
CS122	– Lecture	8
Winter	Term,	2017-2018



2

Alternative	Plans
� Earlier,	saw	three	plans	for	a	query:

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� Two	questions:
� How	do	we	know	which	plan	is	best?
� How	do	we	know	the	plans	are	actually	equivalent?

σ
t2.b >	5

t1 t2

θ t1.a =	t2.a

t1 t2

θ t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a∧ t2.b >	5

t1 t2

θ true



3

Plan	Costing
� Can	devise	ways	of	measuring	costs	of	different	plans
� Basic	measurements:

� Number	of	rows	generated	by	each	plan-node
� Number	of	disk-accesses	performed	by	each	plan-node

� More	advanced	measures:
� CPU/memory	usage,	avg size	of	each	row	in	bytes,	etc.

σ
t2.b >	5

t1 t2

θ t1.a =	t2.a

t1 t2

θ t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a∧ t2.b >	5

t1 t2

θ true



4

Plan	Costing	(2)
� Example:		σb>5(t2)

� Given:		t2	is	a	heap	file,	with	no	indexes	on	b
� How	many	disk	blocks	are	accessed?

� Every	disk	block	in	t2
� How	many	rows	will	be	produced?

� ???
� If	we	knew	the	minimum	and	maximum	values	for	t2.b:

� Assume:		b is	uniformly	distributed
� Guess:		#	rows	in	t2	× (bmax – 5)	/	(bmax – bmin)

� If	we	had	a	histogram	for	t2.b’s	values,	could	make	a	much
better	guess!

t1 t2

θ t1.a =	t2.a

t2.b >	5



5

Plan	Costing	Goals	(Ideal)
� Estimates	should	be	as	accurate	as	possible
� Estimates	should	be	easy	to	compute
� Estimates	are	logically	consistent

� Estimated	statistics	for	a	query	shouldn’t	vary	in	
abnormal	ways,	based	on	how	the	query	is	computed

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;
� Ideally,	estimates	of	how	many	tuples	are	produced	by	each	
plan	will	be	roughly	the	same

σ
t2.b >	5

t1 t2

θ t1.a =	t2.a

t1 t2

θ t1.a =	t2.a

t2.b >	5

σ
t1.a =	t2.a∧ t2.b >	5

t1 t2

θ true



6

Plan	Costing	Goals	(Reality)
� Goals	of	plan	costing:

� Estimates	should	be	as	accurate	as	possible
� Estimates	should	be	easy	to	compute
� Estimates	are	logically	consistent

� Unfortunately,	very	hard	to	achieve	in	practice

� All	we	really require:
� Faster	plans	end	up	with	lower	cost	than	slower	ones



7

Plan	Costing	and	Statistics
� To	make	effective	cost	estimates,	the	database	must	
keep	statistics	on	values	that	appear	in	each	table

� Generally,	statistics	are	very	expensive	to	compute…
� Databases	generally	don’t	keep	these	stats	up	to	date
� Some	update	stats	when	#	of	rows	in	a	table	changes	
substantially;	others	require	manual	updating	of	stats

� The	statistics	don’t	need	to	be	perfect!
� Just	need	to	be	good	enough	to	guide	optimization	phase

� But,	if	stats	are	very	different	from	actual	table	data,	
generated	plans	are	likely	to	be	horrible.



8

Table	Statistics
� Some	useful	statistics	to	keep	per	table:

� nr – the	number	of	tuples	in	table	r
� br – the	number	of	blocks	containing	tuples	in	r

� For	heap	files,	will	be	very	close	to	total	#	of	blocks	in	file
� For	sequential	and	hashing	files,	may	be	very	different

� lr – the	average	size	of	a	tuple	in	r,	in	bytes
� fr – the	blocking	factor	of	table	r

� The	average	number	of	tuples	in	r that	fit	in	one	block
� Generally,	br ≈	ceiling(nr /	fr)



9

Table	Statistics	(2)
� More	useful	statistics:

� V(A,	r)	– the	number	of	distinct	values	of	attribute	A that	
appear	in	table	r

� min(A,	r)	– the	minimum	value	of	attribute	A in	table	r
� max(A,	r)	– the	maximum	value	of	attribute	A in	table	r

� Provide	an	operation	to	compute/update	these	stats	
for	a	given	table
� Expose	it	as	a	command,	and/or	update	automatically
� e.g.	ANALYZE TABLE t;



10

Select	Costs
� σθ(r)
� Estimate	number	of	rows	produced	nσ =	nr × P(θ)

� P(θ)	is	the	selectivity of	the	predicate
� i.e.	the	likelihood	that	a	tuple	will	satisfy	the	predicate

� Simply	need	to	estimate	the	selectivity	of	the	predicate,	
then	we	can	estimate	the	number	of	rows	produced

� For	now,	assume	that	r is	a	heap	file
� Select	operation	will	[almost]	always	read	all	blocks	in	r
� (Other	file	organizations	and	indexes	change	this…)



11

Selectivity	of	Simple	Predicates
� σA≤v(r)

� Without	a	histogram,	use	minimum/maximum	values	for	
A to	estimate	selectivity

� If	v <	min(A,	r):
� P(A≤v)	=	0

� If	v >	max(A,	r):
� P(A≤v)	=	1

� If	min(A,	r)	≤	v ≤	max(A,	r):
� P(A≤v)	=	(v – min(A,	r))	/	(max(A,	r)	– min(A,	r))

� σA≥v(r)	is	similar



12

Selectivity	of	Simple	Predicates	(2)
� σA=v(r)

� Assume	uniform	distribution	of	different	values	of	A
� Estimate	P(A=v)	to	be	1	/	V(A,	r)
� Estimate	nσ =	nr /	V(A,	r)

� What	if	A is	a	primary	key	for	r ?
� In	that	case,	V(A,	r)	will	be	nr
� P(A=v)	will	be	1	/	nr,	and	nσ will	be	1



13

Selectivity	of	Simple	Predicates	(3)
� σA=v(r)

� If	A is	a	primary	key	for	r,	can	also	improve	file-scan	
performance:
� Each	value	of	A can	only	appear	once…
� Stop	scanning	rwhen	we	find	the	specified	row
� Average-case	block-reads	=	br /	2;	worst-case	=	br



14

Selectivity	of	Simple	Predicates	(4)
� For	inverse	of	these	predicates:		σA>v(r),	σA≠v(r)

� Simply	compute	selectivity	as	1	– P(A≤v)	or	1	– P(A=v)
� Boolean	negation	can	be	handled	in	similar	way:

� σ¬θ(r)
� Simple:		P(¬θ)	=	1	– P(θ)



15

Complex	Selects
� If	a	predicate	includes	multiple	conditions,	estimate	
selectivities	of	the	components,	then	combine

� Conjunctive	selections:		σθ1	∧	θ2	∧	…(r)
� Assumption:		conditions	are	independent	of	each	other
� P(θ1	∧	θ2	∧	…)	=	P(θ1)	× P(θ2)	× P(…)

� Disjunctive	selections:		σθ1	∨	θ2	∨	…(r)
� Again,	compute	selectivities	of	components
� P(θ1	∨	θ2	∨	…)	=	probability	that	a	tuple	satisfies	at	least	
one	condition	=	1	– probability	it	satisfies	none of	them

� P(θ1	∨	θ2	∨	…)	=	1	– (1	– P(θ1))	× (1	– P(θ2))	× …



16

Estimating	Selectivity
� One	major	assumption	here:

� Conditions	involve	simple	comparisons	between	an	attribute	
and	a	constant

� Frequently	not	true!
� SELECT	*	FROM	employees	WHERE	salary	*	1.05	>	100000;
� DELETE	FROM	employees
WHERE	compute_popularity(emp_id)	<	20;

� In	simpler	cases,	can	analyze	expression	to	make	estimate
� For	more	difficult	situations,	use	default	selectivities,	e.g.

� 1/2	when	it’s	expected	to	be	“common”	for	tuples	to	satisfy	
the	condition

� 1/3	or	1/4	when	it’s	expected	to	be	“uncommon”	or	“rare”



17

Selection	Against	Subplans
� Previous	examples	were	all	against	a	relation	r

� We	had	statistics	for	r!
� Plans	often	contain	selections	against	subplans
� Need	to	estimate	the	statistics	of	a	plan-node’s	result	
as	well,	if	higher-level	cost	estimates	will	be	useful

� Most	difficult	are	V(A,	r),	min(A,	r),	and	max(A,	r)
� If	selection	involves	an	equality:		σA=v(r)

� V(A,	σA=v)	=	1
� min(A,	σA=v)	=	max(A,	σA=v)	=	v



18

Selection	Against	Subplans (2)
� If	selection	involves	a	comparison:		σA≤v(r)

� Assume	min(A,	r)	≤	v ≤	max(A,	r)
� min(A,	σA≤v)	=	min(A,	r)
� max(A,	σA≤v)	=	v
� Estimate	V(A,	σA≤v)
=	V(A,	r)	× (v – min(A,	r))	/	(max(A,	r)	– min(A,	r))
=	V(A,	r)	× P(A≤v)

� In	general,	if	θ is	A op v:
� op is	some	inequality	comparison:		<	>	≤	≥	≠
� Estimate	V(A,	σθ)	=	V(A,	r)	× P(θ)



19

Selection	Against	Subplans (3)
� If	predicate	θ forces	A to	take	on	a	set	of	values:

� SELECT	*	FROM	schedule	WHERE	hour	=	3	OR	hour	=	4;
� SELECT	*	FROM	shapes
WHERE	color	IN	('red',	'orange',	'yellow');

� V(A,	σθ)	=	number	of	values	in	the	predicate
� Can	compute	min(A,	σθ),	max(A,	σθ)	from	these	as	well

� If	none	of	these	situations	occur:
� Assume	V(A,	σθ),	min(A,	σθ),	max(A,	σθ)	are	independent	
of	selection	criteria!

� Set	V(A, σθ)	to	min(V(A,	r),	nσ)
� #	of	distinct	values	for	A is	capped	by	#	of	rows	produced	by	σ



20

Join	Costs
� Several	important	costs	to	estimate	for	joins

� Number	of	rows	produced	by	the	join	operation
� Number	of	disk	IOs	performed	by	the	join	operation

� Second	value	is	harder	to	estimate,	primarily	due	to	the	
buffer	manager,	but	still	critical	to	estimate

� Example:		nested	loop	join	(no	optimizations)
� Worst	case	(unlikely):		br +	nr × bs block	reads
� Best	case	(inner	table	fits	in	memory):		br +	bs reads

� Disk	IO	estimate	is	very	approximate,	and	depends	on	
the	specific	join	implementation	being	used



21

Join	Costs	(2)
� For	now,	focus	on	the	number	of	rows	produced
� Cartesian	product:		r × s

� Every	row	in	table	r is	joined	to	every	row	in	table	s
� nr×s =	nr × ns
� Average	tuple	length	lr×s =	lr +	ls

� Theta	join:		r θ s
� Can	model	as	σθ(r × s);	compute	estimates	as	for	σθ(…)
� Big	problem:		our	cost	estimates	are	most	accurate	when	
comparing	attributes	to	constants!

� Join	predicates	usually	compare	attributes	to	attributes



22

Join	Costs	(3)
� To	compute	proper	join	estimates,	need	to	look	at	the	
attributes	being	compared

� For	theta-join	r r.A=s.A s:
� If	r.A is	a	key	for	r:

� Each	tuple	in	swill	join	with	at	most	one	tuple	in	r
� Estimate	number	of	tuples	in	result	nr s =	ns

� Similarly,	if	s.A is	a	key	for	s:
� Each	tuple	in	rwill	join	with	at	most	one	tuple	in	s
� Estimate	nr s =	nr

� If	both	are	keys	for	their	respective	tables:
� nr s =	min(nr,	ns)



23

Join	Costs	(4)
� For	theta-join	r r.A=s.A s:

� If	neither	r.A nor	s.A is	a	key	for	its	respective	table:
� Assume	that	A is	uniformly	distributed	in	both	r and	s
� (Note:		ignoring	min/max	stats	for	these	estimates)

� Given	a	specific	tuple	tr in	r,	estimate	that	ns /	V(A,	s)	
tuples	in	swill	join	with	that	tuple
� ns × probability	that	a	given	tuple	ts in	swill	have	value	tr.A
� Suggests	that	nr s =	nr × ns /	V(A,	s)

� But,	given	a	specific	tuple	ts in	s,	estimate	nr /	V(A,	r)	
tuples	in	rwill	join	with	that	tuple
� Suggests	that	nr s =	ns × nr /	V(A,	r)



24

Join	Costs	(5)
� For	theta-join	r r.A=s.A s:

� Two	estimates	for	number	of	rows	produced:
� nr s =	nr × ns /	V(A,	s) (from	perspective	of	tuples	in	r)
� nr s =	ns × nr /	V(A,	r)	 (from	perspective	of	tuples	in	s)

� If	V(A,	r)	<	V(A,	s):
� Expect	that	more	tuples	in	swill	not	join	with	any	tuple	in	r
� Use	estimate	based	on	r:		nr s =	nr × ns /	V(A,	s)
� Similarly,	if	V(A,	r)	>	V(A,	s),	more	tuples	in	rwill	be	left	out

� If	V(A,	r)	≠	V(A,	s),	choose	the	larger	of	V(A,	r),	V(A,	s)
� Estimate	nr s =	nr × ns /	max(V(A,	r),	V(A,	s))



25

Join	Costs	(6)
� Can	extend	these	estimates	to	joins	with	multiple	conjuncts
� For	theta-join	r r.A=s.A ∧	r.B=s.B s:

� Check	if	(r.A,	r.B)	or	any	proper	subset	is	a	key	for	r
� Check	if	(s.A,	s.B)	or	any	proper	subset	is	a	key	for	s
� If	so,	compute	estimates	as	before

� If	attributes	are	not keys	for	r or	s:
� Again,	assume	the	conditions	are	independent	of	each	other
� P(r.A=s.A ∧	r.B=s.B)	=	P(r.A=s.A)	× P(r.B=s.B)
=	1	/	(	max(V(A,	r),	V(A,	s))	× max(V(B,	r),	V(B,	s))	)

� nr s =	nr × ns /	(	max(V(A,	r),	V(A,	s))	× max(V(B,	r),	V(B,	s))	)



26

Outer	Join	Costs
� Can	use	very	simple	estimates	for	outer	joins

� Again,	only	using	number	of	distinct	values;	not	using	
min/max	to	further	refine	statistics

� Left	outer	join: nr s =	nr s +	nr
� Right	outer	join: nr s =	nr s +	ns
� Full	outer	join: nr s =	nr s +	nr +	ns
� These	estimates	are	almost	certainly	much	higher	than	
actual	row-counts	will	be,	but	they	are	an	upper	bound
� …and	they	are	fast	to	compute.
� Could	devise	a	better	estimate,	but	really	want	to	move	to	
better	stats	(e.g.	storing	histograms)	to	make	it	worthwhile



27

Other	Plan	Nodes
� Project:		Π…(r)
� ΠA(r),	where	A	is	a	simple	column-reference

� nΠ =	nr (no	duplicate-elimination	in	SQL!)
� V(A,	ΠA)	=	V(A,	r)
� Similarly,	min/max	don’t	change

� ΠE(r),	where	E	is	an	expression	possibly	with	functions
� Again,	nΠ =	nr
� For	V(E,	ΠE)/min(E,	ΠE)/max(E,	ΠE),	no	idea!		Either	
need	to	guess,	or	we	need	more	knowledge	about	E.
� E.g.	just	guess	V(E,	ΠE)	=	nΠ



28

Other	Plan	Nodes	(2)
� Grouping/aggregation:		G1,G2,…GE1,E2,…(r)

� Gi can	be	either	column-references	or	expressions
� Ei can	be	simple	aggregate	function	calls,	or	more	
advanced	expressions	involving	aggregate	functions
� SELECT	SUM(CASE	WHEN	a	<	b	THEN	1	ELSE	0	END)	FROM	t;
� SELECT	MIN(a)	+	MAX(b)	FROM	t;

� For	simple	column-references	in	grouping	attributes:
� nG =	V(G1,	r)	× V(G2,	r)	× …
� V(G1,	G)	=	V(G1,	r),	etc.



29

Other	Plan	Nodes	(3)
� Grouping/aggregation:		G1,G2,…GE1,E2,…(r)
� For	simple	column-references	and	simple	aggregates:

� Guess	COUNT(A),	SUM(A),	AVG(A)	will	produce	different	
values	for	each	group.		e.g.	V(COUNT(A),	G)	=	nG

� Can	be	a	bit	more	clever	with	MIN(A)	and	MAX(A)
� Could	guess	V(MIN(A),	G)	=	nG as	before
� Note	that	MIN(A)/MAX(A)	will	always	select	an	existing
value	of	A	from	input	relation

� A	better	guess:		V(MIN(A),	G)	=	min(V(A,	r),	nG)



30

Summary	– Plan	Costing
� Plan	costing	is	a	very imprecise	process

� Almost	certainly	inaccurate,	except	in	very simple	cases
� Hopefully	estimates	are	“good	enough”	to	guide	plan	selection
� (Most	databases	provide	ways	to	give	the	optimizer	hints	about	
plan	optimization.)

� These	estimates	are	simply	one	way	of	estimating	costs
� Different	assumptions,	or	different	kinds	of	statistics,	will	
produce	different	costing	estimates

� Still, an essential part of query planning!
� Collecting	useful	table	stats,	then	making	reasonably	accurate	
estimates	from	them,	greatly	improves	DB	query	performance

� (Becomes	very	obvious	when	table	stats	are	inaccurate…)


