	subtree with	search-keys	in	range	[K1,	K2)
� P3 points	to	subtree with	search-keys	in	range	[K2,	K3)
� …
� Pn-1 points	to	subtree with	search-keys	in	range	[Kn-2,	Kn-1)
� Pn points	to	subtree with	search-keys	in	range	[Kn-1,	+∞)

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



19

Non-Full	B+-Tree	Nodes
� B+-tree	nodes	must	be	at	least	50%	full

� Specified	in	terms	of	n,	number	of	pointers	in	each	node
� (Can	also	state	this	constraint	as	number	of	bytes	used)

� The	root	node	is	not	required	to	be	at	least	50%	full
� (Often	simply	don’t	have	enough	data	to	enforce	this.)

� Non-leaf	nodes	must	have	at	least	én/2ù pointers
� Must	contain	at	least	én/2ù – 1	keys
� e.g.	for	tree	with	n =	5:

� én/2ù =	3	ptrs and	2	keys,	minimum



20

Non-Full	B+-Tree	Nodes	(2)
� Leaf	nodes	always	use	Pn to	point	to	next	leaf-node…
� Don’t	count	this	“next	leaf-node”	pointer	in	the	
measure	of	whether	a	leaf	is	half-full
� Each	Pi points	to	a	row	with	value	Ki
� Must	have	at	least	é(n – 1)/2ù pointers	and	keys
� e.g.	tree	with	n =	4:

� é(n – 1)/2ù =	2	ptrs and	2	keys,	minimum



21

Example	B+-Tree
� Will	use	a	tree	with	low	n for	sake	of	simplicity

� Easy	to	comprehend
� Will	provoke	frequent	need	to	split	and	join	nodes

� A	simple	tree	with	n =	4:
� Non-leaf	nodes	must	have	at	least	2	pointers	and	1	key
� Leaf	nodes	must	have	at	least	2	pointers	and	2	keys

B+-tree
index
file

table
file

bib cat dot gut not off pit rat tin

dot off

vat yak zap

vat

rat



22

Example	B+-Tree	(2)
� Also	specify	that	search-key	values	are	unique

� Don’t	need	to	worry	about	runs	of	entries	with	the	same	
search-key	value.		(We’ll	handle	this	later.)

� Finally,	specify	that	this	is	a	dense	index
� Every	single	value	in	table	also	appears	in	the	index
� No	additional	search	needed	once	we	reach	leaf	record

bib cat dot gut not off pit rat tin

dot off

B+-tree
index
file

table
file

vat yak zap

vat

rat



23

B+-Trees:		Querying
� Look	up	the	record	with	the	search-key	value	V
� Given	the	value	V,	can	follow	tree	structure	to	find	the	
exact	leaf-node	where	V should	be	stored
� If	V isn’t	in	that	leaf	node,	then	V isn’t	in	the	index

bib cat dot gut not off pit rat tin

dot off

B+-tree
index
file

table
file

vat yak zap

vat

rat



24

B+-Trees:		Querying	(2)
� Navigate	non-leaf	nodes	separately	from	leaf-node
� Each	non-leaf	node	has	m pointers,	P1 .. Pm (1	<	m ≤	n)
� For	a	given	non-leaf	node,	start	with	i =	1:

� If	V <	Ki,	follow	pointer	Pi
� If	V =	Ki,	follow	pointer	Pi+1
� If	i +	1	<	m,	increment	i and	repeat;	otherwise	follow	Pm

bib cat dot gut not off pit rat tin

dot off

B+-tree
index
file

table
file

vat yak zap

vat

rat



25

B+-Trees:		Querying	(3)
� Once	we	reach	a	leaf	node,	it’s	easy
� Find	Ki that	equals	V;	Pi points	to	record	with	value	V
� If	node	doesn’t	contain	any	Ki that	equals	V,	then	the	
table	simply	doesn’t	contain	a	record	with	value	V
� Don’t	need	to	go	to	next	leaf-node,	or	anything	like	that

bib cat dot gut not off pit rat tin

dot off

B+-tree
index
file

table
file

vat yak zap

vat

rat



26

B+-Trees:		Querying	(4)
� Algorithm	to	find	record	with	search-key	value	V:

C =	root	node
while	C is	a	non-leaf	node:

m =	number	of	pointers	in	C;	i =	1
SearchNode:
if	V <	Ki then	set	C =	C.Pi
else	if	V =	Ki then	set	C =	C.Pi+1
else	if	i +	1	<	m then	i++;	goto SearchNode
else	set	C =	C.Pm

/*	Now,	C is	a	leaf	node	*/
Iterate	over	all	Ki in	leaf-node	C:
if	V =	Ki then	return	Pi

If	no	Ki found	then	return	null



27

“Go	Right	On	Equality!”
� For	non-leaf	nodes:

� All	pointers	Pi refer	to	other	B+-tree	nodes
� Structural	rules:

� P1 points	to	subtree	with	search-keys	in	range	[-∞,	K1)
� P2 points	to	subtree	with	search-keys	in	range	[K1,	K2)
� …

� Specifically,	if	we	are	looking	for	search-key	value	V:
� If	Ki =	V,	follow	pointer	to	the	right of	Ki
� Some	B+-tree	impls.	handle	this	case	by	going	left
� (Always	pay	attention	to	the	implementation	details…)

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…



28

B+-Trees:		Insertion
� Insertion	is	easy,	except	when	a	node	overflows

� Since	n is	generally	large,	overflows	occur	infrequently
� Simplest	case:		inserting	into	an	empty	B+-tree	index

� In	this	case,	the	root	node	will	also	be	a	leaf	node
� Example:		Insert	“cat”	into	empty	index

� Note	that	the	leaf-node	is	<	50%	full
� Simply	don’t	have	enough	data	to	satisfy	requirement
� Since	it’s	also	the	root	node,	we	don’t	mind

cat



29

B+-Trees:		Insertion	(2)
� Similarly,	inserting	other	records	into	a	single-node
B+-tree	is	easy,	as	long	as	there	is	room	in	the	node

� Example:		Insert	“bib”	into	our	index
� B+-tree	before	insertion:

� Must	keep	Ki values	in	increasing	order…
� Slide	“cat”	over	in	the	node,	to	make	room	for	“bib”

cat

bib cat



30

Splitting	the	Leaf-Node
� If	a	leaf	node	overflows,	must	split	it	into	two	nodes!
� Our	index	after	also	inserting	a	“gut”	record:

� Next	we	want	to	insert	“dot”,	but	there	isn’t	room
� Split	the	node	into	two	nodes
� Approx.	half	of	the	values	remain	in	left	node,	and	the	
rest	are	moved	to	the	right	node

� The	two	leaf-nodes	are	chained	together

bib cat gut

bib cat dot gut dot gutbib catsplit!



31

Splitting	the	Leaf-Node	(2)
� We	aren’t	done	yet…

� We	need	a	new	parent	node
to	reference	the	two	leaves

� Will	contain	one	key:		“dot”
� General	principle:

� When	a	node	is	split	into	two,	need	to	promote	the	new	
node’s	first	key-value	up	to	the	parent-node’s	table

� Note:		New	node	is	always	to	right	of	the	node	being	split
� If	there	isn’t	a	parent-node:

� The	root	node	is	being	split!
� Create	a	new	root	node,	and	increase	tree’s	depth	by	1

dot gutbib cat

dot



32

Insertion	Example,	Cont.
� Our	tree	after	also	inserting	“off”:

� Now,	want	to	insert	“pit”
� Again,	split	leaf	node	in	two,	and	divide	the	leaf’s	values	
across	the	two	nodes

� Promote	new	node’s	first	key-value	to	the	parent
� Result:

dot gut offbib cat

dot

dot gutbib cat

dot off

off pit



33

B+-Tree	Insertion	Algorithm
� Algorithm	is	generally	straightforward	to	implement
� When	splitting	a	leaf	node,	simplify	process	by	using	a	temp	
memory	area	T that	can	hold	overflowed	node’s	contents

� Example:		L is	a	full	leaf-node
� Want	to	add	key	K and	associated	record-pointer	P to	node	L

� Implementation:
� Copy	contents	of	L into	temporary	memory	block	T
� Insert	new	pair	K,	P into	T (it	can	hold	the	extra	record)
� Create	new	empty	leaf-node	L’
� Set	L’.Pn =	L.Pn,	and	set	L.Pn =	L’ (chain	leaves	together)
� Clear	L,	and	copy	P1,	K1 thru	Pén/2ù,	Kén/2ù from	T into	L
� Copy	Pén/2ù+1,	Kén/2ù+1 thru	Pn,	Kn from	T into	L’



34

B+-Tree	Insertion	Algorithm
insert(value K,	pointer	P):
if	tree	is	empty:
L =	new	empty	leaf	node

else:
L =	find	leaf	where	K should	go,

using	earlier	search	algorithm
if	L has	less	than	n – 1	keys:
insert_in_leaf(L,	K,	P)

else:
split	node	L into	L,	L’ using
mechanism	on	prev.	slide

K’ =	smallest	key	in	L’
insert_in_parent(L,	K’,	L’)

insert_in_leaf(node L,	value	K,	pointer	P):
if	K <	L.K1:
insert	P,	K into	L before	L.P1

else:
find	largest	Ki in	L less	than	K
insert	P,	K into	L after	L.Ki

insert_in_parent(node N,	value	K’,	node	N’):
if	N is	root	of	tree:
R =	new	empty	non-leaf	node
set	R contents	to	(N,	K’,	N’)
make	R the	new	root

else:
P =	parent(N)
if	P has	less	than	n pointers:
insert	(K’,	N’)	into	P,	just	after	N

else:
copy	P to	temporary	block	T
insert	(K’,	N’)	into	T,	just	after	N
create	new	node	P’ ;	clear	P
copy	P1,	K1 thru	Pén/2ù,	Kén/2ù from	T into	P
copy	Pén/2ù,	Kén/2ù thru	Pn,	Kn from	T into	P’
K’’ =	P’.K1
insert_in_parent(P,	K’’,	P’)



35

B+-Tree	Implementation	Details
� Several	additional	details	need	to	be	maintained

� e.g.	type	of	node	stored	in	each	page	(leaf/non-leaf/empty)
� Additionally,	need	to	keep	track	of	which	node	is	B+-tree’s	
root	node
� As	with	table	files,	can	store	such	details	in	page	0,	and	start	
the	actual	index	pages	with	page	1

� Seems	appealing	to	store	additional	structural	details	in
B+-tree	nodes
� The	node’s	parent,	siblings,	etc.
� Unfortunately,	dramatically	increases	number	of	nodes	that	
must	be	modified	when	manipulating	the	tree

� Added	complexity	of	using	this	simple	structure	is	less	costly	
than	the	additional	IOs	that	would	be	required	(!!!)



36

Implementation	Details	(2)
� Our	simple	B+-tree	example:

� Index	file	is	still	a	linear	sequence	of	pages
� Pages	in	data	file	are	in	order	of	addition	to	the	B+-tree…
� Over	time,	physical	page	order	in	data	file	will	deviate	
widely	from	logical	page	order	specified	by	the	index
� (particularly	the	sequential	traversal	part)

� Periodically	need	to	reorganize	index	pages	to	minimize	
number	of	disk	seeks	incurred	by	access/traversal

dot gutbib cat

dot off

off pit
1 2

3

4


