Relational Database

System Implementatlon

i

Record-Level File Organization

Last time, finished discussing block-level organization
Can also organize data files at the record-level
Heap file organization

e Arecord can appear anywhere within the data file

e Very simple; requires little additional structure

e Currently the most common file organization
Sequential file organization

e Records are stored in sequential order, based on a search key
Hashing file organization

e Records are stored in blocks based on a hash key
Multitable clustering file organization — mentioned earlier

BN//

i

Sequential File Organization

Records stored in sequential order based on search key

If accessing the file based on the search key:

e Sequential scan of the file produces records in sorted order
« No additional work needed for producing sorted output

e Can find individual records, or ranges of records, using binary
search on the file

e (In many cases, also allows more efficient implementations of
joins, grouping, and duplicate elimination)
If not accessing based on the search key:
e Records are in no specific order
e No different from accessing a heap file

N/
Sequential File Organization (2)

Search keys can contain multiple columns
Given a table T(A4, B, C, D), with search-key (4, B, C):

* Rows are ordered based on values of column A
* Rows with the same value of column A are ordered on B
° etc.
e If table is sorted on (4, B, (), itis also sorted on
(A) and (A, B)
[f a query needs rows from T in order of (A4) or
(4, B), again no sorting is required!

N/
Sequential File Organization (3)

How do we maintain sequential order of records?
e How to insert new records into sequential file?
e What about deleting records?
e Clearly, rearranging the entire file is unacceptable

A simple (naive) implementation strategy:

e Add a pointer to each record, specifying next record in
the file

e

\

————————
Sequential Files

Example:

e Accounts, ordered by
branch name

e [nitially, each record pointer
references the next record

When new record is added

e [f block containing previous
record has space for a new
record, add it there

e Otherwise, append record
to end of file

e Update pointer chain to
reflect new record order

A-217

Brighton

750

.
A-101 | Downtown | 500 HP
A-110 | Downtown | 600 Hg
A-215 Mianus 700 | o—
A-102 | Perryridge | 400 Hg
A-201 Perryridge | 900 | e—
A-218 | Perryridge | 700 ?
A-217 Brighton 750 H?
A-101 | Downtown | 500 | e
A-110 | Downtown | 600 Hg
A-215 Mianus 700 | o—
A-102 | Perryridge | 400 H?
A-201 Perryridge | 900 | e—
A-218 | Perryridge | 700 ?
A-888 | North Town | 700 | &—

i

Sequential File Organization (4)

Ideally, key order and physical layout will match closely

e Could maintain extra space in blocks to help keep nearby
tuples in the same (or nearby?) blocks

e After many inserts and deletes, file will eventually become
disorganized

Without maintenance, sequential scans or binary searches
would eventually become very expensive
e Disk seek time would kill performance

e (S5D would avoid this problem!)

Must periodically reorganize the file to ensure physical
order of records matches key order

e (Could do this when system load is typically low)

SN//

i

Hashing File Organization

Records are stored in a location based on a hash key

If accessing the file based on the hash key:
e Very fast for finding records with a specific value

e Doesn't support general inequality comparisons, ranges, etc.!
« Really only good for equality comparisons

If not accessing based on the hash key:
e Again, records are in no specific order
e No different from accessing a heap file
As before, hash key can contain multiple columns

e Unfortunately, far less useful than search keys with multiple
columns

N/
Hashing File Organization (2)

In-memory hash tables:

e Can use a fixed number of bins with overflow chaining,
or open addressing, to handle placement of entries

e As the table becomes full, it must periodically be
reorganized

* Increase number of locations, and spread out the entries

How do we manage a hash table of records in a file?

e Again, rearranging the entire file would be unacceptable

/\\/

=

Static Hashing

Generally, open addressing isn't well suited to data files

Create some number of buckets to store records
e Use overflow chaining when a bucket is full

A simple solution: static hashing

e Create a fixed number of buckets B
« Different ways to represent buckets in the data file
« e.g. each bucket is one disk block, or N sequential disk blocks

e Hash key k is mapped to a bucket b with a hash function
h(k)

e Store each record into the bucket specified by the hash
function

11

Static Hashing (2)

Devote part of file to mapping
from bucket # to block #

e e.g. block 0 holds mapping

If bucket holds any records,
entry specifies block number
where records are stored

e Otherwise, use some value to
indicate an empty bucket

As records are added to file,
assign blocks to buckets as needed

lock 0 (Mapping

Bucket 0: 2
Bucket 1: O
Bucket 2: 1
Bucket 3: O

lock 1 (Bucket 2

Record 2.1
Record 2.2
Record 2.3

lock 2 (Bucket

Record 0.1
Record 0.2

12

Static Hashing (3)

[f a bucket becomes full, must
overflow records into another
location!

Several options for managing
overflow records

e e.g. create linked chains of
blocks, as before

If a record is deleted from a chain
of blocks, can move records from
overflow blocks into earlier blocks

lock 0 (Mappln

Bucket O:

Bucket 1: 0
Bucket 2: 1
Bucket 3: O

3lock 1 (Bucket 2

Record 2.1
Record 2.2
Record 2.3

)verflow: Block

3lock 2 (Bucket 0

Record 0.1
Record 0.2

3lock 3 (Bucket 2

Record 2.4
Record 2.5

13 /
/\\/
il

Static Hashing (4)

Static hashing has some big limitations:

Data files frequently grow in size over their lifetime
e Must predict how many buckets are necessary at start

e If buckets end up being too full, lookups will involve lots of
scanning through overflow blocks

May end up with data that doesn’t hash well!

e e.g. data doesn’t have a good distribution for the number of
buckets, or if the hash function isn’t very good

e Again, end up with some buckets that hold many records
Would prefer a dynamic hashing mechanism

e Allow the number of buckets to change over time, without
requiring the entire data file to be reorganized

N/

e

File Organization: Summary

Simplest file organization is heap file organization
e No particular order for records in the file
e Requires no additional record-level organization

Other file organizations can dramatically improve
access performance, but only in specific situations!

e Can use alternate organization to make queries fast...

e [f query doesn’t match file organization’s characteristics,
it’s equivalent to accessing a heap file

If physical organization doesn’t correspond to logical
organization, access can be very slow

e e.g. increased disk seeks for out-of-order sequential file

N/

i

File Organization: Summary (2)

If a sequential or heap file changes frequently, periodic
reorganization may be required

e Will likely require moving large numbers of records

Most common solution:
e Store the records themselves in a heap file

e Build one or more indexes into the heap file
« Indexes are generally either ordered (typical) or hashed
» Indexes reference records in heap file using record pointers
e Index entries are much smaller than table records:
 Can fit many more into each disk block
« Much faster to move and reorganize them

6 /
N/
File Organization: Summary (3)

When we are evaluating a query:
e If we can, utilize indexes to do faster lookups in heap file
e (Or, just evaluate query against the index!)
e [f not, just do a sequential scan through the heap file

Will talk much more about indexes in a few weeks!
For now, just focus on queries against heap files

N/

e

SQL Query Evaluation

Relational databases frequently use SQL query language to
specify queries
Databases don’t execute SQL directly!

e Very complicated language

e Difficult to transform/optimize before executing

SQL is transformed into a plan based on the relational
algebra, and then executed by the query evaluator

First step is to translate SQL into an abstract syntax tree

In NanoDB, top-level object is a Command
e Subclasses for various commandes, e.g. CreateTableCommand

If command is a DDL operation, it is executed directly

18

Query Evaluation Pipeline

DML operations are processed through these stages:

e e.g. SELECT, INSERT, UPDATE, DELETE

SQL SQL
query parser

abstract
syntax
tree

SQL

translator

relational
algebra
plan

query plan
optimizer

%{

A

A

-

table statistics

annotated

N evalue.1t10n query
plan engine result
table data

19

Query Evaluation Pipeline (2)

SQL queries are parsed into an abstract syntax tree

e AST represents the query as a hierarchy of related
SELECT-FROM-WHERE operations

e Sometimes called “SFW blocks”

SQL I SQL abstract
i—% t
{ query | | | paiser S{?eﬁi_‘x |
e e —
relational annotated -
SQL B query Plan N evalueoltlon query
translator plan optimizer plan engine result
A A

-

table statistics table data

20

Query Evaluation Pipeline (3)

Query AST is then translated into an initial query plan
e Plan is based on relational algebra operations
e Can apply some high-level optimizations to the AST
e Also, join ordering can be determined in this phase

abstract
SQL SO1E syntax
query parser i
O P Sy I

| SQL rzllag‘gg?;l query plan aer;gé’é;tsg evaluation query
| | translator plan | optimizer plan engine result
ey) A

-

table statistics table data

21

Query Evaluation Pipeline (4)

Initial query plan is then optimized
e Optimizer applies additional optimizations to plan

e Determines final execution details for each plan node
- e.g. best algorithm to use, which indexes to use, etc.

SQL SQL
query parser

abstract
syntax
tree

________ 1
relational annotated -
SQL B quel.'y Plan O | evalueoltlon query
translator plan optimizer plan | engine result
4 —_—]
table statistics table data

Query Evaluation Pipeline (5)

Finally, execution plan is evaluated against the tables!
e At this point, operation is generally very straightforward

SQL SQL abstract
{ query }% parser S}t,?;:x

relational annotated -
SQL B query Plan N | evalue.1t10n query | |
translator plan optimizer plan | engine result |

4 4 L& A _ -

-

table statistics table data

23 7 /
/\\/
/

SQL Data Manipulation

Can handle SELECT, INSERT, UPDATE, DELETE all with
same evaluation pipeline

A good idea anyway, since INSERT, UPDATE, DELETE can all
have subqueries in them!

INSERT INTO t1 (a, b, c)
SELECT a, b + 2, c - 5 FROM t2 WHERE d > 5;

UPDATEt1 SETa=a+5
WHERE c IN (SELECT ¢ FROM t2);

UPDATE t1 SET a = (SELECT a FROM t2 WHERE t1.b = t2.b);

DELETE FROM t1
WHERE a = (SELECT MAX(a) FROM t2 WHERE t1.b = t2.b);

/\\/

i

SQL Data Manipulation (2)

All four statements generate a set of tuples...
e Only difference is what we do with them.
e SELECT selects tuples for display/transmission to client
e INSERT selects tuples for insertion into a table
e UPDATE selects tuples for modification
e DELETE selects tuples for removal
NanoDB query evaluator takes an execution plan, and a
tuple-processor that handles the results

e For each tuple produced by the execution plan, the tuple-
processor does something with the tuple

e e.g. the TupleUpdater modifies the tuple based on the
UPDATE statement issued to the database

N/

e

SQL Data Manipulation (3)

EvalStats QueryEvaluator.executePlan(
PlanNode plan, TupleProcessor processor)

Evaluator also returns statistics about the evaluation

e Databases generally tell you how many rows were
selected/inserted /updated/deleted, and how long the
query took

Not all tuples are created equal!
e Some tuples can simply be displayed or sent to client
e Some tuples must support modification or deletion
e Databases also have a notion of “I-values” and “r-values”

N/

e

L-Values and R-Values

Only certain expressions can be used on the left-hand side
of an assignment operation

Example:a = 5 + b * 3¢

e a,b, 5 and 3 are all values

e Only some of these can be the target of an assignment
L-values are values with an associated location/address

e Knowing the location allows us to modify the value

e “L’ indicates it can appear on left-hand side of an assignment
R-values don't have a location

e i.e. the value cannot be a target of an assignment operation
e “R” indicates it must be on right-hand side of the assignment

27 /
N/
Kinds of Tuples

Different flavors of tuples in a database engine

Some tuples are backed by a page in a database table
e Reading values from tuple come straight from data page
e Writing to the tuple modifies the data page in memory
e (page must then be flushed back to disk)

Block 352 (" PageTuple Object |

file: tl.dat
block: 353
offset: 2
data: ...

Block 353

Block 354

N/

e

Kinds of Tuples (2)

Other tuples contain computed values, and are stored
in memory only

e This query generates computed results:

SELECT username, SUM(score) AS total_score
FROM game_scores GROUP BY username;

 NanoDB represents these as TupleLiteral objects

Many database implementations represent all tuples in
the same format, in memory buffers

e Allows them to be written to disk very easily, if needed

/\\/

i

Kinds of Tuples (3)

SELECT and INSERT...SELECT statements don’t require
lvalue tuples

e Results are either displayed, or added to a data file

UPDATE and DELETE require lvalue tuples

e Selected tuples are modified or removed!
« Actually modifies a data file

e Plans generated for UPDATE and DELETE must take this
into account

e Constrains the optimizations that may be employed

