
CS122	– Lecture	2
Winter	Term,	2017-2018

Solid	State	Drives
� Solid	State	Drives	are	becoming	increasingly	common

� Still	more	expensive	and	smaller	than	HDDs
� (This	trend	will	likely	continue	for	a	number	of	years)

� Use	flash	memory	chips	to	provide	persistent	storage
� Most	common	is	NAND	flash	memory,	which	is	
read/written	in	512B-4KB	pages	(similar	to	HDDs)

� Reads	are	very	fast:		on	the	order	of	a	few	μs
� No	seek	time	or	rotational	latency	whatsoever!
� (Still	slower	than	main	memory,	of	course)

� Write	performance	can	be	much more	varied…

2

Solid	State	Drives	(2)
� SSDs	are	comprised	of	flash	memory	blocks

� Each	block	can	hold	e.g.	4KB	of	data
� As	usual,	break	data	files	into	blocks

� Example:		three	files	on	our	SSD:		F1,	F2	and	F3
� SSDs	must	follow	specific	rules	when
writing	to	blocks:
� SSDs	can	only	write	data	to	blocks	that
are	currently	empty

� Cannot	modify	a	block	that	already
contains	data

3

F3.4

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

Solid	State	Drives	(3)
� SSDs	can	only	write	to	blocks	that	are	currently	empty
� Example:		we	want	to	modify	the	data	in	block	2	of	F1

� Can’t	just	change	the	data	in-place!
� Instead,	must	write	a	new	version	of	F1.2

� SSD	marks	old	version	of	F1.2	as	not
in	use,	and	stores	a	new	version	F1.2’

� SSD	Issue	1:
� SSDs	aren’t	good	at	disk	structures	that
require	frequent	in-place	modifications

4

F3.4

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

F1.2'

old

Solid	State	Drives	(4)
� Don’t	want	applications	to	have	to	keep	track	of	the	
actual	blocks	that	comprise	their	files…
� Every	time	part	of	an	existing	file	is	written	to	the	SSD,	a	
new	block	must	be	used

� Solid	State	Drives	also	include	a	Flash
Translation	Layer	that	maps	logical
block	addresses	to	physical	blocks
� This	mapping	is	updated	every	time	a
write	is	performed

5

F3.4

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

F1.2'

old

Flash Translation Layer

SSDs:		Erase	Blocks
� Over	time,	SSD	ends	up	with	few	or	no	available	cells

� e.g.	a	series	of	writes	to	our	SSD	that	results	in	all	cells	
being	used,	or	marked	old

� Problem:		SSDs	can	only	erase	cells	in	groups
� Groups	are	called	erase	blocks
� A	read/write	block	might	be	4-8KiB…
� Erase	blocks	are	often	128	or	256	of
these	blocks	(e.g.	2MiB)!

� SSDs	must	periodically	clear	one	or
more	erase-blocks	to	free	up	space
� Erasing	a	block	takes	1-2	ms to	perform

6

Flash Translation Layer

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

F1.2'

old

old

old

old oldold

old

SSDs:		Erase	Blocks	(2)
� Best	case	is	when	a	whole	erase	block	can	be	reclaimed
� Example:		want	to	write	to	F2.1’

� SSD	can	clear	an	entire	erase-block	and	then	write	the	
new	block

7

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F1.1 F1.2 F1.3 F2.1

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

Erase!

F3.4 F3.1' F3.4'

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old old

F2.1''

old

SSDs:		Erase	Blocks	(3)
� More	complicated	when	an	erase	block	still	holds	data

� e.g.	SSD	decides	it	must	reclaim	the	third	erase-block
� SSD	must	relocate	the	current	contents	before	erasing
� Example:		SSD	wants	to	clear	third	erase-block

8

F3.4

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

F2.1''

old

F3.1' F3.4'Erase!

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'F3.1' F3.4'

SSDs:		Erase	Blocks	(4)
� SSD	Issue	2:

� Sometimes	a	write	to the	SSD	incurs	additional	writes	
within the	SSD

� Phenomenon	is	called	write	amplification

9

F3.4

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

F1.2'

old

old

old

old oldold

old

F2.1''

old

F3.1' F3.4'Erase!

F1.1' F2.1' F1.3' F1.2''

F2.2 F3.1 F3.2 F3.3

Flash Translation Layer

old

old

old oldold
F2.1''

old

F3.1' F3.4'F3.1' F3.4'

SSDs:		Erasure	and	Wear
� A	block	can	only	be	erased	a	fixed	number	of	times…
� SSDs	ensure	that	different	blocks	wear	evenly

� Called	wear	leveling
� Data	that	hasn’t	changed	much	(cold	data)	is	moved	into	
blocks	with	higher	erase-counts

� Data	that	has	changed	often	(hot	data)	is	moved	into	
blocks	with	lower	erase-counts

� Theoretically,	SSDs	should	last	longer	than	hard	disks

10

SSDs	and	HDDs:		Failure	Modes
� SSDs	fail	in	different	ways	than	hard	disks	generally	do
� Hard	disks	tend	to	degrade	more	slowly	over	time

� Sensitive	to	mechanical	shock	and	vibration
� Surface	defects	can	slowly	become	apparent	over	time
� Result:		usually,	data	is	slowly	lost	over	time	(although	
disk	controllers	can	burn	out,	etc.)

� Solid	state	drives	are	far	less	sensitive	to	mechanical	
shock	and	other	environmental	factors
� But,	SSD	controller	electronics	can	fail,	particularly	due	
to	power	surges	/	outages

� Result:		all	the	data	disappears	at	once,	without	warning

11

Database	External	Storage
� Virtually	all	of	our	discussion	going	forward	will	
assume	spinning	magnetic	disks,	not	solid	state	drives
� Data	volumes	continue	to	grow,	and	HDDs	are	both	
larger	and	cheaper	than	SSDs

� HDDs	will	continue	to	be	relevant	for	the	time	being
� Observation	1:		Solid-state	drives	obviate	some	of	the	
issues	we	will	take	into	account!
� e.g.	designing	algorithms	and	file-storage	formats	to	
minimize	disk	seek	overhead

� There	is	no	seek	overhead	with	SSDs

12

Database	External	Storage	(2)
� Most	of	our	discussions	assume	that	there	is	no	
overhead	for	in-place	modification	of	data

� Observation	2:		Solid-state	drives	really	aren’t	capable	
of	modifying	data	in-place
� They	can	present	the	abstraction,	but	under	the	hood,	
the	SSD	is	doing	something	completely	different

� SSDs	are	more	efficient	with	file	formats	that	minimize	
in-place	modification	of	data

� This	is	an	active	area	of	research

13

Database	Files
� Databases	normally	store	data	in	files…

� The	filesystem	is	provided	by	the	operating	system

� Operating	system	provides	several	essential	facilities:
� Open	a	file	at	a	particular	filesystem	path
� Seek	to	a	particular	location	in	a	file
� Read/write	a	block	of	data	in	a	file
� (other	facilities	as	well,	e.g.	memory-mapping	a	file	into	a	
process’	address-space)

14

Database	Files	(2)
� Operating	systems	also	provide	the	ability	to	
synchronize a	file	to	disk
� Ensures	that	all modified	data	caches	are	flushed	to	disk
� Includes	flushing	of	OS	buffers,	hard-disk	cache,	etc.
� Expectation	is	that	if	the	operation	completes,	the	data	is	
now	persistent	(e.g.	on	the	disk	platter,	or	in	NV-RAM)

� If	the	system	crashes	before	a	modified	file	is	sync’d	to	
disk,	data	will	very	likely	be	corrupted	and/or	lost

� Once	the	file	is	sync’d,	the	OS	effectively	guarantees	
that	the	disk	state	reflects	the	latest	version	of	the	file

15

Disk	Files	and	Blocks
� Databases	normally	read	and	write	disk	files	in	blocks

� Block-size	is	usually	a	power	of	2,	between	29 and	216

� Main	reason	is	performance:
� Disk	access	latency	is	large,	but	throughput	is	also	large
� Accessing	4KB	is	just	as	expensive	as	accessing	one	byte

� Also	makes	it	easier	for	Storage	Manager	to	manage	
buffering,	transactions,	etc.
� Disk	pages	are	a	convenient	unit	of	data	to	work	with

� The	OS	presents	files	as	a	contiguous	array	of	bytes…
� Typically	want	the	database	block	size	to	be	some	multiple	of	
the	storage	device	block	size

16

Disk	Files	and	Blocks	(2)
� Blocks	in	a	file	are	numbered	starting	at	0
� To	read	or	write	a	block	in	a	data	file:

� Seek	to	the	location	block_num × page_size
� Read	or	write	page_size bytes

� To	create	a	new	block:
� Most	platforms	will	automatically	extend	a	file’s	size	when	a	
write	occurs	past	the	end	of	the	file

� Seek	to	location	of	new	block,	then	write	new	block’s	data
� To	remove	blocks	from	the	end	of	the	file:

� Set	the	file’s	size	to	the	desired	size
� File	will	be	truncated	(or	extended)	to	the	specified	size

17

Files	and	Blocks…	and	Tuples?
� Issue:

� Physical	data	file	will	be	accessed	in	units	of	blocks
� Query	engine	accesses	data	as	sequences	of	records,	
often	specifying	predicates	that	the	records	must	satisfy

� How	do	we	organize	blocks	within	data	files?
� How	do	we	organize	records	within	blocks?
� Do	we	want	to	apply	any	file-level	organization	of	
records	as	well?

18

Caveats
� Two	important	caveats	to	state	up	front:
� Caveat	1	(as	before):

� Most	of	our	discussion	going	forward	will	assume	
spinning	magnetic	disks,	not	solid	state	drives

� Data	is	frequently	changed	in-place
� Caveat	2:

� We	are	discussing	general	implementation	approaches,	
not	theory,	so	there	are	many	“right”	ways	to	do	things

� Typically	see	these	approaches,	and/or	minor	variations	
on	them

19

Data	File	Organization
� Simplification	1:

� We	will	store	each	table’s	data	in	a	separate	file.

� Some	databases	allow	records	from	related	tables	to	be	
stored	together	in	a	single	file
� e.g.	records	that	would	equijoin	together	are	stored	
adjacent	to	each	other	in	the	file

� Called	a	multitable	clustering	file	organization
� Facilitates	very fast	joins	between	these	tables

20

Data	File	Organization	(2)
� Simplification	2:

� We	will	require	that	every	tuple	fits	entirely	within	a	
single	disk	block.

� Disk	blocks	can	usually	hold	multiple	records,	but	it	is	
easy	for	a	tuple	to	exceed	the	size	of	a	single	block
� e.g.	table	with	VARCHAR(20000) field;	page	size	of	4KB

� Most	DBs	support	records	larger	than	a	disk	block
� DB	can	support	records	that	span	multiple	blocks,	or	it	
can	use	separate	overflow	storage	for	large	records,	etc.

21

Considerations
� Operations	performed	on	table	data:

� Inserting	new	records
� (reuse	available	space	before	increasing	file	size?)

� Deleting	records
� (coalesce	freed	space	if	possible?)

� Selecting/scanning	records	(possibly	applying	updates)
� Operations	may	involve	only	a	few	records,	or	they	may	
involve	many	records

� Want	to	optimally	handle	the	expected	usage
� Evaluate	storage	format	against	all above	operations!
� Don’t	impose	too	much	space	overhead
� Don’t	unnecessarily	hinder	speed	of	operation

22

Example:		Inserting	Records
� User	executes	this	SQL:

INSERT INTO users VALUES
(103921, 'joebob', 'Joe Bob', 'http://…');

� Database	must	find	a	block	with	enough	space	to	hold	the	
new	record

� NanoDB’s	solution:
� Starting	with	first	block	in	data	file,	search	linearly	until	a	
block	is	found	with	enough	space	to	hold	the	record

� If	we	reach	the	end	of	the	file,	extend	the	file	with	a	new	block	
and	add	the	record	there

� What	is	this	approach	good	at?		What	is	it	bad	at?

23

Example:		Inserting	Records	(2)
� NanoDB approach	is	very slow	for	inserting	records!

� One	benefit:		reuses	free	space	as	much	as	possible
� Could	remember	the	last	block	in	the	file	with	free	
space,	and	start	there	when	adding	new	rows

� Can	also	use	block-level	structures	to	manage	the	file
� e.g.	a	linked	list	of	blocks	with	space	for	more	data
� Often	makes	it	much	faster/easier	to	find	free	space…

� Can	also	impact	database	performance	if	the	approach	
causes	many	extra	disk	seeks	and/or	block	reads

24

Block-Level	Organization
� Introduce	block-level	structure	to	manage	the	file
� Example:		list	of	blocks	that	can	hold	another	tuple

� First	block	in	the	data	file	specifies	start	of	list
� “Pointers”	in	the	linked	list	are	simply	block	numbers

� e.g.	could	use	a	block	number	of	0	to	terminate	the	list

� In	NanoDB,	block	0	is	special:
� It	holds	the	table-file’s	schema,	among	other	things

2 4 0 3

Block 0 Block 2 Block 3 Block 4

(full)

Block 1

?

(full)

?

Block 5

25

List	of	Non-Full	Blocks	(1)

� Note	that	pages	will	almost	never	be	completely full!
� List	simply	specifies	pages	that	can	hold	another	tuple

� Can	use	the	table’s	schema	to	compute	minimum	and	
maximum	size	of	a	tuple	for	that	table

2 4 0 3

Block 0 Block 2 Block 3 Block 4

(full)

Block 1

?

(full)

?

Block 5

26

List	of	Non-Full	Blocks	(2)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	blocks	
with	free	space,	for	space	to	store	the	new	tuple

� When	space	is	found,	store	the	tuple
� If	the	block	is	now	full,	remove	it	from	the	list

� Now	we	sometimes	modify	two pages	instead	of	one

2 4 0 3

Block 0 Block 2 Block 3 Block 4

(full)

Block 1

?

(full)

?

Block 5

27

List	of	Non-Full	Blocks	(3)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	non-full	blocks	
for	space	to	store	the	new	tuple

� Other	performance	issues?
� Scanning	through	the	list	of	non-full	blocks	will	likely	incur	
many	disk	seeks

� Could	mitigate	this	by	keeping	free	list	in	sorted	order,	but	
this	would	be	more	expensive	to	maintain

2 4 0 3

Block 0 Block 2 Block 3 Block 4

(full)

Block 1

?

(full)

?

Block 5

28

List	of	Non-Full	Blocks	(4)

� When	a	row	is	deleted:
� If	block	was	previously	full,	need	to	add	it	to	the	non-full	list

� e.g.	if	tuple	was	deleted	from	block	5
� A	simple	solution:		always	add	the	block	to	start	of	the	list

� (Issue:		Non-full	list	will	become	out	of	order)
� Again,	two	blocks	are	written	in	some	situations
� (It’s	likely	that	block	0	will	already	be	in	cache,	though)

2 4 0 3

Block 0 Block 2 Block 3 Block 4

(full)

Block 1

?

(full)

?

Block 5

29

Disk	Records	and	Fields
� Tuples	are	ordered	sets	of	attribute-value	pairs

� Every	attribute	has	an	associated	type	(a.k.a.	“domain”)
� A	value	may	also	be	NULL to	represent	unknown	data
� The	data	dictionary	specifies	the	schema	for	every	table

� Issues:
� Can’t	expect	a	table	to	have	all	tuples	be	the	same	size
� Also	can’t	expect	a	table	to	have	all	non-NULL values

� Need	a	way	to	represent	tuples	within	a	disk	page,	
where	tuples	can	vary	in	size,	and	some	attribute-
values	are	unspecified

30

Disk	Records	and	Fields	(2)
� Fixed-size	data	types	are	easy	to	store	into	a	tuple

� e.g.	INTEGER,	CHAR(25),	DATE fields
� Table’s	schema	records	each	column’s	type

� For	columns	with	size/precision	details,	these	are	also	stored
� Just	use	schema	to	guide	reading/writing	the	column

� Variable-size	values	also	require	a	size	to	be	stored
� e.g.	VARCHAR(n) fields
� If	n <	256:		store	1-byte	size,	then	string	data
� If	n <	65536:		store	2-byte	size,	then	string	data
� (Can	also	terminate	the	field	with	a	special	character)

31

Disk	Records	and	NULL Values
� In	each	tuple,	include	a	bit	for	each	attribute	indicating	
whether	its	value	is	NULL
� If	bit	is	1	then	corresponding	attribute	has	a	NULL value

� (Don’t	need	to	store	data	for	NULL attributes	in	the	record…)
� Store	bits	in	packed	format:		each	byte	holds	8	null-bits
� Called	a	null	bitmap

� Example	record	format:

� (no	data	is	actually	stored	for	the	name field)

user_id (big-endian)

0xF0,0x95,0x01,0x00

null
bitmap

0x04

username
0x06,'donnie'

name
NULL

website_url
0x22,'http://www.cs…'

32

Variable-Size	Record	Storage
� Some	row-values	can	vary	in	size

� VARCHAR,	BLOB,	CLOB,	TEXT,	NUMERIC,	etc.	types
� Also,	don’t	store	any	value	for	NULL fields

� Records	will	also	vary	in	size

� Variable-size	records	can	be	stored	into	fixed-size	
blocks	using	a	slotted-page	structure

entries R0 R1 R2 free space R0 dataR1 dataR2 data

33

Slotted	Page	Structure	(1)
� The	slotted-page	structure:

� Records	in	a	block	are	stored	contiguously,	starting	
from	the	end of the	block
� Records	are	stored	in	reverse	order

� Start	of	block	has	a	header	specifying	where	each	
record	in	the	block	starts
� First	value	specifies	total	number	of	records	N in	the	block
� Next	N values	specify	the	starting	offset	of	each	row’s	data

block header record data

34

entries R0 R1 R2 free space R0 dataR1 dataR2 data

Slotted	Page	Structure	(2)
� When	a	record	is	deleted:

� Record’s	entry	in	the	index	is	marked	as	“deleted”
� (e.g.	its	index	is	set	to	an	invalid	value,	such	as	0)

� The	record’s	space	is	reclaimed	within the	block	by	
moving	other	records	toward	end	of	block

� Example:		Delete	record	1	from	this	block:

entries R0 del R2 free space R0 dataR2 data

35

entries R0 R1 R2 free space R0 dataR1 dataR2 data

Indexes	and	Tables
� Table	records	may	be	referenced	from	other	files
� Example:

� Indexes	allow	specific	rows	to	be	found	and	retrieved,	based	
on	the	values	of	some	set	of	attributes

� The	index	needs	some	way	to	reference	a	particular	record
� Every	record	has	a	specific	location	in	a	data	file:

� The	block	the	record	is	stored	within
� The	offset	of	the	record	within	the	block

� Example:		NanoDB record	pointers:
� Block	number	(unsigned	short:		0	to	65535)
� Offset	within	block	(unsigned	short:		0	to	65535)

36

Slotted	Page	Structure	(3)
� With	the	slotted-page	structure,	records	can	be	
referenced	by	their	index	in	the	block	header
� Level	of	indirection	allows	record	data	to	be	moved	within	the	
block,	without	affecting	data	that	references	the	record

� We	can	only	shrink	the	slotted-page	header	when	deleted	
records	are	at	the	end of	the	header	area
� e.g.	cannot	move	entry	R2 to	index	1	and	shrink	the	header
� When	R2 is	deleted,	then	we	can	eliminate	both	entries
� Or,	if	a	new	row	is	added	to	this	block,	it	could	occupy	R1

37

entries R0 del R2 free space R0 dataR2 data

