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Solid	State	Drives
� Solid	State	Drives	are	becoming	increasingly	common

� Still	more	expensive	and	smaller	than	HDDs
� (This	trend	will	likely	continue	for	a	number	of	years)

� Use	flash	memory	chips	to	provide	persistent	storage
� Most	common	is	NAND	flash	memory,	which	is	
read/written	in	512B-4KB	pages	(similar	to	HDDs)

� Reads	are	very	fast:		on	the	order	of	a	few	μs
� No	seek	time	or	rotational	latency	whatsoever!
� (Still	slower	than	main	memory,	of	course)

� Write	performance	can	be	much more	varied…
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Solid	State	Drives	(2)
� SSDs	are	comprised	of	flash	memory	blocks

� Each	block	can	hold	e.g.	4KB	of	data
� As	usual,	break	data	files	into	blocks

� Example:		three	files	on	our	SSD:		F1,	F2	and	F3
� SSDs	must	follow	specific	rules	when
writing	to	blocks:
� SSDs	can	only	write	data	to	blocks	that
are	currently	empty

� Cannot	modify	a	block	that	already
contains	data
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Solid	State	Drives	(3)
� SSDs	can	only	write	to	blocks	that	are	currently	empty
� Example:		we	want	to	modify	the	data	in	block	2	of	F1

� Can’t	just	change	the	data	in-place!
� Instead,	must	write	a	new	version	of	F1.2

� SSD	marks	old	version	of	F1.2	as	not
in	use,	and	stores	a	new	version	F1.2’

� SSD	Issue	1:
� SSDs	aren’t	good	at	disk	structures	that
require	frequent	in-place	modifications
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Solid	State	Drives	(4)
� Don’t	want	applications	to	have	to	keep	track	of	the	
actual	blocks	that	comprise	their	files…
� Every	time	part	of	an	existing	file	is	written	to	the	SSD,	a	
new	block	must	be	used

� Solid	State	Drives	also	include	a	Flash
Translation	Layer	that	maps	logical
block	addresses	to	physical	blocks
� This	mapping	is	updated	every	time	a
write	is	performed
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SSDs:		Erase	Blocks
� Over	time,	SSD	ends	up	with	few	or	no	available	cells

� e.g.	a	series	of	writes	to	our	SSD	that	results	in	all	cells	
being	used,	or	marked	old

� Problem:		SSDs	can	only	erase	cells	in	groups
� Groups	are	called	erase	blocks
� A	read/write	block	might	be	4-8KiB…
� Erase	blocks	are	often	128	or	256	of
these	blocks	(e.g.	2MiB)!

� SSDs	must	periodically	clear	one	or
more	erase-blocks	to	free	up	space
� Erasing	a	block	takes	1-2	ms to	perform
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SSDs:		Erase	Blocks	(2)
� Best	case	is	when	a	whole	erase	block	can	be	reclaimed
� Example:		want	to	write	to	F2.1’

� SSD	can	clear	an	entire	erase-block	and	then	write	the	
new	block
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SSDs:		Erase	Blocks	(3)
� More	complicated	when	an	erase	block	still	holds	data

� e.g.	SSD	decides	it	must	reclaim	the	third	erase-block
� SSD	must	relocate	the	current	contents	before	erasing
� Example:		SSD	wants	to	clear	third	erase-block
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SSDs:		Erase	Blocks	(4)
� SSD	Issue	2:

� Sometimes	a	write	to the	SSD	incurs	additional	writes	
within the	SSD

� Phenomenon	is	called	write	amplification
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SSDs:		Erasure	and	Wear
� A	block	can	only	be	erased	a	fixed	number	of	times…
� SSDs	ensure	that	different	blocks	wear	evenly

� Called	wear	leveling
� Data	that	hasn’t	changed	much	(cold	data)	is	moved	into	
blocks	with	higher	erase-counts

� Data	that	has	changed	often	(hot	data)	is	moved	into	
blocks	with	lower	erase-counts

� Theoretically,	SSDs	should	last	longer	than	hard	disks
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SSDs	and	HDDs:		Failure	Modes
� SSDs	fail	in	different	ways	than	hard	disks	generally	do
� Hard	disks	tend	to	degrade	more	slowly	over	time

� Sensitive	to	mechanical	shock	and	vibration
� Surface	defects	can	slowly	become	apparent	over	time
� Result:		usually,	data	is	slowly	lost	over	time	(although	
disk	controllers	can	burn	out,	etc.)

� Solid	state	drives	are	far	less	sensitive	to	mechanical	
shock	and	other	environmental	factors
� But,	SSD	controller	electronics	can	fail,	particularly	due	
to	power	surges	/	outages

� Result:		all	the	data	disappears	at	once,	without	warning
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Database	External	Storage
� Virtually	all	of	our	discussion	going	forward	will	
assume	spinning	magnetic	disks,	not	solid	state	drives
� Data	volumes	continue	to	grow,	and	HDDs	are	both	
larger	and	cheaper	than	SSDs

� HDDs	will	continue	to	be	relevant	for	the	time	being
� Observation	1:		Solid-state	drives	obviate	some	of	the	
issues	we	will	take	into	account!
� e.g.	designing	algorithms	and	file-storage	formats	to	
minimize	disk	seek	overhead

� There	is	no	seek	overhead	with	SSDs
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Database	External	Storage	(2)
� Most	of	our	discussions	assume	that	there	is	no	
overhead	for	in-place	modification	of	data

� Observation	2:		Solid-state	drives	really	aren’t	capable	
of	modifying	data	in-place
� They	can	present	the	abstraction,	but	under	the	hood,	
the	SSD	is	doing	something	completely	different

� SSDs	are	more	efficient	with	file	formats	that	minimize	
in-place	modification	of	data

� This	is	an	active	area	of	research
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Database	Files
� Databases	normally	store	data	in	files…

� The	filesystem	is	provided	by	the	operating	system

� Operating	system	provides	several	essential	facilities:
� Open	a	file	at	a	particular	filesystem	path
� Seek	to	a	particular	location	in	a	file
� Read/write	a	block	of	data	in	a	file
� (other	facilities	as	well,	e.g.	memory-mapping	a	file	into	a	
process’	address-space)
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Database	Files	(2)
� Operating	systems	also	provide	the	ability	to	
synchronize a	file	to	disk
� Ensures	that	all modified	data	caches	are	flushed	to	disk
� Includes	flushing	of	OS	buffers,	hard-disk	cache,	etc.
� Expectation	is	that	if	the	operation	completes,	the	data	is	
now	persistent	(e.g.	on	the	disk	platter,	or	in	NV-RAM)

� If	the	system	crashes	before	a	modified	file	is	sync’d	to	
disk,	data	will	very	likely	be	corrupted	and/or	lost

� Once	the	file	is	sync’d,	the	OS	effectively	guarantees	
that	the	disk	state	reflects	the	latest	version	of	the	file
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Disk	Files	and	Blocks
� Databases	normally	read	and	write	disk	files	in	blocks

� Block-size	is	usually	a	power	of	2,	between	29 and	216

� Main	reason	is	performance:
� Disk	access	latency	is	large,	but	throughput	is	also	large
� Accessing	4KB	is	just	as	expensive	as	accessing	one	byte

� Also	makes	it	easier	for	Storage	Manager	to	manage	
buffering,	transactions,	etc.
� Disk	pages	are	a	convenient	unit	of	data	to	work	with

� The	OS	presents	files	as	a	contiguous	array	of	bytes…
� Typically	want	the	database	block	size	to	be	some	multiple	of	
the	storage	device	block	size
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Disk	Files	and	Blocks	(2)
� Blocks	in	a	file	are	numbered	starting	at	0
� To	read	or	write	a	block	in	a	data	file:

� Seek	to	the	location	block_num × page_size
� Read	or	write	page_size bytes

� To	create	a	new	block:
� Most	platforms	will	automatically	extend	a	file’s	size	when	a	
write	occurs	past	the	end	of	the	file

� Seek	to	location	of	new	block,	then	write	new	block’s	data
� To	remove	blocks	from	the	end	of	the	file:

� Set	the	file’s	size	to	the	desired	size
� File	will	be	truncated	(or	extended)	to	the	specified	size
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Files	and	Blocks…	and	Tuples?
� Issue:

� Physical	data	file	will	be	accessed	in	units	of	blocks
� Query	engine	accesses	data	as	sequences	of	records,	
often	specifying	predicates	that	the	records	must	satisfy

� How	do	we	organize	blocks	within	data	files?
� How	do	we	organize	records	within	blocks?
� Do	we	want	to	apply	any	file-level	organization	of	
records	as	well?
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Caveats
� Two	important	caveats	to	state	up	front:
� Caveat	1	(as	before):

� Most	of	our	discussion	going	forward	will	assume	
spinning	magnetic	disks,	not	solid	state	drives

� Data	is	frequently	changed	in-place
� Caveat	2:

� We	are	discussing	general	implementation	approaches,	
not	theory,	so	there	are	many	“right”	ways	to	do	things

� Typically	see	these	approaches,	and/or	minor	variations	
on	them
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Data	File	Organization
� Simplification	1:

� We	will	store	each	table’s	data	in	a	separate	file.

� Some	databases	allow	records	from	related	tables	to	be	
stored	together	in	a	single	file
� e.g.	records	that	would	equijoin	together	are	stored	
adjacent	to	each	other	in	the	file

� Called	a	multitable	clustering	file	organization
� Facilitates	very fast	joins	between	these	tables
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Data	File	Organization	(2)
� Simplification	2:

� We	will	require	that	every	tuple	fits	entirely	within	a	
single	disk	block.

� Disk	blocks	can	usually	hold	multiple	records,	but	it	is	
easy	for	a	tuple	to	exceed	the	size	of	a	single	block
� e.g.	table	with	VARCHAR(20000) field;	page	size	of	4KB

� Most	DBs	support	records	larger	than	a	disk	block
� DB	can	support	records	that	span	multiple	blocks,	or	it	
can	use	separate	overflow	storage	for	large	records,	etc.
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Considerations
� Operations	performed	on	table	data:

� Inserting	new	records
� (reuse	available	space	before	increasing	file	size?)

� Deleting	records
� (coalesce	freed	space	if	possible?)

� Selecting/scanning	records	(possibly	applying	updates)
� Operations	may	involve	only	a	few	records,	or	they	may	
involve	many	records

� Want	to	optimally	handle	the	expected	usage
� Evaluate	storage	format	against	all above	operations!
� Don’t	impose	too	much	space	overhead
� Don’t	unnecessarily	hinder	speed	of	operation
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Example:		Inserting	Records
� User	executes	this	SQL:

INSERT INTO users VALUES
(103921, 'joebob', 'Joe Bob', 'http://…');

� Database	must	find	a	block	with	enough	space	to	hold	the	
new	record

� NanoDB’s	solution:
� Starting	with	first	block	in	data	file,	search	linearly	until	a	
block	is	found	with	enough	space	to	hold	the	record

� If	we	reach	the	end	of	the	file,	extend	the	file	with	a	new	block	
and	add	the	record	there

� What	is	this	approach	good	at?		What	is	it	bad	at?
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Example:		Inserting	Records	(2)
� NanoDB approach	is	very slow	for	inserting	records!

� One	benefit:		reuses	free	space	as	much	as	possible
� Could	remember	the	last	block	in	the	file	with	free	
space,	and	start	there	when	adding	new	rows

� Can	also	use	block-level	structures	to	manage	the	file
� e.g.	a	linked	list	of	blocks	with	space	for	more	data
� Often	makes	it	much	faster/easier	to	find	free	space…

� Can	also	impact	database	performance	if	the	approach	
causes	many	extra	disk	seeks	and/or	block	reads
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Block-Level	Organization
� Introduce	block-level	structure	to	manage	the	file
� Example:		list	of	blocks	that	can	hold	another	tuple

� First	block	in	the	data	file	specifies	start	of	list
� “Pointers”	in	the	linked	list	are	simply	block	numbers

� e.g.	could	use	a	block	number	of	0	to	terminate	the	list

� In	NanoDB,	block	0	is	special:
� It	holds	the	table-file’s	schema,	among	other	things

2 4 0 3

Block 0 Block 2 Block 3 Block 4
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Block 1

?

(full)

?

Block 5
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List	of	Non-Full	Blocks	(1)

� Note	that	pages	will	almost	never	be	completely full!
� List	simply	specifies	pages	that	can	hold	another	tuple

� Can	use	the	table’s	schema	to	compute	minimum	and	
maximum	size	of	a	tuple	for	that	table
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List	of	Non-Full	Blocks	(2)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	blocks	
with	free	space,	for	space	to	store	the	new	tuple

� When	space	is	found,	store	the	tuple
� If	the	block	is	now	full,	remove	it	from	the	list

� Now	we	sometimes	modify	two pages	instead	of	one
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List	of	Non-Full	Blocks	(3)

� When	a	new	row	is	inserted:
� Starting	with	first	block,	search	through	list	of	non-full	blocks	
for	space	to	store	the	new	tuple

� Other	performance	issues?
� Scanning	through	the	list	of	non-full	blocks	will	likely	incur	
many	disk	seeks

� Could	mitigate	this	by	keeping	free	list	in	sorted	order,	but	
this	would	be	more	expensive	to	maintain
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List	of	Non-Full	Blocks	(4)

� When	a	row	is	deleted:
� If	block	was	previously	full,	need	to	add	it	to	the	non-full	list

� e.g.	if	tuple	was	deleted	from	block	5
� A	simple	solution:		always	add	the	block	to	start	of	the	list

� (Issue:		Non-full	list	will	become	out	of	order)
� Again,	two	blocks	are	written	in	some	situations
� (It’s	likely	that	block	0	will	already	be	in	cache,	though)
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Disk	Records	and	Fields
� Tuples	are	ordered	sets	of	attribute-value	pairs

� Every	attribute	has	an	associated	type	(a.k.a.	“domain”)
� A	value	may	also	be	NULL to	represent	unknown	data
� The	data	dictionary	specifies	the	schema	for	every	table

� Issues:
� Can’t	expect	a	table	to	have	all	tuples	be	the	same	size
� Also	can’t	expect	a	table	to	have	all	non-NULL values

� Need	a	way	to	represent	tuples	within	a	disk	page,	
where	tuples	can	vary	in	size,	and	some	attribute-
values	are	unspecified
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Disk	Records	and	Fields	(2)
� Fixed-size	data	types	are	easy	to	store	into	a	tuple

� e.g.	INTEGER,	CHAR(25),	DATE fields
� Table’s	schema	records	each	column’s	type

� For	columns	with	size/precision	details,	these	are	also	stored
� Just	use	schema	to	guide	reading/writing	the	column

� Variable-size	values	also	require	a	size	to	be	stored
� e.g.	VARCHAR(n) fields
� If	n <	256:		store	1-byte	size,	then	string	data
� If	n <	65536:		store	2-byte	size,	then	string	data
� (Can	also	terminate	the	field	with	a	special	character)
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Disk	Records	and	NULL Values
� In	each	tuple,	include	a	bit	for	each	attribute	indicating	
whether	its	value	is	NULL
� If	bit	is	1	then	corresponding	attribute	has	a	NULL value

� (Don’t	need	to	store	data	for	NULL attributes	in	the	record…)
� Store	bits	in	packed	format:		each	byte	holds	8	null-bits
� Called	a	null	bitmap

� Example	record	format:

� (no	data	is	actually	stored	for	the	name field)

user_id (big-endian)

0xF0,0x95,0x01,0x00

null
bitmap

0x04

username
0x06,'donnie'

name
NULL

website_url
0x22,'http://www.cs…'
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Variable-Size	Record	Storage
� Some	row-values	can	vary	in	size

� VARCHAR,	BLOB,	CLOB,	TEXT,	NUMERIC,	etc.	types
� Also,	don’t	store	any	value	for	NULL fields

� Records	will	also	vary	in	size

� Variable-size	records	can	be	stored	into	fixed-size	
blocks	using	a	slotted-page	structure

# entries R0 R1 R2 free space R0 dataR1 dataR2 data
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Slotted	Page	Structure	(1)
� The	slotted-page	structure:

� Records	in	a	block	are	stored	contiguously,	starting	
from	the	end of the	block
� Records	are	stored	in	reverse	order

� Start	of	block	has	a	header	specifying	where	each	
record	in	the	block	starts
� First	value	specifies	total	number	of	records	N in	the	block
� Next	N values	specify	the	starting	offset	of	each	row’s	data

block header record data
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Slotted	Page	Structure	(2)
� When	a	record	is	deleted:

� Record’s	entry	in	the	index	is	marked	as	“deleted”
� (e.g.	its	index	is	set	to	an	invalid	value,	such	as	0)

� The	record’s	space	is	reclaimed	within the	block	by	
moving	other	records	toward	end	of	block

� Example:		Delete	record	1	from	this	block:

# entries R0 del R2 free space R0 dataR2 data
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Indexes	and	Tables
� Table	records	may	be	referenced	from	other	files
� Example:

� Indexes	allow	specific	rows	to	be	found	and	retrieved,	based	
on	the	values	of	some	set	of	attributes

� The	index	needs	some	way	to	reference	a	particular	record
� Every	record	has	a	specific	location	in	a	data	file:

� The	block	the	record	is	stored	within
� The	offset	of	the	record	within	the	block

� Example:		NanoDB record	pointers:
� Block	number	(unsigned	short:		0	to	65535)
� Offset	within	block	(unsigned	short:		0	to	65535)
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Slotted	Page	Structure	(3)
� With	the	slotted-page	structure,	records	can	be	
referenced	by	their	index	in	the	block	header
� Level	of	indirection	allows	record	data	to	be	moved	within	the	
block,	without	affecting	data	that	references	the	record

� We	can	only	shrink	the	slotted-page	header	when	deleted	
records	are	at	the	end of	the	header	area
� e.g.	cannot	move	entry	R2 to	index	1	and	shrink	the	header
� When	R2 is	deleted,	then	we	can	eliminate	both	entries
� Or,	if	a	new	row	is	added	to	this	block,	it	could	occupy	R1
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