
CS122	– Lecture	7
Winter	Term,	2017-2018

2

Other	Join	Algorithms
� Nested-loops	join	is	generally	useful,	but	slow

� Compares	every	tuple	in	rwith	every	tuple	in	s
� Performs	nr × ns iterations	through	loops

� Most	joins	involve	equality	tests	against	attributes
� Such	joins	are	called	equijoins

� Two	other	join	algorithms	for	evaluating	equijoins
� Are	often	much faster	than	nested-loops	join
� Can	only	be	used	in	specific	situations	(but	these	
situations	are	extremely	common…)

3

Sort-Merge	Join
� If	relations	being	joined	are	ordered	on	join-attributes,	can	
use	sort-merge	join to	compute	the	result

� Maintain	two	positions	into	the	input	relations
� If	left	relation’s	values	for
join-attributes	are	smaller,
move	left	pointer	forward

� If	right	relation’s	values	for
join-attributes	are	smaller,
move	right	pointer	forward

� If	join-attribute	values	are
identical	then	join	the	runs
of	tuples	with	equal	values

A B

9 cat

11 dog

11 horse

15 pig

15 frog

19 cow

A C

7 green

9 yellow

11 pink

14 orange

15 blue

15 red

19 mauve

23 puce

r: s:

4

Sort-Merge	Join	(2)
� Most	difficult	part	of	sort-merge	join	implementation	is	
handling	runs	of	tuples	with	the	same	value

� Example:		given	r and	s contents,	should	end	up	with:
� four rows	with	A	=	15
� (15,	pig,	blue)
� (15,	pig,	red)
� (15,	frog,	blue)
� (15,	frog,	red)

� Clearly	need	a	way	to	go
back	in	the	tuple-stream

A B

9 cat

11 dog

11 horse

15 pig

15 frog

19 cow

A C

7 green

9 yellow

11 pink

14 orange

15 blue

15 red

19 mauve

23 puce

r: s:

5

Sort-Merge	Join	(3)
� In	some	cases,	a	plan-node	might	need	to	go	back	to	an	
earlier	point	in	its	child’s	tuple-stream
� e.g.	when	r’s pointer	moves	forward,	if	join-attributes	
don’t	change	then	need	to	go	back	to	start	of	the	
corresponding	values	in	s

� Plan	nodes	can	support
marking,	and	resetting
to	last	marked	position

� Alternative:
� Store	all	rows	in	swith
same	values	in	memory…

� But,	can’t	always	guarantee	they’ll	fit!

A B

9 cat

11 dog

11 horse

15 pig

15 frog

19 cow

A C

7 green

9 yellow

11 pink

14 orange

15 blue

15 red

19 mauve

23 puce

r: s:

marked

6

Materialized	Results
� Not	every	kind	of	plan-node	can	provide	marking

� (nor	should	it,	necessarily…)
� Similarly,	not	every	kind	of	plan-node	can	be	reset	to	the	
beginning	of	its	tuple-stream

� In	cases	where	a	plan-node	requires	marking	from	one	
of	its	children,	but	the	child	doesn’t	support	marking:
� Insert	a	materialize plan-node	above	the	child
� The	materialize	plan-node	buffers	every	row	the	child	
plan-node	produces,	allowing	marking	and	resetting

� If	the	materialize	node’s	memory	usage	grows	beyond	a	
set	limit,	it	can	use	a	temporary	file	to	store	the	results

7

Nested-Loops	and	Materialize
� Nested-loop	joins	evaluate	right	subplan	once	for	each	
tuple	(or	block)	produced	by	left	subplan
� Anything	more	complex	than	a	simple	file-scan	on	right	
of	nested-loops	join	will	be	very	expensive	to	evaluate

� Instead,	insert	a	materialize
plan-node	above	complex
sub-plans	on	right	side

t1 t2

t4t3

Π

t1 t2 t4t3

Π

8

Sort-Merge	Join	with	Marking
� Implement	sort-merge	join	to	only	
require	marking	on	right	subplan

SortMergeJoin {
leftTup =	initial	left	tuple
rightTup =	initial	right	tuple
while	(true)	{
while	(leftTup !=	rightTup)	{
if	(leftTup <	rightTup)
advance	left	subplan

else
advance	right	subplan

}

//	Now	left	and	right	tuples
//	have	the	same	values.

mark	right	subplan	position
markedValue =	rightTup
while	(true)	{
while	(leftTup ==	rightTup)	{
add	joined	tuples	to	result
advance	right	subplan

}
advance	left	subplan
if	(leftTup ==	markedValue)
reset	right	subplan	to	mark

else
//	return	to	top	of	outer	loop
break

}
}

}

From	PostgreSQL:		nodeMergejoin.c

9

Sort-Merge	Join	Costs
� Assume	that	input	relations	are	already	sorted…		J
� Also,	assume	join-attributes	are	a	primary	key	in	both	
input	relations
� Each	row	on	left	will	join	with	at	most	one	row	on	right	
(i.e.	no	marking	or	resetting	required	on	right	table)

� For	r s,	results	in	br +	bs blocks	read
� How	many	disk	seeks,	if	buffer	manager	can	only	hold	
one	block	from	each	of	r and	s?
� Would	generally	expect	br +	bs disk	seeks	as	well.		SLOW.

10

Sort-Merge	Join	Costs	(2)
� Sort-merge	join	really	requires buffering	for	input	
relations,	to	avoid	disk	seek	issues
� Allocate	bb blocks	of	buffering	for	each	input	relation
� Use	read-ahead	on	input	tables	(always	read	bb blocks!)
� Reduces	seeks	to	ceiling(br/bb)	+	ceiling(bs/bb)

� What	if	all	rows	in	r and	s have	the	same	join	value?
� Algorithm	will	mark	first	tuple	in	s,	then	scan	through	s
for	each	row	in	r

� If	buffer	manager	can	only	hold	one	page	from	each	file:
� Blocks	read	will	be	br +	nr × bs
� Disk	seeks	will	be	br +	nr
� Worst	case,	sort-merge	join	behaves	just	like	nested-loops	join

11

Sort-Merge	Join	Costs	(3)
� Apply	same	strategies	to	sort-merge	join	as	with	
nested-loops	join
� Table	on	right	side	of	join	should	fit	within	memory,
if	possible

� If	not,	allocate	plenty	of	buffer	space	for	processing	join
� If	right	subplan	is	more	complex	than	a	table	scan,
use	a	materialize	node	to	allow	results	to	be	traversed	
multiple	times

� Our	cost	estimates	assumed	that	the	inputs	are	sorted
� Usually	not	the	case
� Need	to	include	cost	of	sorting	in	costing	estimates	too

12

Outer	Joins	with	Sort-Merge?
� Can	we	modify	this	algorithm	to	
produce	left/right/full	outer	joins?

SortMergeJoin {
leftTup =	initial	left	tuple
rightTup =	initial	right	tuple
while	(true)	{
while	(leftTup !=	rightTup)	{
if	(leftTup <	rightTup)
advance	left	subplan

else
advance	right	subplan

}

//	Now	left	and	right	tuples
//	have	the	same	values.

mark	right	subplan	position
markedValue =	rightTup
while	(true)	{
while	(leftTup ==	rightTup)	{
add	joined	tuples	to	result
advance	right	subplan

}
advance	left	subplan
if	(leftTup ==	markedValue)
reset	right	subplan	to	mark

else
//	return	to	top	of	outer	loop
break

}
}

}

From	PostgreSQL:		nodeMergejoin.c

Can	generate
outer-join
results	here!

13

Hash	Join
� Can	also	use	hashing	to	perform	equijoins	efficiently
� For	r s,	performing	equijoin	on	JoinAttrs

� Apply	a	hash	function	hp(JoinAttrs)	to	partition	tuples	in	
r and	s into	n partitions

� Tuples	in	partition	Hriwill	only	join	with	tuples	in	Hsi

r s

Hrn-1

Hr0

Hr1

Hr2
…

Hsn-1

Hs0

Hs1

Hs2
…

14

Hash	Join	(2)
� Once	input	relations	are	partitioned,	join	each	pair	of	
partitions	Hri and	Hsi in	sequence:
� Load	Hsi into	memory,	and	build	a	hash	index	against	it

� Use	a	different hash	function	hi()	for	this	hash-index
� Just	reusing	previous	hash	function	hp()	won’t	provide	a	
uniform	random	distribution	of	input	tuples

� For	each	tuple	tr in	Hri,	probe	the	hash	index	to	find	all	
tuples	in	Hsi that	join	with	tr

� Only	require	that	entirety	of	Hsi fits	into	memory
(plus	its	corresponding	hash-index)
� Partitions	are	stored	on	disk	until	they	are	needed

15

Hash	Join	(3)
� s is	called	the	build	relation (a.k.a.	the	build	input)

� The	hash	index	is	built	against	partitions	of	s
� Partitions	of	the	build	relation	must fit	in	memory

� r is	called	the	probe	relation (a.k.a.	the	probe	input)
� The	join	algorithm	probes	the	hash	index	using	tuples	
from	partitions	of	r

� Partitions	of	probe	relation	don’t	need	to	fit	in	memory
� Generally,	smaller	relation	should	be	the	build	relation

System	Memory

Hsi
probe

hash
index

build

Hri

(disk	file)

Hsi

(disk	file)

16

Hash	Join	Costing
� Partitioning	the	relations	requires	a	complete	pass	
over	both	r and	s,	and	the	partitions	are	written	to	disk
� Requires	2(br +	bs)	disk	transfers
� Could	also	result	in	partially	full	blocks,	since	a	partition	
won’t	necessarily	be	completely	full
� Adds	a	small	overhead	based	on	the	number	of	partitions

� The	join	process	itself	must	read	each	partition	once
� Requires	br +	bs disk	transfers

� Total	disk	access	cost	is	3(br +	bs)
� (Plus	change…)

17

Hash	Join	Issues
� Biggest	issue	is	if	a	partition	Hsi doesn’t	fit	into	memory

� e.g.	perhaps	distribution	of	join-attribute	values	isn’t	friendly	
to	hash	function	

� Overflow	resolution:
� If	a	hash	overflow	is	detected,	apply	a	second,	different	hash-
function	to	large	partition

� Overflow	avoidance:
� Partition	input	relations	into	many	smaller	partitions,	then	
combine	partitions	into	units	that	fit	into	memory

� If	data	distribution	isn’t	suitable	to	hash	join,	may	simply	
need	to	use	a	different	join	algorithm!
� Good	statistics	(e.g.	histograms)	essential	to	determine	this

18

Hash	Join	Issues	(2)
� Another	issue	with	large	tables	is	if	number	of	partitions	
required	by	table	size	is	too	large	to	fit	in	memory
� e.g.	since	partitions	are	written	to	disk,	database	must	be	able	
to	hold	at	least	one	disk	block	per	partition	in	its	buffers

� Requires	recursive	partitioning:
� On	first	pass,	split	table	into	as	many	partitions	as	possible
� Repeat	this	process	on	previously	generated	partitions	(using	
a	different	hash-function)	until	all	partitions	of	build	relation	
fit	in	memory

� Generally	not	required	until	tables	are	many	GBs in	size

19

Hash	Join	Algorithm
� Hash	join	algorithm:

#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

20

Hash	Join	Algorithm	(2)
� Hash	join	algorithm:

#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

� s	is	partitioned	before	r	to	
allow	an	optimization:

� If	enough	memory	is	available,	
partition	Hs0 is	kept	in	memory	
from	the	“partition	s”	phase
� A	hash	index	also	built	on	Hs0

� During	partitioning	of	r,	tuples	
that	hash	into	Hr0 are	tested	
against	in-memory	Hs0 index

� Reduces	disk	IOs	by	a	small	but	
significant	amount

� This	is	called	hybrid	hash-join

21

Outer	Joins	with	Hash	Join?	(1)
� Can	we	alter	this	to	
perform	left-outer	joins?
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

22

Outer	Joins	with	Hash	Join?	(2)
� Change	probe	logic	to	
perform	left-outer	joins
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

if	tr has	matching	tuples:
for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

else:
add	join(tr,	nulls)	to	result

23

Outer	Joins	with	Hash	Join?	(3)
� What	about	full-outer	
joins?
#	Partition	s
for	each	tuple	ts in	s:
i =	h(ts[JoinAttrs]);
Add	ts to	partition	Hsi;

#	Partition	r
for	each	tuple	tr in	r:
i =	h(tr[JoinAttrs]);
Add	tr to	partition	Hri;

/*	Perform	hash-join	*/
for	i =	0	to	nh:
read	Hsi and	build
in-memory	hash	index

for	each	tuple	tr in	Hri:
probe	hash-index	to	find	all
tuples	ts that	join	with	tr

for	each	matching	tuple	ts:
add	join(tr,	ts)	to	result

Need	to	alter	hash-index	to	record	
which	tuples	in	Hsi were	joined.

Then	we	can	compute	full-outer	joins.

