
CS122	– Lecture	6
Winter	Term,	2017-2018



2

Plan-Node	Implementations
� Previously:		To	evaluate	SQL	queries,	we	must…
1. Implement	relational	algebra	operations	in	some	way
2. Translate	the	SQL	abstract	syntax	tree	(AST)	into	a	

corresponding	relational	algebra	plan
� Covered	a	variety	of	naïve	translations	that	will	work

3. Figure	out	how	to	evaluate	plan	and	generate	results
� We	will	use	a	pull-based,	pipelined	evaluation	of	query	
plans

� Still	need	implementations	of	our	plan	nodes



3

Select	Implementations
� Select	σ plan-nodes	are	easy	to	implement

� Retrieve	tuples	from	child	plan-node	(or	from	a	table)	
until	predicate	is	true,	then	pass	the	tuple	to	parent
� An	unspecified	predicate	is	treated	as	true

� Several	different	kinds,	based	on	source	of	tuples
� File-scan	through	a	table	– no	children;	reads	from	table
� Simple	filter	plan-node	– one	child	plan-node
� (Also	index-scans	– will	discuss	in	a	later	lecture…)

� If	select	predicate	has	an	equality	condition	on	a	key,	it	
can	stop	once	it	returns	its	first	row
� Halves	the	expected	cost	of	the	select	operation



4

Project	Implementations
� Project	Π plan-nodes	are	also	easy	to	implement

� Retrieve	next	tuple	from	child	plan-node,	and	compute	an	
output	tuple	based	on	the	project	criteria

� Project	expressions	are	evaluated	in	the	context	of	the	child	
node’s	schema	and	tuple	data
� Child	schema	specifies	variable	names;	tuples	specify	values

� Both	selects	and	projects	can	have	a	“hidden”	cost:
� If	planner/optimizer	is	not	able	to	rewrite	subqueries in	the	
SELECT	clause,	or	in	a	WHERE/HAVING	clause,	either	of	these	
plan-nodes	could	end	up	doing	correlated	evaluation



5

Group/Aggr.	Implementations
� Implementing	grouping	and	aggregation	is	similarly	
straightforward

� If	input	tuples	are	sorted	on	grouping	attributes,	can	
implement	a	sort-based	grouping/aggregation	node

� For	each	input	tuple:
� If	grouping-attribute	values	changed	from	previous	input	(or	
child	plan-node	finishes	producing	tuples)	then	the	current	
group	is	completed

� Output	a	tuple	containing	grouping-attribute	values,	and	also	
aggregate	function	values

� Reset	aggregates,	store	new	group-attribute	values,	and	begin	
calculating	the	new	group’s	aggregates



6

Group/Aggr.	Implementations	(2)
� Sketch	of	sort-based	implementation:		g1,g2,…Ge1,e2,…(E)

current_group =	[]
current_aggregates =	[]
do:
t :=	next	tuple	from	E
group :=	compute	g1,	g2,	…	using	t //	Skip	if	t is	null
if	t ==	null or	group !=	current_group: //	Current	group	is	done
add	join(current_group,	current_aggregates)	to	result
current_group :=	group
reset	current_aggregates

update	current_aggregates using	t
while	t !=	null



7

Group/Aggr.	Implementations	(3)
� Aggregate	functions	work	differently	from	simple	
scalar	functions
� Simple	functions	take	inputs	and	return	an	output

� Aggregate	functions	are	fed	a	sequence	of	input	values,	
and	update	their	aggregate	state	with	each	input

� Example:		MIN(x)	aggregate	function
� As	a	group	of	input	tuples	is	being	consumed,	MIN(x)	
function	is	handed	each	input	value	in	sequence

� When	group	of	input	tuples	is	completed,	MIN(x)	
function	can	be	queried	for	its	aggregate	result



8

Group/Aggr.	Implementations	(4)
� If	input	tuples	aren’t	sorted	on	grouping	attributes	
then	a	hash-based	implementation	must	be	used

� Plan-node	maintains	a	hash-table	that	maps	distinct	
values	of	ág1,	g2,	…ñ to	aggregate	functions	áe1,	e2,	…ñ

� No	way	of	knowing	when	all	tuples	for	a	given	group	
have	been	seen…
� Hash-based	implementation	can’t	output	any	results	
until	all	input	tuples	have	been	seen

� This	can	have	serious	memory	implications	for	large	
data	sets	with	large	numbers	of	distinct	groups
� Must	use	external	memory	if	internal	memory	overflows



9

Group/Aggr.	Implementations	(5)
� Sketch	of	hash-based	implementation:		g1,g2,…Ge1,e2,…(E)

//	Compute	all	groups,	and	their	corresponding	aggregates
group_aggregates =	{}
while	E has	more	tuples:
t :=	next	tuple	from	E
group :=	compute	g1,	g2,	…	using	t
aggregates :=	group_aggregates[group] //	Add	entry	if	missing
update	aggregates using	t

//	Output	all	of	our	computed	groups	and	aggregates	as	tuples
for	group,	aggregates in	group_aggregates:
add	join(group,	aggregates)	to	result



10

Sorting	Implementations
� Sorting	is	very	straightforward	to	implement
� Biggest	challenge	is	when	input	data-set	doesn’t	fit	
entirely	into	memory

� In	these	cases,	use	external-memory	sorting	algorithm
� Read	in	runs	of	tuples	that	use	up	to	M blocks	of	buffer	
space

� Sort	each	run	in	memory,	and	write	it	out	to	a	run-file
� Once	all	runs	are	sorted,	perform	an	N-way	merge-sort	
on	the	runs	of	data	to	generate	the	result



11

External	Sort	Algorithm
� Stage	1:		Create	N sorted	runs	from	an	input	tuple	file,	
using	a	max	of	M buffer	pages
i :=	0
while	input	file	has	more	blocks:
read	up	to	M blocks	of	the	input	into	memory
sort	the	in-memory	portion	of	the	input
write	sorted	results	to	run-file	Ri
i :=	i +	1

� If	entire	input	can	be	loaded	in	one	shot,	we’re	done!



12

External	Sort	Algorithm	(2)
� Stage	2:		Merge	the	N sorted	runs
Open	all	N files	and	read	the	first	block	from	each	file
do:
choose	the	first	tuple	(in	sort	order)	from	all	blocks,

write	it	to	the	output,	and	advance	past	that	tuple
if	that	file’s	block	has	no	more	tuples,	read	the	next

block	from	that	file	(if	more	blocks	exist)
while	a	non-empty	block	remains	for	at	least	one	file



13

External	Sort	Algorithm	(3)
� If	input	relation	is	extremely large,	may	not	be	able	to	
perform	merge-sort	step	in	one	pass
� e.g.	if	there	aren’t	N buffer	pages	to	open	all	N run-files

� Simply	merge	a	subset	of	the	run-files	into	a	new	larger	
run-file	(and	delete	the	merged	run-files)
� Repeat	this	process	until	all	remaining	run-files	can	be	
opened	at	the	same	time

� Final	merge-sort	pass	can	produce	the	output	of	the	sort	
operation	by	traversing	these	run-files



14

External	Sort	Algorithm	(4)
� Can	be	other	benefits	from	creating	fewer	sorted	runs
� Example:

� Could	easily	sort	a	file	that	requires	500	sorted	runs…
� Merging	500	run-files	means	jumping	back	and	forth	
between	all	of	these	files…

� Disk	seeks	can	become	costly	when	merging	the	data!
� Using	fewer,	larger	runs	can	greatly	reduce	disk	seeks

� Load	more	than	1	block	of	each	run-file	into	memory
� Rely	on	read-ahead	optimization	to	pull	data	from	disk



15

Theta-Join	Implementation
� Theta-join	plan	node	is	a	bit	more	complicated
� Most	simple	implementation	is	nested-loop	join
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Benefits:		works	for	arbitrary predicates!
� Drawbacks:		it’s	very slow



16

Nested-Loop	Join	(2)
� How	do	we	extend	this	to	
compute	r θ s?
� Left	outer	join
� tr is	included	if	it	doesn’t	
match	any	rows	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
matched =	false
for	ts in	s:
if	pred(tr,	ts):
matched =	true
add	join(tr,	ts)	to	result

if	not	matched:
add	padnulls(tr)	to	result



17

Nested-Loop	Join	(3)
� What	about	r θ s?

� Right	outer	join
� ts is	included	if	it	doesn’t	
match	any	rows	in	r

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Can’t	easily	extend	
nested-loop	algorithm	to	
do	right	outer	join

� But,	r θ s =	ΠR,S(s θ r)
� (Must	take	care	to	adjust	
result	schema	properly)

� Unfortunately,	r θ s is	
similarly	out	of	reach	
with	nested-loop	join
� (This	is	why	MySQL	can’t	
do	full-outer	joins.)



18

Nested-Loop	Join	(4)
� What	about	r θ s?

� Left	semijoin
� tr is	included	once,	if	it	
matches	any	row	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	tr to	result
break

� A	very	simple	variant	of	
inner	join!



19

Nested-Loop	Join	(5)
� What	about	r θ s?

� Left	antijoin
� tr is	included	once,	if	it	
matches	no rows	in	s

� Original	algorithm:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Updated	algorithm:
for	tr in	r:
matched =	false
for	ts in	s:
if	pred(tr,	ts):
matched =	true
break

if	not	matched:
add	tr to	result

� Again,	very	similar	to	
left-outer	join



20

Nested-Loop	Join	IO	Cost
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Assume	that	both	r and	s fit	entirely	within	memory
� br is	number	of	blocks	in	r,	bs is	number	of	blocks	in	s

� How	many	“large”	disk	seeks	are	required?
� How	many	block-reads	will	this	operation	perform?



21

Nested-Loop	Join	IO	Cost	(2)
� Nested-loop	join:

for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

1. (Probably)	one	large	seek	to	read	first	tuple in	r
2. Another	large	seek	when	first	tuple in	s is	read
3. All	of	s is	scanned	the	first	time	through	the	inner	loop,	and	

the	entire	table	s is	cached	in	the	Buffer	Manager
4. A	third	large	seek	when	second	block	of	r is	read
5. After	this,	all	seeks	will	be	small	as	r is	scanned.

(Inner	loop	always	reads	s out	of	the	Buffer	Manager.)
� Performs	br +	bs reads,	and	2-3	large	seeks	total

r :

s :



22

Nested-Loop	Join	IO	Cost	(3)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst	case:		Database	can	only	hold	one	block	of	each	
table	in	memory.		How	many	block	reads	are	required?
� Outer	loop	performs	br block-reads
� Inner	loop	traverses	s once	per	tuple in	r:		nr × bs

� Performs	br +	nr × bs block	reads

s : s scanned once per tuple in r

r :



23

Nested-Loop	Join	IO	Cost	(4)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst	case:		Database	can	only	hold	one	block	of	each	
table	in	memory.		How	many	large	seeks	are	required?
� Inner	loop	traverses	s sequentially:		once	per	loop	=	nr
� Outer	loop	traverses	r in	br blocks:		br total	seeks

� Performs	br +	nr large	seeks

s : s scanned once per tuple in r

r :



24

Nested-Loop	Join	IO	Cost	(5)
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� How	many	reads	and	seeks	if	only	s fits	in	memory?
� s is	loaded	once,	in	sequence:		1	seek,	bs reads
� Outer	loop	traverses	r in	br blocks:		1-2	seeks,	br reads

� Performs	br +	bs reads,	and	2-3	seeks	total
� …just	like	optimal	case	when	both	tables	fit	in	memory!

� If	smaller	table	fits	in	memory,	put	it	on	inner	loop.

r :

s :



25

Improving	Nested-Loop?
� Nested-loop	join:
for	tr in	r:
for	ts in	s:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� If	DB	can	only	hold	one	block	of	each	table	in	memory:
� Inner	loop	traverses	s once	per	tuple in	r:		nr × bs reads

� What	if	the	outer	loop	traverses	r by	blocks,	not	tuples?
� Try	to	join	all	tuples	from	a	block	in	r against	a	block	in	s



26

Block	Nested-Loop	Join
� Traversing	r and	s by	blocks	instead	of	tuples:

for	Br in	r:
for	Bs in	s:
for	tr in	Br:
for	ts in	Bs:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Improves	worst-case	read-behavior	of	nested-loop	join
� Outer	loop	performs	br block-reads
� Inner	loop	traverses	s once	per	block in	r:		br × bs reads

� Performs	br × (bs +	1)	block	reads



27

Block	Nested-Loop	Join	(2)
� Traversing	r and	s by	blocks	instead	of	tuples:

for	Br in	r:
for	Bs in	s:
for	tr in	Br:
for	ts in	Bs:
if	pred(tr,	ts):
add	join(tr,	ts)	to	result

� Worst-case	performance	– large	disk	seeks:
� Inner	loop	still	traverses	s sequentially:		once	per	loop	=	br
� Outer	loop	traverses	r in	br blocks:		br total	seeks

� Performs	2br large	seeks



28

Block	Nested-Loops	Join	(3)
� Best-case	scenario:		at	least	one	table	fits	in	memory

� Performs	br +	bs reads,	and	2-3	seeks	total
� Put	smaller	table	on	inner	loop	of	join

� Worst-case	scenario:		only	two	blocks	fit	in	memory
� Performs	br × (bs +	1)	block	reads,	and	2br large	seeks
� Put	smaller	table	on	outer	loop	of	join	(minimize	seeks)

� Similarly,	if	neither	table	fits	entirely	in	memory,
put	smaller	table	on	outer	loop	of	join



29

Block	Nested-Loop	Optimizations
� Several	other	optimizations	to	block	nested-loop	join,	
most	notably:

� Instead	of	reading	outer	table	in	blocks,	read	as	much	
as	will	fit	into	memory
� For	M total	blocks,	read	in	M – 1	blocks	from	r,	1	from	s
� Reduces	total	number	of	large	disk	seeks	to	br /	(M – 1)

� For	inner	loop,	scan	table	forward	and	then	backward
� Alternate	direction	of	file-scan	on	subsequent	iterations
� Data	pages	from	previous	iteration	will	still	be	in	the	
buffer	manager’s	memory



30

Other	Join	Algorithms
� Nested-loops	join	is	generally	useful,	but	slow

� Compares	every	tuple	in	rwith	every	tuple	in	s
� Performs	nr × ns iterations	through	loops

� Most	joins	involve	equality	tests	against	attributes
� Such	joins	are	called	equijoins

� Two	other	join	algorithms	for	evaluating	equijoins
� Are	often	much faster	than	nested-loops	join
� Can	only	be	used	in	specific	situations	(but	these	
situations	are	extremely	common…)


