Relational Database

System Implementatlon

i

Last Time: SQL Join Expressions

Last time, began discussing SQL join syntax
Original SQL form:
e SELECT ... FROM t1, t2, ... WHERE P
e Any join conditions are specified in WHERE clause
FROM clause produces a Cartesian product of t1, t2, ...
o [l x {2 x .
e Schema produced by FROM clause is t1.* U t2.* U ...

ANSI-standard SQL: WHERE clause may only refer to
the columns generated by the FROM clause

e Aliases in SELECT clause shouldn’t be visible (although
many databases make them visible in WHERE clause)

; N//

e

SQL Join Expressions (2)

SELECT ... FROM t1, t2, ... WHERE P
o t1 xt2 x ...
e Schema of FROM clause is t1.* U t2.* U ... (in that order)

To avoid ambiguity, column names in schema also include
corresponding table names, e.g. t1.a, t1.b, t2.a, t2.c, etc.

e [f column name is unambiguous, predicate can just use
column name by itself

e If column name is ambiguous, predicate must specify both
table name and column name

Example: SELECT * FROM t1, t2 WHERE a > 5 AND c = 20;

e Not valid: column name a is ambiguous (given above schema)
Valid: SELECT * FROM t1, t2 WHERE tl.a > 5 AND c = 20;

4N//

i

Additional SQL Join Syntax

SQL-92 introduced several new forms:
e SELECT ... FROM t1 JOIN t2 ON tl.a=t2.a
e SELECT ... FROM t1 JOIN t2 USING (al, a2, ...)
e SELECT ... FROM t1 NATURAL JOIN t2

e Can specify INNER, [LEFT|RIGHT|FULL] OUTER JOIN
« Also CROSS JOIN, but cannot specify ON, USING, or NATURAL

ON clause is not that challenging

e Similar to original syntax, but allows inner/outer joins
e Schema of “FROM t1 JOIN t2 ON ...” is t1.* U t2.*

i

Additional SQL Join Syntax (2)

USING and NATURAL joins are more complicated
e SELECT ... FROM t1 JOIN t2 USING (al, a2, ...)
e SELECT ... FROM t1 NATURAL JOIN t2

e Join condition is inferred from the common column names
(NATURAL JOIN), or generated from the USING clause

e Also includes a project to eliminate duplicate column names
(project is part of the FROM clause; affects WHERE predicate)

For SELECT * FROM t1 NATURAL JOIN t2, or
SELECT * FROM t1 JOIN t2 USING (al, a2, ...):

e Denote the join columns as JC. These have no table name.
« For natural join, JC = t1 n t2; otherwise, JC = attrs in USING clause

e FROM clause’s schema is JC U (t1 - JC) U (t2 - JC)

6N//

i

Additional SQL Join Syntax (3)

For SELECT * FROM t1 NATURAL [??7] JOIN t2:
e Schemas: tl(a, b) and t2(a, c)
e FROM schema: (aq, t1.b, t2.c)
For natural inner join:
e Project can use either t1.a or t2.a to generate a
For natural left outer join:
e Project should use tl.a; t2.a may be NULL for some rows
e (Similar for natural right outer join, except t2.a is used)
For natural full outer join:

e Project should use COALESCE(t1.a, t2.a), since either t1.a
or t2.a could be NULL

7 /
P — s
Additional SQL Join Syntax (4)

SELECT tl.a FROM t1 NATURAL JOIN t2
e Schemas: tl(a, b) and t2(a, c)
e FROM schema: (a, t1.b, t2.c)

This query is not valid under the ANSI standard,
because there is no t1.a outside the FROM clause

e Some databases (e.g. MySQL) will allow this query
This query is valid:
e SELECT a, t2.c FROM t1 NATURAL JOIN t2

e (Technically, can also say “SELECT a, c” because c won't
be ambiguous)

: /
N/
Additional SQL Join Syntax (5)

SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN t3
e Schemas: tl(a, b), t2(a, c), t3(a, d)
e FROM schema: (a, t1.b, t2.c, t3.d)
This query presents another challenge
Step 1: t1 NATURAL JOIN t2
e Join condition is: tl.a =t2.a
e Result schemais (aq, t1.b, t2.c)
Step 2: natural-join this result with t3
e Join condition is: a = t3.a
e Problem: column-reference a is ambiguous

i

Additional SQL Join Syntax (6)

SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN t3
e Schemas: tl(a, b), t2(a, c), t3(a, d)
e FROM schema: (a, t1.b, t2.c, t3.d)
Generate placeholder table names to avoid ambiguities
Step 1 (revised): t1 NATURAL JOIN t2
e Join condition is: tl.a =t2.a
e Result schema is #R1(a, t1.b, t2.c)
Step 2 (revised): natural-join this result with t3

e Join condition is: #R1l.a =t3.a
e Result schema is #R2(a, t1.b, t2.c, t3.d)

N/

i

Mapping SQL Joins into Plans

Summary: translating SQL joins has its own challenges

Primarily center around natural joins, and joins with
the USING clause:

e Must generate an appropriate schema to eliminate
duplicate columns

e Must use COALESCE() operations on join-columns used
in full outer joins

e May need to deal with ambiguous column names when
more than two tables are natural-joined together

(All surmountable; just annoying...)

11

Nested Subqueries

SQL queries can also include nested subqueries

Subqueries can appear in the SELECT clause:

e SELECT customer id,
(SELECT SUM(balance)
FROM loan JOIN borrower b
WHERE b.customer_id = c.customer_id) tot_bal
FROM customer c;

e (Compute total of each customer’s loan balances)
Must be a scalar subquery

e Must produce exactly one row and one column
This is almost always a correlated subquery

e Inner query refers to an enclosing query’s values

e Requires correlated evaluation to compute the results

N/

Nested Subqueries (2)

Subqueries can also appear in the FROM clause:

e SELECT u.username, email, max_score
FROM users u,
(SELECT username, MAX(score) AS max_score

FROM game_scores GROUP BY username) AS s
WHERE u.username = s.username;

Called a derived relation

e The table is produced by a subquery, instead of being read
from a file (a.k.a. a base relation)

Cannot be a correlated subquery
e ..atleast, not with respect to the immediately enclosing query

e Could still be correlated with a query further out, if parent
appears in a SELECT expression, or a WHERE predicate, etc.

Nested Subqueries (3)

Subqueries can also appear in the WHERE clause:

e SELECT employee_id, last_name, first_name
FROM employees e WHERE e.is_manager = 0 AND
EXISTS (SELECT * FROM employees m
WHERE m.department = e.department AND
m.is_manager = 1 AND m.salary < e.salary);

e (Find non-manager employees who make more money
than some manager in the same department)

Also, IN/NOT IN operators, ANY/SOME/ALL queries,
and scalar subqueries as well

Again, could be a correlated subquery, and often is. ®

N/

e

Nested Subqueries (4)

Previous example:

e SELECT employee_id, last_name, first_name
FROM employees e WHERE is_manager = 0 AND
EXISTS (SELECT * FROM employees m
WHERE m.department = e.department AND
m.is_manager = 1 AND m.salary < e.salary);

Note that EXISTS/NOT EXISTS can complete after only
one row is generated by subquery

e Don’t need to evaluate entire subquery result...

e Definitely want to optimize subplan to produce first row
as quickly as possible

/\\/

i

Subqueries in FROM Clause

FROM subqueries are the easiest to deal with! ©

e SELECT u.username, email, max _score
FROM users u,
(SELECT username, MAX(score) AS max_score

FROM game_scores GROUP BY username) AS s
WHERE u.username = s.username;

To generate execution plan for full query:

e Simply generate execution plan for the derived relation
(e.g. recursive call to planner with subquery’s AST)

e Use the subquery’s plan as an input into the outer query
(as if it were another table in the FROM clause)

Subqueries in FROM Clause (2)

® Our example:

e SELECT u.username, email, max_score
FROM users u,
(SELECT username, MAX(score) AS max_score

FROM game_scores GROUP BY username) AS s
WHERE u.username = s.username;

® Subquery plan: * Full plan:

u.username, u.email, s.max_score

username
MAX(score

game_scores

game_scores

17 /
N/
FROM Subqueries and Views

Views will also create subqueries in the FROM clause

e CREATE VIEW top_scores AS
SELECT username, MAX(score) AS max_score
FROM game_scores GROUP BY username;

e SELECT u.username, email, max_score
FROM users u, top_scores s
WHERE u.username = s.username;

Simple substitution of view’s definition creates a nested
subquery in the FROM clause:
e SELECT u.username, email, max_score
FROM users u, (SELECT username, MAX(score) AS max_score

FROM game_scores GROUP BY username) s
WHERE u.username = s.username;

N/

e

FROM Subqueries and Views (2)

Two options as to how this is done
Option 1:
e When view is created, database can construct a relational
algebra plan for the view, and save it.

e When a query references the view, simply use the view’s plan
as a subplan in the referencing query.

Option 2:
e When view is created, database parses and verifies the SQL,
but doesn’t generate a relational algebra plan.

e When a query references the view, modify the query’s SQL to
use the view’s definition, then generate a plan.

Second option requires more work during planning, but
potentially allows for greater optimizations to be applied

/\\/

i

Subqueries in SELECT Clause

Subqueries in the SELECT clause must be scalar subqueries:

e SELECT customer_id,
(SELECT SUM(balance) FROM loan JOIN borrower b
WHERE b.customer_id = c.customer_id) tot_bal
FROM customer c;

e Must produce exactly one row and one column

An easy, generally useful approach:
e Represent scalar subquery as special kind of expression
e During query planning, generate a plan for the subquery

e When select-expression is evaluated, recursively invoke the
query executor to evaluate the subquery to generate a result

e (Report an error if doesn’t produce exactly one row/column!)

N/

i

Subqueries in SELECT Clause (2)

Subqueries in the SELECT clause must be scalar subqueries:

e SELECT customer id,
(SELECT SUM(balance) FROM loan JOIN borrower b
WHERE b.customer_id = c.customer_id) tot_bal
FROM customer c;

e Must produce exactly one row and one column
If scalar subquery is correlated:

e Must reevaluate the subquery for each row in outer query
If scalar subquery isn’t correlated:

e Can evaluate subquery once and cache the result

e (This is an optimization; correlated evaluation will also work,
although it is obviously unnecessarily slow.)

N/

i

Subqueries in SELECT Clause (3)

Correlated scalar subqueries in the SELECT clause can
frequently be restated as a decorrelated outer join:
e SELECT customer_id,
(SELECT SUM(balance) FROM loan JOIN borrower b

WHERE b.customer_id = c.customer_id) tot_bal
FROM customer c;

Equivalent to:

e SELECT c.customer id, tot_bal
FROM customer ¢ LEFT OUTER JOIN
(SELECT b.customer_id, SUM(balance) tot_bal
FROM loan JOIN borrower b GROUP BY b.customer_id) t
ON t.customer_id = c.customer_id);

Usually, outer join is cheaper than correlated evaluation

N/

=
Scalar Subqueries in Other Clauses

Scalar subqueries can also appear in other predicates,
e.g. WHERE clauses, HAVING clauses, ON clauses, etc.

These cases are more likely to be uncorrelated, which
means they can be evaluated once and then cached

[f they are correlated, they can also often be restated as
a join in an appropriate part of the execution plan

e But, it can get significantly more complicated...

/\\/

i

Subqueries in WHERE Clause

IN/NOT IN clauses and EXISTS/NOT EXISTS predicates
can also appear in WHERE and HAVING clauses

Example: Find bank customers with accounts at any
bank branch in Los Angeles

e SELECT * FROM customer c
WHERE customer_id IN
(SELECT customer_id FROM depositor
NATURAL JOIN account NATURAL JOIN branch
WHERE branch_city = 'Los Angeles’);

[s this query correlated?
e No; inner query doesn’t reference enclosing query values

N/

e

Subqueries in WHERE Clause (2)

Again, can implement IN/EXISTS in a simple and
generally useful way:

e Create special IN and EXISTS expression operators that
include a subquery

e During planning, an execution plan is generated for each
subquery in an IN or EXISTS expression

e When IN or EXISTS expression is evaluated, recursively
invoke the executor to evaluate subquery and test
required condition
 e.g. IN scans the generated results for the LHS value

« e.g. EXISTS returns true if a row is generated by subquery, or
false if no rows are generated by the subquery

N/

e

Subqueries in WHERE Clause (3)

IN/NOT IN clauses and EXISTS/NOT EXISTS predicates can
also be correlated

e EXISTS/NOT EXISTS subqueries are almost always correlated

If subquery is not correlated, can materialize subquery
results and reuse them

e ...but they may be large; we may still end up being verrry slow
Previous approach isn’'t anywhere near ideal

e IN operator effectively implements a join operation, but
without any optimizations

e EXISTS is a bit faster, but subquery is frequently correlated

Would greatly prefer to evaluate subquery using joins,
particularly if we can eliminate correlated evaluation!

N/

Semijoin and Antijoin

Two useful relational algebra operations in the context of
IN/NOT IN and EXISTS/NOT EXISTS queries

Relations r(R) and s(S5)

The semijoin rixs is the collection of all rows in r that can
join with some corresponding row in s

e {t |t.erndt,es(join(t,t,))}

e join(t, t.) is the join condition
rixXs equivalent to I1,(rXs), but only with sets of tuples

e If rand s are multisets, these expressions are not equivalent,
since a tuple in r that matches multiple tuples in s will become
duplicated in the natural join’s result

N/

Semijoin and Antijoin (2)

The antijoin r>s is the collection of all rows in r that
don’t join with some corresponding row in s

e {t |t.ern—=3dt, es(join(t,t))}
Also called anti-semijoin, since r>s is equivalent to
r - rxs (> is the complement of x)

Both semijoin and antijoin operations are easy to
compute with our various join algorithms

e Can incorporate into theta-join implementations easily

Can use these operations to restate many IN/NOT IN
and EXISTS/NOT EXISTS queries

/\\/

=

Example IN Subquery

Find all bank customers who have an account at any
bank branch in the city they live in

e SELECT * FROM customer ¢ WHERE c.customer_city IN
(SELECT b.branch_city
FROM branch b NATURAL JOIN account a
NATURAL JOIN depositor d
WHERE d.customer_id = c.customer_id);

e Recall: branches have a branch_name and a branch_city
Inner query is clearly correlated with outer query

Naive correlated evaluation would be very slow ®
e Join three tables in inner query for every bank customer!

N/

i

Example IN Subquery (2)

Example query:
e SELECT * FROM customer c WHERE c.customer_city IN
(SELECT b.branch_city
FROM branch b NATURAL JOIN account a

NATURAL JOIN depositor d
WHERE d.customer_id = c.customer_id);

Can decorrelate by extracting inner query, modifying it to
find all branches for all customers, in one shot:
e SELECT *

FROM branch b NATURAL JOIN account a
NATURAL JOIN depositor d

e Includes tuples for each branch that each customer has
accounts at

30 | /
/\\/

i

Example IN Subquery (3)

Could take our inner query and join it against customer

e SELECT c.* FROM customer c JOIN
(SELECT * FROM branch b NATURAL JOIN account a
NATURAL JOIN depositor d) AS t
ON (t.customer_id = c.customer_id AND
c.customer_city = t.branch_city);

Problems?

e [f a customer has multiple accounts at local branches, the
customer will appear multiple times in the result

Cause: the outermost join will duplicate customer rows for
each matching row in nested query

Solution: use a semijoin to join customers to the subquery

——

i

Example IN Subquery (4)

Our original correlated query:

e SELECT * FROM customer c WHERE c.customer_city IN
(SELECT b.branch_city
FROM branch b NATURAL JOIN account a
NATURAL JOIN depositor d
WHERE d.customer_id = c.customer_id);

The decorrelated query:

e SELECT * FROM customer ¢ SEMIJOIN
(SELECT * FROM branch b NATURAL JOIN account a
NATURAL JOIN depositor d) AS t
ON (t.customer_id = c.customer_id AND
c.customer_city = t.branch_city);

(Note: writing a semijoin in SQL isn’t widely supported...)

32 | /
/\\/

i

Example NOT EXISTS Subquery

A simpler query: find customers who have no bank
branches in their home city

e SELECT * FROM customer ¢
WHERE NOT EXISTS (SELECT * FROM branch b
WHERE b.branch_city = c.customer_city);

Again, this query requires correlated evaluation

e Not as bad as previous query, since NOT EXISTS only has
to produce one row from inner query, not all the rows...

e [fthere’s an index on branch_city, this won’t be horribly
slow, but again, we are implementing a join here

e (We have fast equijoin algorithms; why not use them?)

33 /
N/
Example NOT EXISTS Subquery (2)

Example query:
e SELECT * FROM customer c

WHERE NOT EXISTS (SELECT * FROM branch b
WHERE b.branch_city = c.customer_city);

This query is very easy to write with an antijoin:

e SELECT * FROM customer ¢ ANTIJOIN branch b
ON branch_city = customer_city;

Could also write with an outer join:

e SELECT c.* FROM customer c LEFT JOIN branch b
ON branch_city = customer_city
WHERE branch_city IS NULL;

e This approach won’t create duplicates of customers, like our
previous IN example would have...

34 | /
N/

e

Summary: Nested Subqueries

Only scratched the surface of subquery translation and
optimization

e An incredibly rich topic - tons of interesting research!
Can use basic tools we discussed today to decorrelate
and optimize a pretty broad range of subqueries

e Outer joins, sometimes against group/aggregate results

e Semijoins and antijoins for set-membership subqueries
An important question, not considered for now:

e Is the translated version actually faster?
(Or when multiple options, which option is fastest?)

e A planner/optimizer must make that decision

