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SQL	Query	Translation
� Last	time,	introduced	query	evaluation	pipeline

� To	evaluate	SQL	queries,	must	solve	several	problems:
1. Implement	relational	algebra	operations	in	some	way
2. Translate	the	SQL	abstract	syntax	tree	(AST)	into	a	

corresponding	relational	algebra	plan
3. Figure	out	how	to	evaluate	plan	and	generate	results
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Plan	Creation	and	Optimization
� Some	databases	use	slightly	different	representations	
between	initial	query	plan	and	optimized	plan
� e.g.	initial	plan	uses	abstract	relational	algebra	
expressions	without	any	implementation	details	at	all

� Query	optimizer	adds	in	these	details	as	annotations
� Annotated	plan	nodes	are	called	evaluation	primitives

� They	can	be	directly	used	to	evaluate	the	query	plan
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Plan	Creation	and	Optimization
� Other	databases	use	the	same	representation	for	both

� All generated	plans	contain	implementation	details
� Initial	query	plans	may	be	very	unoptimized	and	use
the	slowest,	most	general	implementations

� Optimizations	can	replace	slow	implementations	with	
faster	ones,	and/or	apply	other	transformations

� (NanoDB	uses	this	approach)
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Evaluation	Primitives
� Implementations	of	relational	algebra	operations	are	
called	evaluation	primitives

� Don’t	always	correspond	directly	to	relational	algebra
� Example:

� SELECT	*	FROM	t WHERE	a	=	15
� σa=15(t)

� If	t is	a	heap	file:
� Could	create	two	components,	a
select	node,	and	another	file-scan
node	that	produces	all	tuples	in	t
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Evaluation	Primitives	(2)
� Example:

� SELECT	*	FROM	t WHERE	a	=	15
� σa=15(t)

� What	if	t is	ordered	or	hashed	on	attribute	a?
What	if	t has	an	(ordered	or	hashed)	index	on	a?
� Can’t	really	take	advantage	of	file	organization	or	other	access	
paths	if	select-predicate	is	applied	separately

� Can	also	create	a	file-scan	node	with	a	predicate
� Evaluation	primitives	are	often	more	powerful	than	their	
corresponding	relational	algebra	operations
� Allows	us	to	optimize	the	implementations,	then
use	the	optimizations	when	constructing	our	plans
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Evaluation	Primitives	(3)
� Example:

� SELECT	*	FROM	t AS	t1,	t AS	t2
WHERE	t1.a	<	t2.a

� Table	t is	accessed	twice,	and	is
renamed	in	query	plan

� Insert	extra	rename	nodes	into	plan?
� Sole	operation	is	to	rename	table
in	node’s	output	schema…

� (This	is	NanoDB’s approach.)
� Or,	give	plan	nodes	ability	to	handle	simple	renaming	ops?

� When	plan	nodes	produce	their	schemas,	can	easily	apply	
renaming	at	that	point

7

σ
t1.a <	t2.a

t

ρ
t1

t

ρ
t2

×



Evaluation	Primitives	(4)
� Join	operations	usually	implemented	with	theta-join

� More	advanced/flexible	than	simple	translation	using	
Cartesian	product,	or	simple	natural-join	operator

� Implementation	can	also	be	configured	to	produce	inner	
join,	or	left/right/full	outer	join,	where	supported

� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;
� Can	evaluate	in	multiple	ways:
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Evaluation	Primitives	(5)
� SELECT	*	FROM	t1,	t2	WHERE	t1.a	=	t2.a	AND	t2.b	>	5;

� Ideally,	can	implement	theta-join	to	take	advantage	of	
join	condition	when	possible
� Perform	equijoins	more	quickly
� Take	advantage	of	ordered	data,	or	indexes	on	inputs
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Evaluation	Primitives	(6)
� Many	join	implementations	can	do	several	kinds	of	join

� Implement	inner	join,	left	outer	join,	full	outer	join
� Implement	semijoin and	antijoin operations	as	well
(will	discuss	more	in	a	future	lecture)

� Configure	plan	node	to	do	the	required	operation	in	plan
� By	combining	multiple	operations	in	plan	nodes:

� Can	implement	wide	range	of	queries	without	needing	
large,	complicated	plans,	or	many	kinds	of	plan	nodes

� Can	take	advantage	of	certain	cases	to	implement	the	
operation	in	a	much	faster	way
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Plan	Evaluation
� Previous	example,	slightly	altered:

� SELECT	c FROM	t1,	t2
WHERE	t1.a	=	t2.a	AND	t2.b	>	5

� One	evaluation	approach:
� Each	node	is	evaluated	completely,	and	its	results	are	
saved	in	a	temporary	table	(postorder tree	traversal)
� “Evaluate”	t1	à t1 (no-op)
� Evaluate	σb>5(t2)	à temp1
� Evaluate					t1.a=t2.a(t1,	temp1)	à temp2
� Evaluate	Πt2.c(temp2)	à result
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Plan	Evaluation	(2)
� Called	materialized	evaluation

� Each	node’s	results	are	materialized into
a	temporary	table	(possibly	onto	disk)

� Issues	with	this	approach?
� For	large	tables,	causes	many	additional disk	accesses	on	
top	of	ones	already	required	for	plan-node	evaluation!

� (Small	temporary	results	can	be	held	in	memory.)
� Another	evaluation	approach:		pipelined	evaluation

� Evaluate	multiple	plan	nodes	simultaneously
� Results	are	passed	tuple-by-tuple	to	the	next	plan	node
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Plan	Evaluation	(3)
� Several	ways	to	implement	pipelined	evaluation
� Demand-driven pipeline:

� Rows	are	requested	(pulled)	from	top	of	plan
� When	a	plan-node	must	produce	a	row,	it
requests	rows	from	its	child	nodes	until	it
can	produce	one

� Example:
� Top-level	output	loop	requests	a	row	from	Πt2.c node
� Πt2.c node	requests	the	next	row	from					t1.a=t2.a node
� t1.a=t2.a node	requests	rows	from	its	children	until	it	can	
produce	a	joined	row

� σt2.b>5 node	scans	through	t2	until	it	finds	a	row	with	b >	5
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Plan	Evaluation	(4)
� Producer-driven pipeline:

� Each	plan-node	independently	generates
rows	and	pushes	them	up	the	plan

� Plan	nodes	communicate	via	queues
� Primarily	used	in	parallel	databases

� Planner	hands	subplans (or	individual	plan	nodes)	to	
different	processors	to	compute

� Processors	independently	evaluate	plan	components	and	
push	tuples	to	the	next	stage	in	the	plan

� Sequential	databases	generally	use	demand-driven	
pipelines	for	query	evaluation
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Blocking	Operations
� Not	all	operations	can	be	pipelined
� An	obvious	one:		sorting

� SELECT	*	FROM	t WHERE	a	<	25	ORDER	BY	b;
� Sort	plan-node	must	completely	consume
its	input	before	it	can	produce	any	rows

� These	are	called	blocking	operations
� Some	databases	take	blocking	operations	into	account

� e.g.	PostgreSQL’s planner	computes	two	estimates	for	each	
plan	node:
� the	cost	to	produce	all	rows
� the	cost	to	produce	the	first	row

� For	e.g.	EXISTS	subquery,	want	to	minimize	time	to	first	row
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Blocking	Operations	(2)
� Some	operations	can	be	implemented	in	blocking	or	in	
pipelined	ways

� Grouping/aggregation	operation
� SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;
usernameGsum(score)	as total_score(game_scores)

� If	incoming	tuples	are	already	sorted	on	username:
� Can	apply	aggregate	function	to	runs	of	tuples	with	same	
username value,	and	produce	output	rows	along	the	way

� If	incoming	tuples	are	not	sorted	on	username:
� Must	either	use	a	hash-table,	or	must	sort	internally
� Either	way,	the	operation	will	be	blocking
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SQL	Query	Translation	(2)
� For	now,	ignore	the	question	of	how	to	implement	
specific	relational	algebra	operations
� (Most	are	straightforward	anyway)

� SQL	doesn’t	map	directly	to	the	relational	algebra
� Nested	subqueries!!!!		Correlated	evaluation!!!!
� Grouping	and	aggregation	is	also	complicated

� Basic SQL	syntax	maps	easily	to	relational	algebra
� Explored	this	in	CS121
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Mapping	Basic	SQL	Queries
� SELECT	*	FROM	t1,	t2,	…

� t1	× t2	× …
� SELECT	*	FROM	t1,	t2,	…	WHERE	P

� σP(t1	× t2	× …)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…

� e1,	e2,	…	are	expressions	using	columns	in	t1,	t2,	…
� a1,	a2,	…	are	aliases	(alternate	names)	for	e1,	e2,	…
� Πe1	as	a1,e2	as	a2,…(t1	× t2	× …)

� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P
� Πe1	as	a1,e2	as	a2,…(σP(t1	× t2	× …))
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Mapping	Basic	SQL	Queries	(2)
� SELECT	e1	AS	a1,	e2	AS	a2,	…	FROM	t1,	t2,	…	WHERE	P

� Πe1,e2,…(σP(t1	× t2	× …))
� This	mapping	is	somewhat	confusing,	because	many	DBs	
accept	queries	that	don’t	work	with	this	translation

� Example:		SELECT	a	+	c	AS	v	FROM	t	WHERE	v	<	25;
� Following	the	above	mapping:		Πa+c as	v(σv<25(t))
� Doesn’t	make	sense;	v isn’t	defined	in	select	predicate!

� The	SQL	standard	is	very	clear	(and	simple!):
� P	is	only	allowed	to	refer	to	columns	in	the	FROM	clause
� (ignoring	correlated	evaluation	for	the	time	being)
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Mapping	Basic	SQL	Queries	(3)
� Can	easily	support	non-standard	syntax	by	recording	
select-clause	aliases	in	the	AST	representation

� Example:		SELECT	a	+	c	AS	v	FROM	t	WHERE	v	<	25;
� Traverse	SELECT	clause;	record	alias:		v =	a +	c
� In	the	WHERE	predicate:		anytime	v is	used,	replace	it	
with	expression	a +	c
� Also	do	this	with	ON	clauses	in	joins,	HAVING	clauses,	etc.

� Allows	us	to	follow	previous	mapping:		Πa+c as	v(σa+c<25(t))

� Other	techniques	as	well,	but	same	idea
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SQL	Grouping/Aggregation
� Grouping	and	aggregation	are	significantly	more	difficult
� SELECT	g1,	g2,	…,	e1,	e2,	…	FROM	t1,	t2,	…	WHERE	Pw
GROUP	BY	g1,	g2,	…	HAVING	Ph
� g1,	g2,	…	are	expressions	whose	values	are	grouped	on
� e1,	e2,	…	are	expressions	involving	aggregate	functions

� e.g.	MIN(),	MAX(),	COUNT(),	SUM(),	AVG()
� Approximately maps	to:		σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))

� What	makes	this	challenging:
� g1,	g2,	…	are	not	required	to	be	simple	column	refs
� e1,	e2,	…	are	not	required	to	be	single	aggregate	fns
� Ph can	also	contain	aggregate	function	calls	not	in	ei
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SQL	Grouping/Aggregation	(2)
� This	is	an	acceptable	grouping/aggregate	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Clearly	can’t	use	our	mapping	from	last	slide:
� σPh(g1,g2,…Ge1,e2,…(σPw(t1	× t2	× …)))
� e.g.	Ph is	SUM(f)	<	20,	but	we	don’t	compute	SUM(f)	in	G step

� Problem:		SQL	mixes	grouping/aggregation,	projection	
and	selection	parts	of	the	query	together

� Need	to	rewrite	query	to	separate	these	different	parts
� Makes	translation	into	relational	algebra	straightforward
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SQL	Grouping/Aggregation	(3)
� Our	initial	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� Step	1:		Identify	and	extract	all	aggregate	functions
� Replace	with	auto-generated	column	references
� (Use	names	that	users	can’t	enter,	e.g.	starting	with	“#”)

� Rewrite	the	query:
� SELECT	a	- b	AS	g,	3	*	"#A1"	+ "#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c) #A2	=	MAX(d	*	e)										#A3	=	SUM(f)

� Now	we	know	what	aggregates	we	need	to	compute
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SQL	Grouping/Aggregation	(4)
� Rewritten	query:

� SELECT	a	- b	AS	g,	3	*	"#A1"	+	”#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c) #A2	=	MAX(d	*	e)										#A3	=	SUM(f)

� Now	we	can	translate	grouping/aggregation	and	HAVING	
clause	into	relational	algebra:
� σ#A3	<	20(a	- bGMIN(c) as	#A1,	MAX(d *	e) as	#A2,	SUM(f) as	#A3(t))

� Finally,	wrap	this	with	a	suitable	project,	based	on	SELECT	
clause	contents
� Πa - b as	g,	3	*	#A1	+	#A2	as	“3	*	MIN(c)	+	MAX(d	*	e)”	(	…	)
� Note:		second	expression’s	name	is	implementation-specific
� Can	assign	a	placeholder	name,	e.g.	“unnamed1”,	…
� Or,	can	generate	a	name	based	on	expression	being	computed
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SQL	Grouping/Aggregation	(5)
� Unfortunately,	we	still	have	a	problem…
� Our	translation:		Πa - b as	g,	…	(σ#A3	<	20(a	- bG…(t)))
� The	project	operation	can’t	compute	expression	a	- b

� a	- b is	already	computed	in	grouping/aggregation	phase
� Before	attempting	to	project,	we	really	also	need	to	
substitute	in	placeholders	for	grouping	expressions
� SELECT	a	- b	AS	g,	3	*	"#A1"	+	”#A2"	FROM	t
GROUP	BY	a	- b	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)
� #G1	=	a	- b
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SQL	Grouping/Aggregation	(6)
� Finally,	replace	instances	of	grouping	expressions	in	
the	SELECT	clause	with	the	corresponding	names

� Translated:
� SELECT	"#G1"	AS	g,	3	*	"#A1"	+	”#A2"	FROM	t
GROUP	BY	a	- b	[AS	"#G1"]	HAVING	"#A3"	<	20
� #A1	=	MIN(c)										#A2	=	MAX(d	*	e)										#A3	=	SUM(f)
� #G1	=	a	- b

� Now	we	can	carry	on	with	our	project,	as	before
� Π#G1 as	g,	…	(σ#A3<20(a-b as	#G1G…(t)))

� Aside:		this	also	allows	us	to	handle	crazy	SQL	like	
SELECT	3	*	(a	- b)	AS	g,	…	GROUP	BY	a	- b …
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SQL	Grouping/Aggregation	(7)
� Finally,	this	is	an	ANSI	SQL	query:

� SELECT	a	- b	AS	g,	3	*	MIN(c)	+	MAX(d	*	e)	FROM	t
GROUP	BY	a	- b	HAVING	SUM(f)	<	20

� GROUP	BY	and	HAVING	clauses	cannot	use	SELECT	aliases
� Some	databases	allow	the	nonstandard	“GROUP	BY	g”	
instead	of	requiring	the	ANSI-standard	“GROUP	BY	a	- b”
� Similarly,	HAVING	can	refer	to	renamed	aggregate	expressions

� Can	use	our	alias	techniques	from	earlier
� e.g.	traverse	SELECT,	record	alias:		g =	a - b
� If	query	says	“GROUP	BY	g”,	substitute	in	definition	of	g
� (Apply	similar	techniques	to	HAVING	clause)
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Join	Expressions
� Original	SQL	form:

� SELECT	…	FROM	t1,	t2,	…	WHERE	P
� List	of	relations	in	FROM	clause
� Any	join	conditions	specified	in	WHERE	clause
� Can’t	specify	outer	joins

� SQL-92	introduced	several	new	forms:
� SELECT	…	FROM	t1	JOIN	t2	ON	t1.a	=	t2.a
� SELECT	…	FROM	t1	JOIN	t2	USING	(a1,	a2,	…)
� SELECT	…	FROM	t1	NATURAL	JOIN	t2
� Can	specify	INNER,	[LEFT|RIGHT|FULL]	OUTER	JOIN

� Also	CROSS	JOIN,	but	cannot	specify	ON,	USING,	or	NATURAL
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Join	Expressions	(2)
� SQL	FROM	clauses	can	be	much	more	complex:

� SELECT	*	FROM	t1,	t2	LEFT	JOIN	t3	ON	(t2.a	=	t3.a)
WHERE	t1.b	>	t2.b;

� FROM	clause	is	comma-separated	list	of	join	expressions
� JOIN	expressions	are	binary	operations…

� Operate	on	two	relations;	left-associative
� Similarly,	interpret	FROM	join_expr,	join_expr as	a	
binary	operation
� A	Cartesian	product	between	two	join	expressions
� Expressions	themselves	may	involve	JOIN	operations	
(the	“,”	operator	is	lower	precedence	than	JOIN	keyword)
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Join	Expressions	(3)
� FROM	clause	is	parsed	into	a	binary	tree	of	join	exprs

� Can	use	parentheses	to	override	precedence,	where	
necessary

� This	binary	tree	is	straightforward	to	translate
� Translate	left	subtree into	relational	algebra	plan
� Translate	right	subtree into	relational	algebra	plan
� Create	a	new	plan	from	these	subtrees based	on	the	kind	
of	join	being	performed

� Note:		This	is	a	naïve	translation	of	the	join	expression,	
and	probably	horribly	inefficient
� Will	discuss	solutions	for	this	in	the	future
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