Relational Database

System Implementatlon

/ M
Alternative Plans

» Earlier, saw three plans for a query:
e SELECT * FROM t1, t2 WHERE tl.a =t2.a AND t2.b > 5;

tla=t2.a A\ t2.b>5

tl.a=t2.a

true

* Two questions:
e How do we know which plan is best?
e How do we know the plans are actually equivalent?

Plan Costing

* Can devise ways of measuring costs of different plans

® Basic measurements:

e Number of rows generated by each plan-node

e Number of disk-accesses performed by each plan-node
®* More advanced measures:

e CPU/memory usage, avg size of each row in bytes, etc.

tla=t2.a AN t2.b>5

tl.a=t2.a

true

Plan Costing (2)

Example: 0,.:(t2)

e Given: t2 is a heap file, with no indexes on b
How many disk blocks are accessed?

e Every disk block in t2 =t]

How many rows will be produced?
o 77?7

tl.a=t2.a

If we knew the minimum and maximum values for t2.b:

e Assume: b is uniformly distributed
e Guess: #rowsint2 x (b, ,,—5) / (Dg =D

min)

If we had a histogram for t2.b’s values, could make a much
better guess!

Plan Costing Goals (ldeal)

Estimates should be as accurate as possible
Estimates should be easy to compute

Estimates are logically consistent

e Estimated statistics for a query shouldn’t vary in
abnormal ways, based on how the query is computed

e SELECT * FROM t1, t2 WHERE tl.a = t2.a AND t2.b > 5;

 Ideally, estimates of how many tuples are produced by each
plan will be roughly the same

tla=t2.a AN t2.b>5

tl.a=t2.a

true

: /
N/

Plan Costing Goals (Reality)

Goals of plan costing:
e Estimates should be as accurate as possible
e Estimates should be easy to compute

e Estimates are logically consistent

Unfortunately, very hard to achieve in practice

All we really require:
e Faster plans end up with lower cost than slower ones

e

Plan Costing and Statistics

To make effective cost estimates, the database must
keep statistics on values that appear in each table

Generally, statistics are very expensive to compute...

e Databases generally don’t keep these stats up to date

e Some update stats when # of rows in a table changes
substantially; others require manual updating of stats

The statistics don't need to be perfect!
 Just need to be good enough to guide optimization phase

But, if stats are very different from actual table data,
generated plans are likely to be horrible.

8/\\//

i

Table Statistics

Some useful statistics to keep per table:
e n.-the number of tuples in table r
e b.—the number of blocks containing tuples in r

« For heap files, will be very close to total # of blocks in file
« For sequential and hashing files, may be very different

e [—the average size of a tuple in r, in bytes

e f. —the blocking factor of table r
« The average number of tuples in r that fit in one block
« Generally, b, = ceiling(n, / f,)

i

Table Statistics (2)

More useful statistics:

e V(4, r) - the number of distinct values of attribute A that
appear in table r

e min(4, r) - the minimum value of attribute A in table r
e max(4, r) - the maximum value of attribute A in table r

Provide an operation to compute/update these stats
for a given table

e Expose it as a command, and/or update automatically
e e.g. ANALYZE TABLE t;

/\\/

Select Costs

o(r)
Estimate number of rows produced n,=n, x P(9)
e P(0) is the selectivity of the predicate
e i.e. the likelihood that a tuple will satisfy the predicate

Simply need to estimate the selectivity of the predicate,
then we can estimate the number of rows produced

For now, assume that r is a heap file
e Select operation will [almost] always read all blocks in r
e (Other file organizations and indexes change this...)

/\/

Selectivity of Simple Predicates

GASV(r)

e Without a histogram, use minimum/maximum values for
A to estimate selectivity

If v<min(4, r):

e P(Asv) =0
If v>max(4,r):
e P(Asv) =1

If min(4, r) < v <max(4, r):
e P(A<v) = (v-min(4,r)) / (max(4, r) - min(4, r))
O 4-,(r) is similar

/\/

Selectivity of Simple Predicates (2)

0 4-,(7)
e Assume uniform distribution of different values of A
e Estimate P(A=v)tobe 1 /V(A4,r)
e Estimaten_,=n,/V(4,r)
What if A is a primary key for r?
e In that case, V(4, r) will be n,
e P(A=v) willbe 1 / n, and n_, will be 1

/\/

Selectivity of Simple Predicates (3)

GA=v(r)

If A is a primary key for r, can also improve file-scan
performance:

e Each value of A can only appear once...
e Stop scanning r when we find the specified row
e Average-case block-reads = b, / 2; worst-case = b,

/\/

Selectivity of Simple Predicates (4)

For inverse of these predicates: 6,.,(r), 04.,(r)
e Simply compute selectivity as 1 - P(A<v) or 1 - P(4A=v)
Boolean negation can be handled in similar way:

* 0.9(r)
e Simple: P(=0) =1 - P(9)

15 /
/\\/
=

Complex Selects

If a predicate includes multiple conditions, estimate
selectivities of the components, then combine
Conjunctive selections: ogy g, 4 (7)
e Assumption: conditions are independent of each other
e P(B1 AB2 A ..)=P(01) x P(62) x P(...)
Disjunctive selections: o4, 4,y (1)
e Again, compute selectivities of components

e P(61 Vv 02V ..) =probability that a tuple satisfies at least
one condition = 1 - probability it satisfies none of them

e P(1VO2V.)=1-(1-P(01))x(1-P(62)) % ...

/\\/

i

Estimating Selectivity

One major assumption here:

e Conditions involve simple comparisons between an attribute
and a constant

Frequently not true!
e SELECT * FROM employees WHERE salary * 1.05 > 100000;

e DELETE FROM employees
WHERE compute_popularity(emp_id) < 20;

In simpler cases, can analyze expression to make estimate

For more difficult situations, use default selectivities, e.g.

e 1/2 when it’s expected to be “common” for tuples to satisfy
the condition

e 1/3 or 1/4 when it’s expected to be “uncommon” or “rare”

N/

i

Selection Against Subplans

Previous examples were all against a relation r
e We had statistics for r!

Plans often contain selections against subplans

Need to estimate the statistics of a plan-node’s result
as well, if higher-level cost estimates will be useful

Most difficult are V(4, r), min(4, r), and max(A4, r)
[f selection involves an equality: o,_,(r)
: V(A' GA=V) - 1

e min(4, 0,.,) =max(4,0,.,) =V

8 /
N/

Selection Against Subplans (2)

If selection involves a comparison: o,_,(r)
e Assume min(A4,r) <v<max(4,r)
e min(4, o,.,) = min(4, r)
e max(A4, o,.,) =V

e Estimate V(4, 0,.,)
=V(4,r) x (v-min(4, r)) / (max(4, r) - min(4, r))
=V(4,r) x P(A<v)

In general, if B is A op v:
e op is some inequality comparison: <><2>#
e Estimate V(4, oy) = V(4, r) x P(9)

N/

i

Selection Against Subplans (3)

If predicate 0 forces A to take on a set of values:
o« SELECT * FROM schedule WHERE hour = 3 OR hour = 4;

« SELECT * FROM shapes
WHERE color IN ('red’, 'orange’, 'yellow');

e V(4, 0y) = number of values in the predicate
e Can compute min(4, oy), max(4, oy) from these as well

If none of these situations occur:
e Assume V(A4, oy), min(4, oy), max(4, o,) are independent
of selection criteria!
e Set V(4, oy) to min(V(4, r), n,)
 # of distinct values for A is capped by # of rows produced by o

N/
=

Join Costs

Several important costs to estimate for joins
e Number of rows produced by the join operation
e Number of disk I0s performed by the join operation

Second value is harder to estimate, primarily due to the
buffer manager, but still critical to estimate

Example: nested loop join (no optimizations)
e Worst case (unlikely): b, + n, x b, block reads
e Best case (inner table fits in memory): b, + b, reads

Disk 10 estimate is very approximate, and depends on
the specific join implementation being used

/\\/
=

Join Costs (2)

For now, focus on the number of rows produced

Cartesian product: rx s
e Every row in table ris joined to every row in table s
2 anS = nr = nS
e Average tuple length [, .=1 +
Theta join: r g s
e Can model as oy(r x s); compute estimates as for oy(...)

e Big problem: our cost estimates are most accurate when
comparing attributes to constants!

e Join predicates usually compare attributes to attributes

N/

e

Join Costs (3)

To compute proper join estimates, need to look at the

attributes being compared
For theta-join r i, 4_, 4 S:
e [fr.Ais akey forr:
« Each tuple in s will join with at most one tuple in r
- Estimate number of tuples in result n,, = n,
e Similarly, if s.A is a key for s:
« Each tuple in r will join with at most one tuple in s
- Estimate n, = n,

e [f both are keys for their respective tables:
4 nrpqs = min(nr' ns)

23 /
/\\/
il

Join Costs (4)

For theta-join r i, 4_, 4 S:

e If neither r.A nor s.A is a key for its respective table:
« Assume that 4 is uniformly distributed in both rand s
« (Note: ignoring min/max stats for these estimates)

e Given a specific tuple ¢, in r, estimate thatn, / V(4, s)
tuples in s will join with that tuple
» n, x probability that a given tuple ¢, in s will have value ¢,.4
 Suggests thatn, =n.xn,/V(4,s)

e But, given a specific tuple ¢, in s, estimate n,. / V(A4, r)
tuples in r will join with that tuple
» Suggests thatn, =n,xn,/V(4,r)

N/

e

Join Costs (5)

For theta-join r i, 4_, 4 S:

e Two estimates for number of rows produced:
e n,.=n.xn,/V(4,s) (from perspective of tuples in r)
e n,,=n;xn./V(A,r) (from perspective of tuples in s)
e [fV(A,r)<V(4,s):
« Expect that more tuples in s will not join with any tuple in r
« Use estimate basedonr: n,, .,=n.xn,/V(4,s)

 Similarly, if V(4, r) > V(4, s), more tuples in r will be left out
e [fV(A,r) #V(4, s), choose the larger of V(4, r), V(4, s)
e Estimaten, .=n,.xn,/ max(V(4,r), V(4,s))

25 /
/\\/
=

Join Costs (6)

Can extend these estimates to joins with multiple conjuncts

For theta-join r X, y_c 4 r rp=s5 S
e Checkif (r.4, r.B) or any proper subset is a key for r
e Checkif (s.4, s.B) or any proper subset is a key for s
e [f so, compute estimates as before

[f attributes are not keys for r or s:

e Again, assume the conditions are independent of each other

e P(r.A=s.A Ar.B=s.B) = P(r.A=s.A) x P(r.B=s.B)
=1/ (max(V(4,r),V(4,s)) xmax(V(B, r), V(B, s)))

e n..=n.xn./(max(V(4,r), V(4,s)) x max(V(B,r), V(B,s)))

26 /
/\\/
=

Outer Join Costs

Can use very simple estimates for outer joins

e Again, only using number of distinct values; not using
min/max to further refine statistics

Left outer join: n..=n..+n,
Right outer join: n, _,=n, +n,
Full outer join: N, ¢=N. ¢ +Nn.+n

These estimates are almost certainly much higher than
actual row-counts will be, but they are an upper bound
e ...and they are fast to compute.

e Could devise a better estimate, but really want to move to
better stats (e.g. storing histograms) to make it worthwhile

/\\/

i

Other Plan Nodes

Project: II (r)
[1,(r), where A is a simple column-reference
* ny = n, (no duplicate-elimination in SQL!)
e V(A IT,) =V(A, 1)
e Similarly, min/max don’t change
[I;(r), where E is an expression possibly with functions
e Again,np=n,
e For V(E, II;)/min(E, I[1;)/max(E, Il;), no idea! Either
need to guess, or we need more knowledge about E.
« E.g.just guess V(E, II¢) = np

/\\/

i

Other Plan Nodes (2)

Grouping/aggregation: ;¢ Gg1 o, (1)
e (i can be either column-references or expressions

e Ei can be simple aggregate function calls, or more
advanced expressions involving aggregate functions

 SELECT SUM(CASE WHEN a <b THEN 1 ELSE 0 END) FROM t;
« SELECT MIN(a) + MAX(b) FROM t;
For simple column-references in grouping attributes:
* ng=V(G1,1r) xV(G2, 1) x ...
e V(G1, G) = V(G1, r), etc.

N/

e

Other Plan Nodes (3)

yunn

For simple column-references and simple aggregates:

e Guess COUNT(A), SUM(A), AVG(A) will produce different
values for each group. e.g. V(COUNT(A), G) = ng

Can be a bit more clever with MIN(A) and MAX(A)
e Could guess V(MIN(A), G) = ng as before

e Note that MIN(A)/MAX(A) will always select an existing
value of A from input relation

e Abetter guess: V(MIN(A), G) = min(V(A, r), ng)

30 | /
N/

e

Summary — Plan Costing

Plan costing is a very imprecise process
e Almost certainly inaccurate, except in very simple cases
e Hopefully estimates are “good enough” to guide plan selection

e (Most databases provide ways to give the optimizer hints about
plan optimization.)

These estimates are simply one way of estimating costs

e Different assumptions, or different kinds of statistics, will
produce different costing estimates

Still, an essential part of query planning!

e Collecting useful table stats, then making reasonably accurate
estimates from them, greatly improves DB query performance

e (Becomes very obvious when table stats are inaccurate...)

