
CS122	– Lecture	9
Winter	Term,	2017-2018



2

Equivalent	Plans?
� Previously	had	this	query:

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� How	do	we	know	these	plans	are	actually	equivalent?

σ
t2.b	>	5

t1 t2

θ t1.a	=	t2.a

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

σ
t1.a	=	t2.a	∧ t2.b	>	5

t1 t2

θ true



3

Equivalent	Plans
� Two	plans	are	equivalent if	they	produce	the	same	
results	for	every	legal	database	instance
� A	“legal”	database	instance	satisfies	all	constraints

� Generally,	the	order	of	tuples	is	irrelevant
� If	sorting	is	not	specified	on	results,	two	equivalent	plans	
may	generate	results	in	different	orders

� Equivalence	rules specify	different	forms	of	an	
expression	that	are	equivalent
� Can	prove	that	these	rules	hold	for	all	legal	databases
� Can	use	them	to	transform	query	plans	into	equivalent	
(but	hopefully	faster)	plans



4

Simple	Equivalence	Rules
� Cascade	of	σ:

� σθ1∧θ2(E)	=	σθ1(σθ2(E))
� σ is	commutative:

� σθ1(σθ2(E))	=	σθ2(σθ1(E))
� Selections,	Cartesian	products,	and	theta-joins:

� σθ(E1	× E2)	=	E1				θ E2
� σθ1(E1	 θ2 E2)	=	E1				θ1∧θ2 E2

� Theta-joins	are	commutative:
� E1				θ E2	=	E2				θ E1



5

Theta	Join	Equivalence	Rules
� Natural	joins	are	associative:

� (E1				E2)				E3	=	E1				(E2				E3)
� Theta-joins	are	also	associative,	but	it’s	a	bit	trickier:

� (E1	 θ1 E2)				θ2∧θ3 E3	=	E1				θ1∧θ3 (E2				θ2 E3)
� θ1	only	refers	to	attributes	in	E1	and/or	E2
� θ2	only	refers	to	attributes	in	E2	and/or	E3
� θ3	only	refers	to	attributes	in	E1	and/or	E3
� Any	of	these	conditions	might	also	simply	be	true



6

Theta	Join	Equivalence	Rules	(2)
� Can	sometimes	distribute	selects	over	theta-joins:

� σθ1(E1	 θ E2)	=	σθ1(E1)				θ E2
� θ1	only	refers	to	attributes	in	E1

� σθ1∧θ2(E1				θ E2)	=	σθ1(E1)				θ σθ2(E2)
� θ1	only	refers	to	attributes	in	E1
� θ2	only	refers	to	attributes	in	E2



7

Equivalence	Rules
� Many other	equivalence	rules	besides	these

� Cover	grouping,	projects,	outer	joins,	set	operations,	
duplicate	elimination,	sorting,	etc.

� Grouping:		σθ(AGF(E))	is	equivalent	to	AGF(σθ(E))
� …as	long	as	θ only	involves	attributes	in	A!

� Outer	joins:		σθ(E1					E2)	is	equivalent	to	σθ(E1)					E2
� θ only	involves	attributes	in	E1



8

Equivalence	Rules
� Equivalence	rules	allow	us	to	transform	plans,	and	
know	the	results	will	not	change:

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

σ
t1.a	=	t2.a	∧ t2.b	>	5

t1 t2

θ true

σθ(E1	× E2)	=	E1				θ E2

σθ2(E1				θ E2)	=	E1				θ (σθ2(E2))

σ
t2.b	>	5

t1 t2

θ t1.a	=	t2.a



9

Outer	Join	Transformations
� Need	to	be	very	careful	transforming	outer	joins:

� Obviously	correct	equivalences	for	natural	joins	/	theta	
joins	don’t	necessarily	hold	for	outer	joins!

� Is	σθ(E1					E2)	equivalent	to	E1					σθ(E2)?
� θ only	uses	attributes	in	E2
� These	are	not equivalent.		Example:

� r(A,	B)	with	one	row	{	(1,	2)	}
� s(B,	C)	with	one	row	{	(2,	3)	}
� θ is	C	=	1
� σC=1(r					s)	=	{	}	(empty	relation),	but	r					σC=1(s)	=	{	(1,	2,	null)	}



10

Outer	Join	Transformations	(2)
� Need	to	be	very	careful	transforming	outer	joins:

� Obviously	correct	equivalences	for	natural	joins	/	theta	
joins	don’t	necessarily	hold	for	outer	joins!

� Is	(E1					E2)					E3	equivalent	to	E1					(E2					E3)?
� These	are	not equivalent.		Example:

� r(A,	B)	with	one	row	{	(1,	2)	}
� s(A,	C)	with	one	row	{	(2,	3)	}
� t(A,	D)	with	one	row	{	(1,	4)	}
� (r					s)					t	=	{	(1,	2,	null)	}					t	=	{	(1,	2,	null,	4)	}
� r					(s					t)	=	r					{	(2,	3,	null)	}	=	{	(1,	2,	null,	null)	}



11

Query	Plan	Optimization
� Generally	understand	how	to	map	SQL	queries	to	plans

� Ignoring	subqueries	in	SELECT	and	WHERE	clauses	for	
the	time	being…

� Understand	how	to	implement	basic	plan	nodes
� Still	a	lot	of	optimizations	to	cover	though…

� A	query	can	be	evaluated	by	many	different	plans…
� How	do	we	find	an	optimal plan	to	evaluate	a	query?

� Many	different	approaches
� All depend	on	equivalence	rules	to	guide	generation	of	
equivalent	plans



12

Heuristic	Plan	Optimization
� Can	transform	plans	purely	based	on	heuristics

� Guidelines	for	what	plans	will	generally	be	“better”
� Uses	equivalence	rules,	but	no	plan	costing!

� Example:		“Perform	selects	as	early	as	possible!”
� Would	properly	handle	our	previous	example:

� Push	predicates	down	the	plan-tree	as	far	as	possible

σ
t1.a	=	t2.a	∧ t2.b	>	5

t1 t2

θ true

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

Perform selects as
early as possible!



13

Heuristic	Plan	Optimization	(2)
� Unfortunately,	heuristics	don’t	always	work

� Scenario:
� t1	is	a	small	table
� t2	is	very	large,	and	has	an	index	on	a,	but	no index	on	b!
� If	t2.b	>	5	is	applied	first,	join	can’t	use	t2’s	index	to	find	rows

� Would	greatly improve	join	performance	in	this	case
� Would	likely	be	faster	to	perform	σt2.b>5(…)	last,	in	this	case!

σ
t1.a	=	t2.a	∧ t2.b	>	5

t1 t2

θ true

t1 t2

θ t1.a	=	t2.a

t2.b	>	5

Perform selects as
early as possible!



14

Cost-Based	Plan	Optimization
� Clearly	gain	a	benefit	from	estimating	a	plan’s	cost

� Gives	us	feedback	about	whether	an	alternative	is	
actually	likely	to	be	better

� Cost-based	optimizers explore	query	plan	space,	and	
choose	the	“best”	one	based	on	the	estimated	cost

� Could	exhaustively	enumerate	all equivalent	plans…
� Assign	each	plan	a	cost,	and	choose	the	best	one!

� Unfortunately,	plan	space	is	often	extremely	large
� Just	picking	a	join	ordering	produces	many options…



15

Example:		Join	Ordering
� Given	n	relations	to	join:		r1,	r2,	…,	rn

� Join	is	a	binary	operation
� r1 r2 may	have	a	different	cost	than	r2 r1
� Produces	(2(n	– 1))!	/	(n	– 1)!	different	orderings!

� (See	Practice	Exercise	13.10	in	textbook	for	details.)

n	=	3 12	orderings
n	=	4 120	orderings
n	=	5 1,680	orderings!
n	=	6 30,240	orderings!!
n	=	7 665,280	orderings!!!



16

Exhaustive	Plan	Enumeration
� Pursuing	this	strategy	requires	careful	implementation
� Must	represent	plans	in	a	very	space-efficient	manner

� E.g.	memoize	subplans,	so	that	common	subplans	are	
represented	in	memory	only	once

� Some	query	planners	use	exhaustive	plan	enumeration
� Volcano	and	Cascades	projects	used	this	approach
� SQLServer’s	optimizer	is	based	on	these	projects



17

Guided	Plan	Enumeration
� Most	query	planners	are	satisfied	with	any	good	plan

� “Don’t	let	the	perfect	become	the	enemy	of	the	good.”
� Constrain	the	plan	search-space	in	various	ways
� E.g.	some	planners	only	consider	left-deep	join	trees

� For	n tables,	only	have	n!	join	orders	to	consider
� Is	also	very	friendly	to	pipelined	evaluation

� e.g.	nested	loops	don’t	have	a	whole	subplan
to	evaluate	over	and	over,	for	inner	relation

� Rely	more	on	higher-level	heuristics
� Don’t	just	repeatedly	apply	fine-grained
equivalence	rules

t1 t2

t3

t4

t5



18

Guided	Plan	Enumeration	(2)
� Many	queries	involve	joins	of	multiple	tables

� (Also,	subqueries	in	SELECT	and	WHERE	can	often	be	
transformed	into	joins.)

� A	common	(non-exhaustive)	optimization	strategy:
� Perform	high-level	transformations	at	SQL	AST	level

� Flattening	subqueries	into	a	larger	top-level	query	with	joins
� Apply	heuristics	based	on	strategies	that	generally	
improve	query	performance

� Focus	specifically	on	choosing	a	good	join	order
� Use	plan	costing	to	evaluate	whether	alternatives	are	
actually	better!



19

Bottom-Up:	Dynamic	Programming
� Can	enumerate	plans	in	a	bottom-up approach,	or	a
top-down approach

� Example:		bottom-up	approach
� Use	dynamic	programming	to	search	the	plan-space
� Decompose	plan	into	smallest	subplans;	choose	“best”	
implementation	for	each	subplan,	and	record	its	cost

� When	building	up	larger	subplans,	reuse	earlier	work:	
simply	choose	“best”	way	to	combine	earlier	subplans

� Usually	produces	very good	plans	but	not	always	the	best
� Can’t	take	advantage	of	higher-level,	whole-plan	optimizations



20

Top-Down:		Branch	and	Bound
� Example:		top-down	approach

� Use	branch-and-bound	strategy
� Generate	a	“good”	query	plan	using	heuristics,	then	
compute	its	cost	C

� Use	C	as	an	upper	bound	for	plans	we	will	consider
� When	applying	transformations,	immediately	discard	any	plan	
with	a	cost	larger	than	C

� If	we	find	a	plan	with	a	lower	cost,	lower	C	to	the	new	cost
� Upper-bound	cost	C	can	guide	when	to	stop	optimizing

� If	C	is	still	really	large,	keep	looking	for	better	plans…
� If	C	is	small,	additional	effort	is	probably	unnecessary



21

Optimizing	Join	Order
� Given:		r1				r2				r3				r4				r5

� Need	to	devise	the	optimal	join	order	(along	with	the	
optimal	join	algorithms,	access	paths,	etc.)

� For	n =	5,	there	are	1680	different	join	orderings
� Assume	we	know	the	optimal	join	order	for	r1				r2				r3
� Want	to	know	optimal	order	for	(r1				r2				r3)				r4				r5

� Really	don’t	need	to	keep	figuring	out	the	optimal	order	
for	r1				r2				r3	over	and	over	again…

� Just	reuse	the	subplan	and	associated	cost	already	
computed	for	r1				r2				r3,	when	trying	orders	with	r4,	r5



22

Bottom-Up	Join	Optimizer
� Finding	join	order	with	dynamic	programming:
� Step	1:

� Determine	optimal	way	to	access	each	relation	directly	
(including	index	optimizations	based	on	predicates,	etc.)

� Compute	a	cost	for	each	access
� Step	2:

� Determine	optimal	way	to	join	each	pair	of	relations,	using	
results	computed	in	step	1,	along	with	the	computed	costs

� Step	3…N:
� Repeat,	adding	another	relation	at	each	step,	reusing	earlier	
results,	until	optimal	way	to	join	all	N	relations	is	found



23

Left-Deep	Join	Orders
� Some	databases	limit	join	ordering	to	left-deep	orders

� Reduces	total	number	of	join	orders	down	to	n!
� Facilitates	pipelining	(particularly	if	stuck	with	nested-
loops	join)

� Easy	to	constrain	bottom-up	algorithm	to	only
explore	left-deep	join	orders:
� When	adding	another	relation	to	a	subplan,
always	add	it	on	right	side	of	the	new	join
operation,	with	subplan	the	on	left	side

t1 t2

t3

t4

t5



24

Top-Down	Join	Optimizer
� Another	version	of	the	same	algorithm,	written	in	a	more	“top-down”	style:		
(Database	System	Concepts,	6ed,	p.600)
/*	S	is	a	set	of	relations	to	join	*/
procedure FindBestPlan(S)

if (bestplan[S].cost	≠	∞) /*	best	plan	is	already	computed	*/
return bestplan[S]

if (S	contains	only	1	relation)
set	bestplan[S].plan,	bestplan[S].cost	based	on	best	way	of	accessing	S

else
set	bestplan[S].cost	=	∞
for	each non-empty	proper	subset	S1	of	S

P1	=	FindBestPlan(S1)
P2	=	FindBestPlan(S	– S1)
A	=	best	algorithm	for	joining	results	of	P1	and	P2
cost	=	P1.cost	+	P2.cost	+	cost	of	A
if (cost	<	bestplan[S].cost)

bestplan[S].cost	=	cost
bestplan[S].plan	=	join	P1	and	P2	using	algorithm	A

return bestplan[S]



25

Top-Down	Join	Optimizer	(2)
� Can	constrain	this	to	only	produce	left-deep	join	trees

� Instead	of	enumerating	all	subsets	of	S,	choose	one	
relation	r for	right	subplan,	and	S – r for	left	subplan

� Enumerating	subsets	at	each	level	is	repetitive	and	
uses	extra	memory
� Could	modify	the	implementation	to	memoize results



26

Improving	the	Join	Optimizer…
� This	optimization	approach	doesn’t	always	produce	the	
best	join	order
� At	each	step,	we	only	keep	the	optimal solution	we	find
� The	lowest-cost	solution	to	a	subproblem	may	force	
more	costly	operations	higher	up	in	the	plan-tree

� Selinger-style	plan	optimization:
� Besides	keeping	lowest-cost	solution	for	each	problem,	
also	keep	solutions	that	produce	“interesting	orders”

� Sometimes,	a	higher-level	operation	can	use	the	slightly	
costlier	ordered	result	to	reduce	overall	costs



27

Selinger-Style	Optimization
� Selinger-style	plan	optimization

� Uses	dynamic	programming	to	generate	plans…
� Also	keep	more	expensive	subplans	that	produce	results	
in	“interesting	orders”
� Subplans	that	are	slower	than	the	fastest	one	found,	but	that	
produce	results	in	possibly	useful	orderings

� e.g.	subplans	whose	results	are	ordered	on	the	same	attributes	
as	a	higher-level	ORDER	BY	operation

� e.g.	subplans	whose	results	are	ordered	on	the	same	attributes	
as	a	higher-level	join	operation

� Can	take	advantage	of	higher-level	optimizations	than	
simple	dynamic	programming



28

Selinger-Style	Optimization	(2)
� Named	after	Pamela	Selinger

� Worked	on	planner/optimizer	for	System	R
� Helped	to	develop	many	of	the	plan-costing	approaches	
used	in	most	databases	today

� System	R	was	an	early	relational	database	research	
project	at	IBM

� Many	critical	accomplishments:
� System	R’s	SEQUEL	language	is	the	basis	of	our	SQL
� Use	of	plan-costing	estimates	and	dynamic	programming	
in	plan	optimization

� Demonstrated	the	feasibility	of	transaction	processing



29

System-R	Join	Optimizer
� Slightly	altered	version	of	bottom-up	approach:
� For	each	available	ordering	of	results,	record	the	optimal	
plan	that	produces	that	result-order

� Also	record	optimal	plan	that	produces	unordered	results
� …unless	an	ordered	result’s	cost	is	already	lower	than	this!

� Step	1:
� For	each	relation:

� Examine	indexes	to	determine	what	result-orderings	are	available
� For	each	possible	result-ordering,	determine	the	optimal	plan	for	
accessing	the	relation	(also	applying	relevant	predicates,	etc.)

� Also	determine	optimal	plan	for	unordered	access.		If	this	is	costlier	
than	some	ordered	result,	discard	this	plan.



30

System-R	Join	Optimizer	(2)
� Step	2:

� Again,	compute	optimal	plans	to	join	pairs	of	relations
� Given	two	relations	r1	and	r2:

� Consider	all	plans	for	joining	r1	and	r2,	based	on	Step	1	results
� Some	of	these	plans	will	also	produce	ordered	results
� Partition	plans	into	groups	based	on	their	join	orderings,	and	save	
optimal	plan	for	each	join	order

� Discard	the	unordered	plan	if	some	ordered	plan	is	more	efficient
� Continue	this	process	until	all	N	relations	are	joined

� Join	planner	may	produce	multiple	ways	to	join	input	tables
� Query	planner	can	choose	a	join-plan	based	on	overall	query	
requirements	(e.g.	top-level	ORDER	BY	or	GROUP	BY	clause)



31

System-R	Join	Optimizer	(3)
� Usually	aren’t	thatmany	interesting	orders	to	consider

� Tables	might	have	1-3	indexes,	only	a	few	of	which	are	
relevant	for	each	join	operation	being	considered

� Considering	result-orderings	doesn’t	add	substantial	
memory	overhead	to	the	join	optimizer

� Can	really	improve	optimizer	results	in	cases	where	the	
result-ordering	can	be	leveraged	for	faster	queries


