
CS122	– Lecture	1
Winter	Term,	2017-2018



Welcome!
� How	do	relational	databases	work?

� Provide	a	hands-on opportunity	to	explore	this	topic
� This	is	a	project	course:

� A	sequence	of	programming	assignments	focusing	on	
various	areas	of	database	system	implementation

� Also	some	reading	and	problem-solving,	but	not	a	lot
� No	midterm,	no	final	exam	J

2



Prerequisites
� You	should	be	familiar	with:

� The	SQL	query	language	(DDL	and	DML)
� The	relational	model	and	relational	algebra
� I	will	post	a	link	to	the	CS121	slides

� Also,	familiarity	with:
� Algorithms	(e.g.	sorting,	searching),	trees,	graphs,	etc.
� Basic	time	and	space	complexity

� All	programming	is	in	Java	SE	8+

3



Software	Development
� Secondary	focus	of	course	is	on	software	development

� Automated	build	system:		Ant
� Documentation	generation:		Javadoc
� Automated	testing:		TestNG (JaCoCo for	test	coverage)
� Code	linting /	static	analysis:		FindBugs
� Version	control:		Git
� Integrated	development	environments	(e.g.	IntelliJ IDEA,	
Eclipse,	etc.)

� You	will	work	with	all	of	these	tools	during	the	term

4



Software	Development	(2)
� Databases	must	be	correct

� A	portion	of	each	assignment’s	grade	will	depend	on	the	
correctness	of	your	work

� All	work	must	be	clean	and	well-documented
� Follow	standard	Java	coding	conventions
� Use	Javadoc	to	document	the	code	you	write
� Clearly	and	concisely	comment	your	code	as	well
� Commit-logs	must	also	include	clear	documentation	of	
your	changes

� Failure	to	do	these	things	will	result	in	point	deductions

5



Teams	and	Collaboration
� You	must	work	in	teams	of	2-3	people

� Need	to	decide	team	composition	relatively	quickly
� First	assignment	hopefully	out	by	Wednesday	this	week

� Each	team’s	submission	must	be	entirely	its	own	work
� Feel	free	to	help	debug	each	other’s	programs,	get	tools	
or	the	debugger	working,	etc.
� Follow	the	“50-foot	rule”	for	helping	other	teams	debug:		
help	others	with	your	brain,	not	your	code.

6



Course	Website
� Lectures,	assignments,	and	other	course	details	are	
available	on	the	Caltech	Moodle
� https://courses.caltech.edu/course/view.php?id=2900
� Enrollment	key:		writeahead
� Please	enroll	ASAP! All	course	announcements	are	
made	through	Moodle.

� Course	policies,	collaboration	policy,	contact	info,	etc.	
will	all	be	posted	there	– make	sure	to	review	it	all!

7



Late	Policy
� Late	penalties	will	be	applied	to	assignments:

� Up	to	24	hours	late:		-10%
� Up	to	48	hours	late:		-30%
� Up	to	72	hours	late:		-60%
� After	72	hours:		don’t	bother	L

� Extensions	are	available	for	extenuating	circumstances
� Health	center	notes,	extensions	from	Dean’s	office,	or	talk	to	
me	if	these	aren’t	appropriate

� Teams	also	have	4	tokens	to	use	throughout	the	term
� Each	token	worth	a	24-hour	extension,	“no	questions	asked”
� State	in	your	submission	how	many	tokens	you	are	using

8



Course	Overview
� This	class	focuses	on	the	implementation	of	relational	
databases

� Tables	(relations)	populated	with	rows	(tuples),	
manipulated	with	SQL	queries

� Lots	of	other	kinds	of	databases	too,	but	(sadly)	we	
won’t	discuss	them	this	term
� CS123	is	a	great	venue	to	explore	other	data	models,	e.g.	
XML	databases,	graph	databases,	NoSQL,	etc.

9



Relational	DB	Requirements	(1)
� Need	generalized	query	support

� Use	the	SQL	query	language
� How	to	represent	query	plans	internally?
� How	to	optimize	query	plans?

� What	plan	transformations	are	allowed?
� What	data	statistics	do	we	need	to	guide	this	phase?

� How	to	execute	query	plans?
� General	issues:		subqueries,	correlated	subqueries,	
inserts/updates/deletes,	etc.

� Advanced	techniques	(e.g.	parallel	execution)

10



Relational	DB	Requirements	(2)
� Typically	needs	persistent storage	of	data

� Some	databases	are	in-memory	only
� (Makes	things	much simpler!)

� Problem:		disks	are	slow
� How	to	improve	data	access	performance?

� Storage	formats,	data	layouts,	data	access	patterns
� Alternate	access	paths (i.e.	indexes)
� Better	hardware?		(e.g.	RAID,	SSD)

� How	do	these	improvements	affect	query	planning	and	
execution?

11



Relational	DB	Requirements	(3)
� Generally,	databases	should	provide	transacted	operations

� Satisfy	specific	properties	(ACID)
� Example:		Durability

� I	complete some	critical	piece	of	work
� i.e.	the	database	reports	the	transaction	as	committed

� Then	the	power	fails!
� At	restart,	database	should	ensure	my	work	is	still	there…

� Example:		Consistency	and	Atomicity
� I	am	performing	a	multiple-step	transaction…
� Along	the	way,	I	violate	a	database	constraint!

� DB	must	roll	back	all	other	changes	in	the	transaction

12



Relational	DB	Requirements	(4)
� Databases	often	need	to	support	concurrent	access	
from	multiple	clients

� How	to	ensure	that	client	operations	are	isolated	from	
each	other?
� (And	what	do	we	mean	by	“isolated”	anyway?)
� How	to	govern	access	to	shared	tables/records
� What	techniques	can	make	this	fast	and	efficient?

� How	does	concurrent	access	affect	query	planning,	
optimization,	and	execution?

13



DB	Architecture	(1)
� Database	data	is	stored	in	files	on	disks

� Files	are	read	and	written	in	blocks	to	improve	
performance	and	simplify	transaction	processing

� The	file	manager exposes	raw	disk	data	to	the	DB
� e.g.	allows	blocks	or	pages	of	data	to	be	read	from	a	file
� e.g.	allows	files	to	be	created	or	deleted	as	well

File
Manager

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

14



DB	Architecture	(2)
� The	buffer	manager caches	disk	pages	in	memory

� Ensures	that	disk	is	only	accessed	when	necessary
� Allows	very	large	data	files	to	be	managed	by	database

� Frequently,	most	widely	used
data	pages	remain	cached	in
memory	across	many	queries
� e.g.	schema	definitions,
critical	indexes,	etc.

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

15



DB	Architecture	(3)
� The	transaction	manager provides	transaction	
processing	in	the	system
� Must	work	closely	with	the	buffer	manager
� Ensure	pages	are	written	back	to	disk	in	a	way	that	also	
satisfies	transaction	properties

� Example:
� Dirty	pages	cannot	be	written
back	to	disk	until	transaction
logs	are	properly	updated

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

Transaction
Manager

16



DB	Architecture	(4)
� These	components	collectively	comprise	the	storage	
manager

� Provides	access	to	schema	information,	table	data,	
indexes,	and	statistics	about	table	data

� Can	also	manipulate
each	of	these	kinds
of	data

Transaction
Manager

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

Storage
Manager

17



DB	Architecture	(5)
� Data	definition	operations
don’t	require	sophisticated
querying	capabilities

� Many	databases	don’t
even	have	transacted
DDL

Transaction
Manager

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

Storage
Manager

DDL Parser

DDL 
Interpreter

18



Data	Definition
� Data	definition	operations	require	manipulation	of	
data	dictionary,	table	files,	and	index	files
� Create/alter/drop	a	table
� Create/alter/drop	an	index

� The	data	dictionary holds	all	DB	schema	information
� Most	databases	use	another	set	of	tables	to	store	the	
data	dictionary
� Use	same	machinery	to	read/write	tuples	in	data	dictionary
� Makes	it	easier	to	transact	DDL	operations	too
� Manipulation	of	these	tables	is	performed	more	directly,	
without	using	query	processing	system

19



DB	Architecture	(6)
� Database	queries	can	be	very
complex	and	time-consuming

� Query	evaluator executes	plans
comprised	of	basic	operations
� Operations	are	loosely
based	on	the	relational
algebra	operators

� Uses	storage	manager
to	access	tables	as	a
sequence	of	tuples

Transaction
Manager

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

Storage
Manager

DDL Parser

DDL 
Interpreter

Query 
Evaluator

20



DB	Architecture	(7)
� Query	planner prepares	a
query	for	evaluation

� Translates	the	query	into	an
optimized	execution	plan
� Uses	data	statistics
and	educated	guesses
to	optimize	the	plan

� Passes	the	plan	to	the
query	evaluator	for
execution

Transaction
Manager

Data
Dictionary

Table
Files

Index
Files

Transaction 
Logs

filesystem

Buffer
Manager

File
Manager

Storage
Manager

DDL Parser

DDL 
Interpreter

DML Parser

Query 
Planner

Query 
Evaluator

21



Introducing	NanoDB
� Assignments	and	projects	will	be	based	on	the	NanoDB
codebase
� A	simple	Java	database	implementation

� Primary	goal	is	to	be	understandable	and	extensible
� When	deciding	between	performance	and	clarity,	
NanoDB	generally	chooses	clarity

� (Most	open-source	database	projects	go	the	other	way.)
� Definitely	still	a	work	in	progress!

� Plenty	of	opportunity	to	make	a	lasting	contribution	to	
this	project,	and	to	future	iterations	of	this	class

22



Database	Files
� The	database	stores	data	in	files,	and	manipulates	data	
in	memory…
� …this	data	is	stored	on	physical	devices	in	the	computer

� Need	to	understand	the	characteristics	of	these	devices	
to	understand	how	to	implement	databases	properly

23



Storage	Hierarchy
� Wide	variety	of	storage	media	available	for	use
� Can	classify	storage	media	based	on:

� Access	speed
� Cost	per	unit	storage
� Reliability

� Different	media	support	different	access	patterns
� Affects	their	usefulness	for	various	tasks

� Examples:
� Magnetic	tapes	are	best	suited	to	sequential	access;	random	
access	is	prohibitively	slow

� DRAM/flash	memory	are	very	good	for	random	access

24



Storage	Hierarchy	(2)
� Primary	storage:

� Cache	memory	is	usually	very	small,	very	fast
� Main	memory	is	much	larger	than	cache,	but	usually	still	too	
small	to	hold	an	entire	database

� Supports	random	access	(a.k.a.	direct	access)
� Storage	is	volatile:		data	doesn’t	survive	a	power	loss

� Secondary	storage,	a.k.a.	online	storage:
� Much	larger,	cheaper,	and	slower	than	primary	storage
� Storage	is	persistent:		data	lasts	through	a	power	loss
� Magnetic	disks	are	most	common	form	of	secondary	storage
� Flash	memory	devices	(Solid	State	Drives	or	SSD)	are	
increasingly	common,	but	are	still	smaller/more	expensive

25



Storage	Hierarchy	(3)
� Tertiary	storage,	a.k.a.	offline	storage:

� Optical	storage	(CDs,	DVDs,	etc.),	tape	storage
� Primarily	used	for	backup	and	archival	storage
� Access	rates	are	very slow	compared	to	primary	and	
secondary	storage

� Tapes	only	support	sequential	access,	not	direct	access
� Tapes/optical	disks	can	be	managed	in	a	library

� Robotic	system	to	load	specific	tapes/disks	into	a	drive
� Called	near-line	storage

� Primary	difference	between	offline	&	near-line	storage:
� A	computer	can	access	near-line	storage	and	load	it	into	
online	storage	all	by	itself

� A	human	being	must	make	offline	storage	available

26



Internal	vs.	External	Memory
� In	database	systems,	primary	storage	is	also	often	
called	internal	memory
� Memory	the	CPU	can	access	quickly	and	efficiently

� Similarly,	secondary	storage	(flash	memory,	magnetic	
disks)	are	called	external	memory

� Algorithms	designed	to	work	with	data	sets	much	
larger	than	primary	storage	are	called	external	memory	
algorithms
� Must	repeatedly	load	portions	of	data	into	internal	
memory,	process	them,	then	store	them	back	to	disk

27



Internal	vs.	External	Memory	(2)
� Data	structures	for	organizing	data	on	disk	are	called	
external	memory	structures
� e.g.	hash	file	organization	also	called	external	hashing

� Frequently	encounter	“external-memory	(whatever)”	
in	database	literature
� Simply	means	the	algorithm/structure	is	designed	to	
work	with	data	stored	on	disk,	not	just	in	memory

28



Storage	Hierarchy	(4)

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapessl
ow

er
   

   
   

   
   

   
   

   
   

   
   

fa
st

er

ch
ea

pe
r  

   
   

   
   

m
or

e 
ex

pe
ns

iv
e

tertiary (off-line) storage
Usually, a person must
facilitate access

secondary (on-line) storage
(aka “external memory”)
OS must facilitate access
nonvolatile storage

primary storage
(aka “internal memory”)
CPU can access directly
volatile storage

29



Magnetic	Disks
� Magnetic	disks	are	most	widely	used	online	storage	
medium	in	computers
� Hard	disk	drives	(HDD)

� Drive	contains	some	number	of
plattersmounted	on	a	spindle
� Platters	spin	at	a	constant
rate	of	speed

� 5400	RPM,	up	to	15000	RPM
� Read/write	heads	are	suspended
above	platters	on	a	disk	arm
� All	heads	move	together	as	a	unit

platters

spindle

disk arm
assembly

read/write
heads

30



Magnetic	Disks	(2)
� Platters	are	divided	into	tracks
� Tracks	are	divided	into	sectors

� Modern	drives	have	more	sectors	towards	edge	of	disk
� All	heads	are	positioned	by	one	assembly…

� A	cylinder is	made	up	of	the
tracks	on	all	platters	at
the	same	position

� To	read	a	sector	from	disk:
� Assembly	seeks to	the
appropriate	cylinder

� Sector	is	read	when	it	rotates
under	the	disk	head

cylinder

tracks

sectors

31



Disk	Performance	Measures
� Access	time is	the	time	between	a	read/write	request	
being	issued,	and	the	data	being	returned
� Read/write	heads	must	be	moved	to	appropriate	track
� Sectors	must	rotate	past	the	read/write	heads

� First	operation	is	called	a	seek
� Average	seek	time of	a	disk	is	measured	from	a	series	of	
random	seeks	(uniform	distribution)

� Generally	ranges	from	3-15ms
� Typical	consumer	drives	are	in	the	range	of	9-12ms

� Seeking	nearby	tracks	will	obviously	be	faster
� Track-to-track seek	times	in	range	of	0.2-0.8ms

� (SSDs	have	“seek	times”	in	the	0.08-0.16ms	range)

32



Disk	Performance	Measures	(2)
� Rotational	latency	time is	amount	of	time	for	sector	to	
pass	under	read/write	heads
� Average	rotational	latency is	½	the	time	for	a	full	rotation
� 5,400	RPM:		5.6ms
� 7,200	RPM:		4.2ms
� 15,000	RPM:		2ms

� Disks	can	only	read/write	information	so	quickly
� Data	transfer	rate specifies	how	fast	data	is	read	from/written	
to	the	disk

� Current	interfaces	can	support	up	to	600+	MB/sec
� Actual	transfer	rate	depends	on	several	things:

� The	disk	and	its	controller,	motherboard	chipset,	etc.
� The	section	of	the	disk	being	accessed

33



Disk-Access	Optimizations
� Wide	range	of	techniques	used	to	improve	hard	disk	
performance
� Implemented	in	the	HDD	itself,	and/or	in	operating	system

� Buffering
� When	data	is	read,	store	it	in	a	memory	buffer
� If	same	data	is	requested	again,	provide	it	from	the	buffer

� Read-ahead
� When	a	sector	is	read,	read	other	sectors	in	the	same	track
� If	a	program	is	scanning	through	a	file,	subsequent	accesses	
can	be	satisfied	immediately	from	cache

34



Disk-Access	Optimizations	(2)
� I/O	Scheduling

� The	hard	disk	can	queue	up	batches	of	read	and	write	
requests,	then	schedule	them	in	a	reasonable	way

� Goal:		reduce	the	average	seek	time	of	accesses
� Writes	can	be	buffered	in	volatile	memory	to	facilitate	this	
(can	cause	problems	if	power	fails	before	write	is	performed)

� Nonvolatile	write	buffers
� Disk	provides	NV-RAM	to	cache	disk	writes
� Data is	saved	in	NV-RAM	before	being	saved	to	disk
� Data	isn’t	written	to	disk	until the	disk	is	idle,	or	the	NV-RAM	
buffer	is	full

� If	power	fails,	contents	of	NV-RAM	are	still	intact!

35


