
CS122	– Lecture	5
Winter	Term,	2017-2018

Last	Time:		SQL	Join	Expressions
� Last	time,	began	discussing	SQL	join	syntax
� Original	SQL	form:

� SELECT	…	FROM	t1,	t2,	…	WHERE	P
� Any	join	conditions	are	specified	in	WHERE	clause

� FROM	clause	produces	a	Cartesian	product	of	t1,	t2,	…
� t1	× t2	× …
� Schema	produced	by	FROM	clause	is	t1.*	È t2.*	È…

� ANSI-standard	SQL:		WHERE	clause	may	only	refer	to	
the	columns	generated	by	the	FROM	clause
� Aliases	in	SELECT	clause	shouldn’t	be	visible	(although	
many	databases	make	them	visible	in	WHERE	clause)

2

SQL	Join	Expressions	(2)
� SELECT	…	FROM	t1,	t2,	…	WHERE	P

� t1	× t2	× …
� Schema	of	FROM	clause	is	t1.*	È t2.*	È…	(in	that	order)

� To	avoid	ambiguity,	column	names	in	schema	also	include	
corresponding	table	names,	e.g.	t1.a,	t1.b,	t2.a,	t2.c,	etc.
� If	column	name	is	unambiguous,	predicate	can	just	use	
column	name	by	itself

� If	column	name	is	ambiguous,	predicate	must	specify	both	
table	name	and	column	name

� Example:		SELECT	*	FROM	t1,	t2	WHERE	a	>	5	AND	c =	20;
� Not	valid:		column	name	a	is	ambiguous	(given	above	schema)

� Valid:		SELECT	*	FROM	t1,	t2	WHERE	t1.a	>	5	AND	c =	20;

3

Additional	SQL	Join	Syntax
� SQL-92	introduced	several	new	forms:

� SELECT	…	FROM	t1	JOIN	t2	ON	t1.a	=	t2.a
� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)
� SELECT	…	FROM	t1	NATURAL	JOIN	t2
� Can	specify	INNER,	[LEFT|RIGHT|FULL]	OUTER	JOIN

� Also	CROSS	JOIN,	but	cannot	specify	ON,	USING,	or	NATURAL

� ON	clause	is	not	that	challenging
� Similar	to	original	syntax,	but	allows	inner/outer	joins
� Schema	of	“FROM	t1	JOIN	t2	ON	…”	is	t1.*	È t2.*

4

Additional	SQL	Join	Syntax	(2)
� USING	and	NATURAL	joins	are	more	complicated

� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)
� SELECT	…	FROM	t1	NATURAL	JOIN	t2
� Join	condition	is	inferred	from	the	common	column	names	
(NATURAL	JOIN),	or	generated	from	the	USING	clause

� Also	includes	a	project	to	eliminate	duplicate	column	names	
(project	is	part	of	the	FROM	clause;	affects	WHERE	predicate)

� For	SELECT	*	FROM	t1	NATURAL	JOIN	t2,	or
SELECT	*	FROM	t1	JOIN	t2	USING	(a1,	a2,	…):
� Denote	the	join	columns	as	JC.		These	have	no	table	name.

� For	natural	join,	JC	=	t1	Ç t2;	otherwise,	JC	=	attrs in	USING	clause
� FROM	clause’s	schema	is	JC	È (t1	– JC)	È (t2	– JC)

5

Additional	SQL	Join	Syntax	(3)
� For	SELECT	*	FROM	t1	NATURAL	[???] JOIN	t2:

� Schemas:		t1(a,	b)	and	t2(a,	c)
� FROM	schema:		(a,	t1.b,	t2.c)

� For	natural	inner	join:
� Project	can	use	either	t1.a or	t2.a to	generate	a

� For	natural	left	outer	join:
� Project	should	use	t1.a;	t2.amay	be	NULL	for	some	rows
� (Similar	for	natural	right	outer	join,	except	t2.a is	used)

� For	natural	full	outer	join:
� Project	should	use	COALESCE(t1.a,	t2.a),	since	either	t1.a
or	t2.a could	be	NULL

6

Additional	SQL	Join	Syntax	(4)
� SELECT	t1.a	FROM	t1	NATURAL	JOIN	t2

� Schemas:		t1(a,	b)	and	t2(a,	c)
� FROM	schema:		(a,	t1.b,	t2.c)

� This	query	is	not	valid	under	the	ANSI	standard,	
because	there	is	no	t1.a	outside	the	FROM	clause
� Some	databases	(e.g.	MySQL)	will	allow	this	query

� This	query	is	valid:
� SELECT	a,	t2.c	FROM	t1	NATURAL	JOIN	t2
� (Technically,	can	also	say	“SELECT	a,	c”	because	cwon’t	
be	ambiguous)

7

Additional	SQL	Join	Syntax	(5)
� SELECT	*	FROM	t1	NATURAL	JOIN	t2	NATURAL	JOIN	t3

� Schemas:		t1(a,	b),	t2(a,	c),	t3(a,	d)
� FROM	schema:		(a,	t1.b,	t2.c,	t3.d)

� This	query	presents	another	challenge
� Step	1:		t1	NATURAL	JOIN	t2

� Join	condition	is:		t1.a =	t2.a
� Result	schema	is	(a,	t1.b,	t2.c)

� Step	2:		natural-join	this	result	with	t3
� Join	condition	is:		a =	t3.a
� Problem:		column-reference	a is	ambiguous

8

Additional	SQL	Join	Syntax	(6)
� SELECT	*	FROM	t1	NATURAL	JOIN	t2	NATURAL	JOIN	t3

� Schemas:		t1(a,	b),	t2(a,	c),	t3(a,	d)
� FROM	schema:		(a,	t1.b,	t2.c,	t3.d)

� Generate	placeholder	table	names	to	avoid	ambiguities
� Step	1	(revised):		t1	NATURAL	JOIN	t2

� Join	condition	is:		t1.a =	t2.a
� Result	schema	is	#R1(a,	t1.b,	t2.c)

� Step	2	(revised):		natural-join	this	result	with	t3
� Join	condition	is:		#R1.a =	t3.a
� Result	schema	is	#R2(a,	t1.b,	t2.c,	t3.d)

9

Mapping	SQL	Joins	into	Plans
� Summary:		translating	SQL	joins	has	its	own	challenges
� Primarily	center	around	natural	joins,	and	joins	with	
the	USING	clause:
� Must	generate	an	appropriate	schema	to	eliminate	
duplicate	columns

� Must	use	COALESCE()	operations	on	join-columns	used	
in	full	outer	joins

� May	need	to	deal	with	ambiguous	column	names	when	
more	than	two	tables	are	natural-joined	together

� (All	surmountable;	just	annoying…)

10

Nested	Subqueries
� SQL	queries	can	also	include	nested	subqueries
� Subqueries	can	appear	in	the	SELECT	clause:

� SELECT	customer_id,
(SELECT	SUM(balance)
FROM	loan	JOIN	borrower	b
WHERE	b.customer_id	=	c.customer_id)	tot_bal

FROM	customer	c;
� (Compute	total	of	each	customer’s	loan	balances)

� Must	be	a	scalar	subquery
� Must	produce	exactly	one	row	and	one	column

� This	is	almost	always	a	correlated	subquery
� Inner	query	refers	to	an	enclosing	query’s	values
� Requires	correlated	evaluation	to	compute	the	results

11

Nested	Subqueries	(2)
� Subqueries	can	also	appear	in	the	FROM	clause:

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;
� Called	a	derived	relation

� The	table	is	produced	by	a	subquery,	instead	of	being	read	
from	a	file	(a.k.a.	a	base	relation)

� Cannot	be	a	correlated	subquery
� …at	least,	not	with	respect	to	the	immediately	enclosing	query
� Could	still	be	correlated	with	a	query	further	out,	if	parent	
appears	in	a	SELECT	expression,	or	a	WHERE	predicate,	etc.

12

Nested	Subqueries	(3)
� Subqueries	can	also	appear	in	the	WHERE	clause:

� SELECT	employee_id,	last_name,	first_name
FROM	employees	e	WHERE	e.is_manager	=	0	AND
EXISTS	(SELECT	*	FROM	employees	m

WHERE	m.department	=	e.department	AND
m.is_manager	=	1	AND	m.salary	<	e.salary);

� (Find	non-manager	employees	who	make	more	money	
than	some	manager	in	the	same	department)

� Also,	IN/NOT	IN	operators,	ANY/SOME/ALL	queries,	
and	scalar	subqueries	as	well

� Again,	could	be	a	correlated	subquery,	and	often	is.		L

13

Nested	Subqueries	(4)
� Previous	example:

� SELECT	employee_id,	last_name,	first_name
FROM	employees	e	WHERE	is_manager	=	0	AND
EXISTS	(SELECT	*	FROM	employees	m

WHERE	m.department	=	e.department	AND
m.is_manager	=	1	AND	m.salary	<	e.salary);

� Note	that	EXISTS/NOT	EXISTS	can	complete	after	only	
one	row	is	generated	by	subquery
� Don’t	need	to	evaluate	entire	subquery	result…
� Definitely	want	to	optimize	subplan	to	produce	first	row	
as	quickly	as	possible

14

Subqueries	in	FROM	Clause
� FROM	subqueries are	the	easiest	to	deal	with!		J

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;
� To	generate	execution	plan	for	full	query:

� Simply	generate	execution	plan	for	the	derived	relation
(e.g.	recursive	call	to	planner	with	subquery’s	AST)

� Use	the	subquery’s	plan	as	an	input	into	the	outer	query	
(as	if	it	were	another	table	in	the	FROM	clause)

15

Subqueries	in	FROM	Clause	(2)
� Our	example:

� SELECT	u.username,	email,	max_score
FROM	users	u,

(SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username)	AS	s

WHERE	u.username	=	s.username;
� Subquery	plan:

game_scores

G username
MAX(score)

users

θ

Π
u.username,	u.email,	s.max_score

u.username =	s.username

game_scores

G username
MAX(score)

� Full	plan:

16

FROM	Subqueries	and	Views
� Views	will	also	create	subqueries in	the	FROM	clause

� CREATE	VIEW	top_scores	AS
SELECT	username,	MAX(score)	AS	max_score
FROM	game_scores	GROUP	BY	username;

� SELECT	u.username,	email,	max_score
FROM	users	u,	top_scores	s
WHERE	u.username	=	s.username;

� Simple	substitution	of	view’s	definition	creates	a	nested	
subquery in	the	FROM	clause:
� SELECT	u.username,	email,	max_score
FROM	users	u,	(SELECT	username,	MAX(score)	AS	max_score

FROM	game_scores GROUP	BY	username)	s
WHERE	u.username =	s.username;

17

FROM	Subqueries	and	Views	(2)
� Two	options	as	to	how	this	is	done
� Option	1:

� When	view	is	created,	database	can	construct	a	relational	
algebra	plan	for	the	view,	and	save	it.

� When	a	query	references	the	view,	simply	use	the	view’s	plan	
as	a	subplan	in	the	referencing	query.

� Option	2:
� When	view	is	created,	database	parses	and	verifies	the	SQL,	
but	doesn’t	generate	a	relational	algebra	plan.

� When	a	query	references	the	view,	modify	the	query’s	SQL	to	
use	the	view’s	definition,	then	generate	a	plan.

� Second	option	requires	more	work	during	planning,	but	
potentially	allows	for	greater	optimizations	to	be	applied

18

Subqueries	in	SELECT	Clause
� Subqueries	in	the	SELECT	clause	must	be	scalar	subqueries:

� SELECT	customer_id,
(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Must	produce	exactly	one	row	and	one	column

� An	easy,	generally	useful	approach:
� Represent	scalar	subquery as	special	kind	of	expression
� During	query	planning,	generate	a	plan	for	the	subquery
� When	select-expression	is	evaluated,	recursively	invoke	the	
query	executor	to	evaluate	the	subquery to	generate	a	result

� (Report	an	error	if	doesn’t	produce	exactly	one	row/column!)

19

Subqueries	in	SELECT	Clause	(2)
� Subqueries	in	the	SELECT	clause	must	be	scalar	subqueries:

� SELECT	customer_id,
(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Must	produce	exactly	one	row	and	one	column

� If	scalar	subquery is	correlated:
� Must	reevaluate	the	subquery for	each	row	in	outer	query

� If	scalar	subquery isn’t	correlated:
� Can	evaluate	subquery	once	and	cache	the	result
� (This	is	an	optimization;	correlated	evaluation	will	also	work,	
although	it	is	obviously	unnecessarily	slow.)

20

Subqueries	in	SELECT	Clause	(3)
� Correlated	scalar	subqueries in	the	SELECT	clause	can	
frequently	be	restated	as	a	decorrelated outer	join:
� SELECT	customer_id,

(SELECT	SUM(balance)	FROM	loan	JOIN	borrower	b
WHERE	b.customer_id =	c.customer_id)	tot_bal

FROM	customer	c;
� Equivalent	to:

� SELECT	c.customer_id,	tot_bal
FROM	customer	c	LEFT	OUTER	JOIN

(SELECT	b.customer_id,	SUM(balance)	tot_bal
FROM	loan	JOIN	borrower	b	GROUP	BY	b.customer_id)	t
ON	t.customer_id =	c.customer_id);

� Usually,	outer	join	is	cheaper	than	correlated	evaluation

21

Scalar	Subqueries	in	Other	Clauses
� Scalar	subqueries can	also	appear	in	other	predicates,	
e.g.	WHERE	clauses,	HAVING	clauses,	ON	clauses,	etc.

� These	cases	are	more	likely	to	be	uncorrelated,	which	
means	they	can	be	evaluated	once	and	then	cached

� If	they	are	correlated,	they	can	also	often	be	restated	as	
a	join	in	an	appropriate	part	of	the	execution	plan
� But,	it	can	get	significantly	more	complicated…

22

Subqueries	in	WHERE	Clause
� IN/NOT	IN	clauses	and	EXISTS/NOT	EXISTS	predicates	
can	also	appear	in	WHERE	and	HAVING	clauses

� Example:		Find	bank	customers	with	accounts	at	any	
bank	branch	in	Los	Angeles
� SELECT	*	FROM	customer	c
WHERE	customer_id IN

(SELECT	customer_id FROM	depositor
NATURAL	JOIN	account	NATURAL	JOIN	branch
WHERE	branch_city =	'Los	Angeles');

� Is	this	query	correlated?
� No;	inner	query	doesn’t	reference	enclosing	query	values

23

Subqueries	in	WHERE	Clause	(2)
� Again,	can	implement	IN/EXISTS	in	a	simple	and	
generally	useful	way:
� Create	special	IN	and	EXISTS	expression	operators	that	
include	a	subquery

� During	planning,	an	execution	plan	is	generated	for	each	
subquery in	an	IN	or	EXISTS	expression

� When	IN	or	EXISTS	expression	is	evaluated,	recursively	
invoke	the	executor	to	evaluate	subquery and	test	
required	condition
� e.g.	IN	scans	the	generated	results	for	the	LHS	value
� e.g.	EXISTS	returns	true	if	a	row	is	generated	by	subquery,	or	
false	if	no	rows	are	generated	by	the	subquery

24

Subqueries	in	WHERE	Clause	(3)
� IN/NOT	IN	clauses	and	EXISTS/NOT	EXISTS	predicates	can	
also	be	correlated
� EXISTS/NOT	EXISTS	subqueries are	almost	always	correlated

� If	subquery is	not	correlated,	can	materialize	subquery
results	and	reuse	them
� …but	they	may	be	large;	we	may	still	end	up	being	verrry slow

� Previous	approach	isn’t	anywhere	near	ideal
� IN	operator	effectively	implements	a	join	operation,	but	
without	any	optimizations

� EXISTS	is	a	bit	faster,	but	subquery is	frequently	correlated
� Would	greatly	prefer	to	evaluate	subquery using	joins,	
particularly	if	we	can	eliminate	correlated	evaluation!

25

Semijoin and	Antijoin
� Two	useful	relational	algebra	operations	in	the	context	of	
IN/NOT	IN	and	EXISTS/NOT	EXISTS	queries

� Relations	r(R)	and	s(S)
� The	semijoin r s is	the	collection	of	all	rows	in	r that	can	
join	with	some	corresponding	row	in	s
� {	tr |	tr Î r Ù $ ts Î s (join(tr,	ts))	}
� join(tr,	ts) is	the	join	condition

� r s equivalent	to	ΠR(r s),	but	only	with	sets of	tuples
� If	r and	s are	multisets,	these	expressions	are	not	equivalent,	
since	a	tuple	in	r that	matches	multiple	tuples	in	swill	become	
duplicated	in	the	natural	join’s	result

26

Semijoin and	Antijoin (2)
� The	antijoin r s is	the	collection	of	all	rows	in	r that	
don’t	join	with	some	corresponding	row	in	s
� {	tr |	tr Î r Ù ¬$ ts Î s (join(tr,	ts))	}

� Also	called	anti-semijoin,	since	r s is	equivalent	to
r – r s (is	the	complement	of)

� Both	semijoin and	antijoin operations	are	easy	to	
compute	with	our	various	join	algorithms
� Can	incorporate	into	theta-join	implementations	easily

� Can	use	these	operations	to	restate	many	IN/NOT	IN	
and	EXISTS/NOT	EXISTS	queries

27

Example	IN	Subquery
� Find	all	bank	customers	who	have	an	account	at	any	
bank	branch	in	the	city	they	live	in
� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN

(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� Recall:		branches	have	a	branch_name and	a	branch_city
� Inner	query	is	clearly	correlated	with	outer	query
� Naïve	correlated	evaluation	would	be	very slow	L

� Join	three	tables	in	inner	query	for	every	bank	customer!

28

Example	IN	Subquery (2)
� Example	query:

� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN
(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� Can	decorrelate by	extracting	inner	query,	modifying	it	to	
find	all	branches	for	all	customers,	in	one	shot:
� SELECT	*
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
� Includes	tuples	for	each	branch	that	each	customer	has	
accounts	at

29

Example	IN	Subquery (3)
� Could	take	our	inner	query	and	join	it	against	customer

� SELECT	c.*	FROM	customer	c	JOIN
(SELECT	*	FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d)	AS	t
ON	(t.customer_id =	c.customer_id AND

c.customer_city =	t.branch_city);
� Problems?

� If	a	customer	has	multiple	accounts	at	local	branches,	the	
customer	will	appear	multiple	times	in	the	result

� Cause:		the	outermost	join	will	duplicate	customer	rows	for	
each	matching	row	in	nested	query

� Solution:		use	a	semijoin to	join	customers	to	the	subquery

30

Example	IN	Subquery (4)
� Our	original	correlated	query:

� SELECT	*	FROM	customer	c	WHERE	c.customer_city IN
(SELECT	b.branch_city
FROM	branch	b	NATURAL	JOIN	account	a

NATURAL	JOIN	depositor	d
WHERE	d.customer_id =	c.customer_id);

� The	decorrelated query:
� SELECT	*	FROM	customer	c	SEMIJOIN

(SELECT	*	FROM	branch	b	NATURAL	JOIN	account	a
NATURAL	JOIN	depositor	d)	AS	t

ON	(t.customer_id =	c.customer_id AND
c.customer_city =	t.branch_city);

� (Note:		writing	a	semijoin in	SQL	isn’t	widely	supported…)

31

Example	NOT	EXISTS	Subquery
� A	simpler	query:		find	customers	who	have	no	bank	
branches	in	their	home	city
� SELECT	*	FROM	customer	c
WHERE	NOT	EXISTS	(SELECT	*	FROM	branch	b

WHERE	b.branch_city =	c.customer_city);
� Again,	this	query	requires	correlated	evaluation

� Not	as	bad	as	previous	query,	since	NOT	EXISTS	only	has	
to	produce	one	row	from	inner	query,	not	all	the	rows…

� If	there’s	an	index	on	branch_city,	this	won’t	be	horribly	
slow,	but	again,	we	are	implementing	a	join	here

� (We	have	fast	equijoin	algorithms;	why	not	use	them?)

32

Example	NOT	EXISTS	Subquery (2)
� Example	query:

� SELECT	*	FROM	customer	c
WHERE	NOT	EXISTS	(SELECT	*	FROM	branch	b

WHERE	b.branch_city =	c.customer_city);
� This	query	is	very	easy	to	write	with	an	antijoin:

� SELECT	*	FROM	customer	c	ANTIJOIN branch	b
ON	branch_city =	customer_city;

� Could	also	write	with	an	outer	join:
� SELECT	c.*	FROM	customer	c	LEFT	JOIN	branch	b

ON	branch_city =	customer_city
WHERE	branch_city IS	NULL;

� This	approach	won’t	create	duplicates	of	customers,	like	our	
previous	IN	example	would	have…

33

Summary:		Nested	Subqueries
� Only	scratched	the	surface	of	subquery translation	and	
optimization
� An	incredibly	rich	topic	– tons	of	interesting	research!

� Can	use	basic	tools	we	discussed	today	to	decorrelate
and	optimize	a	pretty	broad	range	of	subqueries
� Outer	joins,	sometimes	against	group/aggregate	results
� Semijoins and	antijoins for	set-membership	subqueries

� An	important	question,	not	considered	for	now:
� Is	the	translated	version	actually	faster?
(Or	when	multiple	options,	which	option	is	fastest?)

� A	planner/optimizer	must	make	that	decision

34

