
CS122	– Lecture	3
Winter	Term,	2017-2018

Record-Level	File	Organization
� Last	time,	finished	discussing	block-level	organization
� Can	also	organize	data	files	at	the	record-level
� Heap	file	organization

� A	record	can	appear	anywhere	within	the	data	file
� Very	simple;	requires	little	additional	structure
� Currently	the	most	common	file	organization

� Sequential	file	organization
� Records	are	stored	in	sequential	order,	based	on	a	search	key

� Hashing	file	organization
� Records	are	stored	in	blocks	based	on	a	hash	key

� Multitable	clustering	file	organization – mentioned	earlier

2

Sequential	File	Organization
� Records	stored	in	sequential	order	based	on	search	key
� If	accessing	the	file	based	on	the	search	key:

� Sequential	scan	of	the	file	produces	records	in	sorted	order
� No	additional	work	needed	for	producing	sorted	output

� Can	find	individual	records,	or	ranges	of	records,	using	binary	
search	on	the	file

� (In	many	cases,	also	allows	more	efficient	implementations	of	
joins,	grouping,	and	duplicate	elimination)

� If	not	accessing	based	on	the	search	key:
� Records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file

3

Sequential	File	Organization	(2)
� Search	keys	can	contain	multiple	columns
� Given	a	table	T(A,	B,	C,	D),	with	search-key	(A,	B,	C):

� Rows	are	ordered	based	on	values	of	column	A
� Rows	with	the	same	value	of	column	A are	ordered	on	B
� etc.
� If	table	is	sorted	on	(A,	B,	C),	it	is	also	sorted	on
(A)	and	(A,	B)

� If	a	query	needs	rows	from	T in	order	of	(A)	or
(A,	B),	again	no	sorting	is	required!

4

Sequential	File	Organization	(3)
� How	do	we	maintain	sequential	order	of	records?

� How	to	insert	new	records	into	sequential	file?
� What	about	deleting	records?
� Clearly,	rearranging the	entire	file	is	unacceptable

� A	simple	(naïve)	implementation	strategy:
� Add	a pointer	to	each	record,	specifying next	record	in	
the	file

5

Sequential	Files
� Example:

� Accounts,	ordered	by
branch	name

� Initially,	each	record	pointer
references	the	next	record

�When	new	record	is	added
� If	block	containing	previous
record	has	space	for	a	new
record,	add	it	there

� Otherwise,	append	record
to	end	of	file

� Update	pointer	chain	to
reflect	new	record	order

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700

A-217 Brighton 750
A-101 Downtown 500
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-888 North Town 700

6

Sequential	File	Organization	(4)
� Ideally,	key	order	and	physical	layout	will	match	closely

� Could	maintain	extra	space	in	blocks	to	help	keep	nearby	
tuples	in	the	same	(or	nearby?)	blocks

� After	many	inserts	and	deletes,	file	will	eventually	become	
disorganized

� Without	maintenance,	sequential	scans	or	binary	searches	
would	eventually	become	very expensive
� Disk	seek	time	would	kill	performance
� (SSD	would	avoid	this	problem!)

� Must	periodically	reorganize	the	file	to	ensure	physical	
order	of	records	matches	key	order
� (Could	do	this	when	system	load	is	typically	low)

7

Hashing	File	Organization
� Records	are	stored	in	a	location	based	on	a	hash	key
� If	accessing	the	file	based	on	the	hash	key:

� Very	fast	for	finding	records	with	a	specific	value
� Doesn’t	support	general	inequality	comparisons,	ranges,	etc.!

� Really	only	good	for	equality	comparisons
� If	not	accessing	based	on	the	hash	key:

� Again,	records	are	in	no	specific	order
� No	different	from	accessing	a	heap	file

� As	before,	hash	key	can	contain	multiple	columns
� Unfortunately,	far	less	useful	than	search	keys	with	multiple	
columns

8

Hashing	File	Organization	(2)
� In-memory	hash	tables:

� Can	use	a	fixed	number	of	bins	with	overflow	chaining,	
or	open	addressing,	to	handle	placement	of	entries

� As	the	table	becomes	full,	it	must	periodically	be	
reorganized

� Increase	number	of	locations,	and	spread	out	the	entries

� How	do	we	manage	a	hash	table	of	records	in	a	file?
� Again,	rearranging	the	entire	file	would	be	unacceptable

9

Static	Hashing
� Generally,	open	addressing	isn’t	well	suited	to	data	files
� Create	some	number	of	buckets	to	store	records

� Use	overflow	chaining	when	a	bucket	is	full
� A	simple	solution:		static	hashing

� Create	a	fixed number	of	buckets	B
� Different	ways	to	represent	buckets	in	the	data	file
� e.g.	each	bucket	is	one	disk	block,	or	N sequential	disk	blocks

� Hash	key	k is	mapped	to	a	bucket	bwith	a	hash	function	
h(k)

� Store	each	record	into	the	bucket	specified	by	the	hash	
function

10

Static	Hashing	(2)
� Devote	part	of	file	to	mapping
from	bucket	#	to	block	#
� e.g.	block	0	holds	mapping

� If	bucket	holds	any	records,
entry	specifies	block	number
where	records	are	stored
� Otherwise,	use	some	value	to
indicate	an	empty	bucket

� As	records	are	added	to	file,
assign	blocks	to	buckets	as	needed

Bucket 0: 2
Bucket 1: 0
Bucket 2: 1
Bucket 3: 0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)

11

Static	Hashing	(3)
� If	a	bucket	becomes	full,	must
overflow	records	into	another
location!

� Several	options	for	managing
overflow	records
� e.g.	create	linked	chains	of
blocks,	as	before

� If	a	record	is	deleted	from	a	chain
of	blocks,	can	move	records	from
overflow	blocks	into	earlier	blocks

Bucket 0: 2
Bucket 1: 0
Bucket 2: 1
Bucket 3: 0

Block	0	(Mapping)

Record 2.1
Record 2.2
Record 2.3

Block	1	(Bucket	2)

Record 0.1
Record 0.2

Block	2	(Bucket	0)

Overflow:		Block	3

Record 2.4
Record 2.5

Block	3	(Bucket	2)

12

Static	Hashing	(4)
� Static	hashing	has	some	big	limitations:
� Data	files	frequently	grow	in	size	over	their	lifetime

� Must	predict	how	many	buckets	are	necessary	at	start
� If	buckets	end	up	being	too	full,	lookups	will	involve	lots	of	
scanning	through	overflow	blocks

� May	end	up	with	data	that	doesn’t	hash	well!
� e.g.	data	doesn’t	have	a	good	distribution	for	the	number	of	
buckets,	or	if	the	hash	function	isn’t	very	good

� Again,	end	up	with	some	buckets	that	hold	many	records
� Would	prefer	a	dynamic	hashingmechanism

� Allow	the	number	of	buckets	to	change	over	time,	without	
requiring	the	entire	data	file	to	be	reorganized

13

File	Organization:		Summary
� Simplest	file	organization	is	heap	file	organization

� No	particular	order	for	records	in	the	file
� Requires	no	additional	record-level	organization

� Other	file	organizations	can	dramatically	improve	
access	performance,	but	only	in	specific	situations!
� Can	use	alternate	organization	to	make	queries	fast…
� If	query	doesn’t	match	file	organization’s	characteristics,	
it’s	equivalent	to	accessing	a	heap	file

� If	physical	organization	doesn’t	correspond	to	logical	
organization,	access	can	be	very slow
� e.g.	increased	disk	seeks	for	out-of-order	sequential	file

14

File	Organization:		Summary	(2)
� If	a	sequential	or	heap	file	changes	frequently,	periodic	
reorganization	may	be	required
� Will	likely	require	moving	large	numbers	of	records

� Most	common	solution:
� Store	the	records	themselves	in	a	heap	file
� Build	one	or	more	indexes into	the	heap	file

� Indexes	are	generally	either	ordered	(typical)	or	hashed
� Indexes	reference	records	in	heap	file	using	record	pointers

� Index	entries	are	much	smaller	than	table	records:
� Can	fit	many	more	into	each	disk	block
� Much	faster	to	move	and	reorganize	them

15

File	Organization:		Summary	(3)
� When	we	are	evaluating	a	query:

� If	we	can,	utilize	indexes	to	do	faster	lookups	in	heap	file
� (Or,	just	evaluate	query	against	the	index!)
� If	not,	just	do	a	sequential	scan	through	the	heap	file

� Will	talk	much	more	about	indexes	in	a	few	weeks!
� For	now,	just	focus	on	queries	against	heap	files

16

SQL	Query	Evaluation
� Relational	databases	frequently	use	SQL	query	language	to	
specify	queries

� Databases	don’t	execute	SQL	directly!
� Very	complicated	language
� Difficult	to	transform/optimize	before	executing

� SQL	is	transformed	into	a	plan	based	on	the	relational	
algebra,	and	then	executed	by	the	query	evaluator

� First	step	is	to	translate	SQL	into	an	abstract	syntax	tree
� In	NanoDB,	top-level	object	is	a	Command

� Subclasses	for	various	commands,	e.g.	CreateTableCommand
� If	command	is	a	DDL	operation,	it	is	executed	directly

17

Query	Evaluation	Pipeline
� DML	operations	are	processed	through	these	stages:

� e.g.	SELECT,	INSERT,	UPDATE,	DELETE

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

18

Query	Evaluation	Pipeline	(2)
� SQL	queries	are	parsed	into	an	abstract	syntax	tree

� AST	represents	the	query	as	a	hierarchy	of	related	
SELECT-FROM-WHERE	operations

� Sometimes	called	“SFW	blocks”

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

19

Query	Evaluation	Pipeline	(3)
� Query	AST	is	then	translated	into	an	initial	query	plan

� Plan	is	based	on	relational	algebra	operations
� Can	apply	some	high-level	optimizations	to	the	AST
� Also,	join	ordering	can	be	determined	in	this	phase

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

20

Query	Evaluation	Pipeline	(4)
� Initial	query	plan	is	then	optimized

� Optimizer	applies	additional	optimizations	to	plan
� Determines	final	execution	details	for	each	plan	node

� e.g.	best	algorithm	to	use,	which	indexes	to	use,	etc.

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

21

Query	Evaluation	Pipeline	(5)
� Finally,	execution	plan	is	evaluated	against	the	tables!

� At	this	point,	operation	is	generally	very	straightforward

evaluation
engine

SQL
parser

query
result

SQL
query

query plan
optimizer

abstract
syntax

tree

annotated
execution

plan

table datatable statistics

SQL
translator

relational
algebra

plan

22

SQL	Data	Manipulation
� Can	handle	SELECT,	INSERT,	UPDATE,	DELETE	all	with	
same	evaluation	pipeline

� A	good	idea	anyway,	since	INSERT,	UPDATE,	DELETE	can	all	
have	subqueries	in	them!
INSERT	INTO	t1	(a,	b,	c)
SELECT	a,	b +	2,	c – 5	FROM	t2	WHERE	d >	5;

UPDATE	t1	SET	a	=	a	+	5
WHERE	c IN	(SELECT	c FROM	t2);

UPDATE	t1	SET	a	=	(SELECT	a	FROM	t2	WHERE	t1.b	=	t2.b);
DELETE	FROM	t1
WHERE	a	=	(SELECT	MAX(a)	FROM	t2	WHERE	t1.b	=	t2.b);

23

SQL	Data	Manipulation	(2)
� All	four	statements	generate	a	set	of	tuples…

� Only	difference	is	what	we	do	with	them.
� SELECT	selects	tuples	for	display/transmission	to	client
� INSERT	selects	tuples	for	insertion	into	a	table
� UPDATE	selects	tuples	for	modification
� DELETE	selects	tuples	for	removal

� NanoDB query	evaluator	takes	an	execution	plan,	and	a	
tuple-processor	that	handles	the	results
� For	each	tuple	produced	by	the	execution	plan,	the	tuple-
processor	does	something	with	the	tuple

� e.g.	the	TupleUpdater modifies	the	tuple	based	on	the	
UPDATE	statement	issued	to	the	database

24

SQL	Data	Manipulation	(3)
EvalStats QueryEvaluator.executePlan(
PlanNode plan,	TupleProcessor processor)

� Evaluator	also	returns	statistics	about	the	evaluation
� Databases	generally	tell	you	how	many	rows	were	
selected/inserted/updated/deleted,	and	how	long	the	
query	took

� Not	all	tuples	are	created	equal!
� Some	tuples	can	simply	be	displayed	or	sent	to	client
� Some	tuples	must	support	modification	or	deletion
� Databases	also	have	a	notion	of	“l-values”	and	“r-values”

25

L-Values	and	R-Values
� Only	certain	expressions	can	be	used	on	the	left-hand	side	
of	an	assignment	operation

� Example:		a = 5 + b * 3;
� a,	b,	5 and	3 are	all	values
� Only	some	of	these	can	be	the	target	of	an	assignment

� L-values	are	values	with	an	associated	location/address
� Knowing	the	location	allows	us	to	modify	the	value
� “L”	indicates	it	can	appear	on	left-hand	side	of	an	assignment

� R-values	don’t	have	a	location
� i.e.	the	value	cannot	be	a	target	of	an	assignment	operation
� “R”	indicates	it	must	be	on	right-hand	side	of	the	assignment

26

Kinds	of	Tuples
� Different	flavors	of	tuples	in	a	database	engine
� Some	tuples	are	backed	by	a	page	in	a	database	table

� Reading	values	from	tuple	come	straight	from	data	page
� Writing	to	the	tuple	modifies	the	data	page	in	memory
� (page	must	then	be	flushed	back	to	disk)

3

Block	353

Block	352

Block	354

PageTuple Object

file: t1.dat
block: 353
offset: 2
data: …

27

Kinds	of	Tuples	(2)
� Other	tuples	contain	computed	values,	and	are	stored	
in	memory	only
� This	query	generates	computed	results:
SELECT	username,	SUM(score)	AS	total_score
FROM	game_scores GROUP	BY	username;

� NanoDB represents	these	as	TupleLiteral objects

� Many	database	implementations	represent	all	tuples	in	
the	same	format,	in	memory	buffers
� Allows	them	to	be	written	to	disk	very	easily,	if	needed

28

Kinds	of	Tuples	(3)
� SELECT	and	INSERT…SELECT	statements	don’t	require	
lvalue tuples
� Results	are	either	displayed,	or	added	to	a	data	file

� UPDATE	and	DELETE	require lvalue tuples
� Selected	tuples	are	modified	or	removed!

� Actually	modifies	a	data	file
� Plans	generated	for	UPDATE	and	DELETE	must	take	this	
into	account

� Constrains	the	optimizations	that	may	be	employed

29

