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Welcome!
� How	do	relational	databases	work?

� Provide	a	hands-on opportunity	to	explore	this	topic
� This	is	a	project	course:

� A	sequence	of	programming	assignments	focusing	on	
various	areas	of	database	system	implementation

� Also	some	reading	and	problem-solving,	but	not	a	lot
� No	midterm,	no	final	exam	J
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Prerequisites
� You	should	be	familiar	with:

� The	SQL	query	language	(DDL	and	DML)
� The	relational	model	and	relational	algebra
� I	will	post	a	link	to	the	CS121	slides

� Also,	familiarity	with:
� Algorithms	(e.g.	sorting,	searching),	trees,	graphs,	etc.
� Basic	time	and	space	complexity

� All	programming	is	in	Java	SE	8+
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Software	Development
� Secondary	focus	of	course	is	on	software	development

� Automated	build	system:		Ant
� Documentation	generation:		Javadoc
� Automated	testing:		TestNG (JaCoCo for	test	coverage)
� Code	linting /	static	analysis:		FindBugs
� Version	control:		Git
� Integrated	development	environments	(e.g.	IntelliJ IDEA,	
Eclipse,	etc.)

� You	will	work	with	all	of	these	tools	during	the	term
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Software	Development	(2)
� Databases	must	be	correct

� A	portion	of	each	assignment’s	grade	will	depend	on	the	
correctness	of	your	work

� All	work	must	be	clean	and	well-documented
� Follow	standard	Java	coding	conventions
� Use	Javadoc	to	document	the	code	you	write
� Clearly	and	concisely	comment	your	code	as	well
� Commit-logs	must	also	include	clear	documentation	of	
your	changes

� Failure	to	do	these	things	will	result	in	point	deductions
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Teams	and	Collaboration
� You	must	work	in	teams	of	2-3	people

� Need	to	decide	team	composition	relatively	quickly
� First	assignment	hopefully	out	by	Wednesday	this	week

� Each	team’s	submission	must	be	entirely	its	own	work
� Feel	free	to	help	debug	each	other’s	programs,	get	tools	
or	the	debugger	working,	etc.
� Follow	the	“50-foot	rule”	for	helping	other	teams	debug:		
help	others	with	your	brain,	not	your	code.
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Course	Website
� Lectures,	assignments,	and	other	course	details	are	
available	on	the	Caltech	Moodle
� https://courses.caltech.edu/course/view.php?id=2900
� Enrollment	key:		writeahead
� Please	enroll	ASAP! All	course	announcements	are	
made	through	Moodle.

� Course	policies,	collaboration	policy,	contact	info,	etc.	
will	all	be	posted	there	– make	sure	to	review	it	all!
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Late	Policy
� Late	penalties	will	be	applied	to	assignments:

� Up	to	24	hours	late:		-10%
� Up	to	48	hours	late:		-30%
� Up	to	72	hours	late:		-60%
� After	72	hours:		don’t	bother	L

� Extensions	are	available	for	extenuating	circumstances
� Health	center	notes,	extensions	from	Dean’s	office,	or	talk	to	
me	if	these	aren’t	appropriate

� Teams	also	have	4	tokens	to	use	throughout	the	term
� Each	token	worth	a	24-hour	extension,	“no	questions	asked”
� State	in	your	submission	how	many	tokens	you	are	using

8



Course	Overview
� This	class	focuses	on	the	implementation	of	relational	
databases

� Tables	(relations)	populated	with	rows	(tuples),	
manipulated	with	SQL	queries

� Lots	of	other	kinds	of	databases	too,	but	(sadly)	we	
won’t	discuss	them	this	term
� CS123	is	a	great	venue	to	explore	other	data	models,	e.g.	
XML	databases,	graph	databases,	NoSQL,	etc.
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Relational	DB	Requirements	(1)
� Need	generalized	query	support

� Use	the	SQL	query	language
� How	to	represent	query	plans	internally?
� How	to	optimize	query	plans?

� What	plan	transformations	are	allowed?
� What	data	statistics	do	we	need	to	guide	this	phase?

� How	to	execute	query	plans?
� General	issues:		subqueries,	correlated	subqueries,	
inserts/updates/deletes,	etc.

� Advanced	techniques	(e.g.	parallel	execution)
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Relational	DB	Requirements	(2)
� Typically	needs	persistent storage	of	data

� Some	databases	are	in-memory	only
� (Makes	things	much simpler!)

� Problem:		disks	are	slow
� How	to	improve	data	access	performance?

� Storage	formats,	data	layouts,	data	access	patterns
� Alternate	access	paths (i.e.	indexes)
� Better	hardware?		(e.g.	RAID,	SSD)

� How	do	these	improvements	affect	query	planning	and	
execution?
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Relational	DB	Requirements	(3)
� Generally,	databases	should	provide	transacted	operations

� Satisfy	specific	properties	(ACID)
� Example:		Durability

� I	complete some	critical	piece	of	work
� i.e.	the	database	reports	the	transaction	as	committed

� Then	the	power	fails!
� At	restart,	database	should	ensure	my	work	is	still	there…

� Example:		Consistency	and	Atomicity
� I	am	performing	a	multiple-step	transaction…
� Along	the	way,	I	violate	a	database	constraint!

� DB	must	roll	back	all	other	changes	in	the	transaction
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Relational	DB	Requirements	(4)
� Databases	often	need	to	support	concurrent	access	
from	multiple	clients

� How	to	ensure	that	client	operations	are	isolated	from	
each	other?
� (And	what	do	we	mean	by	“isolated”	anyway?)
� How	to	govern	access	to	shared	tables/records
� What	techniques	can	make	this	fast	and	efficient?

� How	does	concurrent	access	affect	query	planning,	
optimization,	and	execution?
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DB	Architecture	(1)
� Database	data	is	stored	in	files	on	disks

� Files	are	read	and	written	in	blocks	to	improve	
performance	and	simplify	transaction	processing

� The	file	manager exposes	raw	disk	data	to	the	DB
� e.g.	allows	blocks	or	pages	of	data	to	be	read	from	a	file
� e.g.	allows	files	to	be	created	or	deleted	as	well
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DB	Architecture	(2)
� The	buffer	manager caches	disk	pages	in	memory

� Ensures	that	disk	is	only	accessed	when	necessary
� Allows	very	large	data	files	to	be	managed	by	database

� Frequently,	most	widely	used
data	pages	remain	cached	in
memory	across	many	queries
� e.g.	schema	definitions,
critical	indexes,	etc.
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DB	Architecture	(3)
� The	transaction	manager provides	transaction	
processing	in	the	system
� Must	work	closely	with	the	buffer	manager
� Ensure	pages	are	written	back	to	disk	in	a	way	that	also	
satisfies	transaction	properties

� Example:
� Dirty	pages	cannot	be	written
back	to	disk	until	transaction
logs	are	properly	updated
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DB	Architecture	(4)
� These	components	collectively	comprise	the	storage	
manager

� Provides	access	to	schema	information,	table	data,	
indexes,	and	statistics	about	table	data

� Can	also	manipulate
each	of	these	kinds
of	data
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DB	Architecture	(5)
� Data	definition	operations
don’t	require	sophisticated
querying	capabilities

� Many	databases	don’t
even	have	transacted
DDL
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Data	Definition
� Data	definition	operations	require	manipulation	of	
data	dictionary,	table	files,	and	index	files
� Create/alter/drop	a	table
� Create/alter/drop	an	index

� The	data	dictionary holds	all	DB	schema	information
� Most	databases	use	another	set	of	tables	to	store	the	
data	dictionary
� Use	same	machinery	to	read/write	tuples	in	data	dictionary
� Makes	it	easier	to	transact	DDL	operations	too
� Manipulation	of	these	tables	is	performed	more	directly,	
without	using	query	processing	system
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DB	Architecture	(6)
� Database	queries	can	be	very
complex	and	time-consuming

� Query	evaluator executes	plans
comprised	of	basic	operations
� Operations	are	loosely
based	on	the	relational
algebra	operators

� Uses	storage	manager
to	access	tables	as	a
sequence	of	tuples
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DB	Architecture	(7)
� Query	planner prepares	a
query	for	evaluation

� Translates	the	query	into	an
optimized	execution	plan
� Uses	data	statistics
and	educated	guesses
to	optimize	the	plan

� Passes	the	plan	to	the
query	evaluator	for
execution
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Introducing	NanoDB
� Assignments	and	projects	will	be	based	on	the	NanoDB
codebase
� A	simple	Java	database	implementation

� Primary	goal	is	to	be	understandable	and	extensible
� When	deciding	between	performance	and	clarity,	
NanoDB	generally	chooses	clarity

� (Most	open-source	database	projects	go	the	other	way.)
� Definitely	still	a	work	in	progress!

� Plenty	of	opportunity	to	make	a	lasting	contribution	to	
this	project,	and	to	future	iterations	of	this	class
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Database	Files
� The	database	stores	data	in	files,	and	manipulates	data	
in	memory…
� …this	data	is	stored	on	physical	devices	in	the	computer

� Need	to	understand	the	characteristics	of	these	devices	
to	understand	how	to	implement	databases	properly
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Storage	Hierarchy
� Wide	variety	of	storage	media	available	for	use
� Can	classify	storage	media	based	on:

� Access	speed
� Cost	per	unit	storage
� Reliability

� Different	media	support	different	access	patterns
� Affects	their	usefulness	for	various	tasks

� Examples:
� Magnetic	tapes	are	best	suited	to	sequential	access;	random	
access	is	prohibitively	slow

� DRAM/flash	memory	are	very	good	for	random	access

24



Storage	Hierarchy	(2)
� Primary	storage:

� Cache	memory	is	usually	very	small,	very	fast
� Main	memory	is	much	larger	than	cache,	but	usually	still	too	
small	to	hold	an	entire	database

� Supports	random	access	(a.k.a.	direct	access)
� Storage	is	volatile:		data	doesn’t	survive	a	power	loss

� Secondary	storage,	a.k.a.	online	storage:
� Much	larger,	cheaper,	and	slower	than	primary	storage
� Storage	is	persistent:		data	lasts	through	a	power	loss
� Magnetic	disks	are	most	common	form	of	secondary	storage
� Flash	memory	devices	(Solid	State	Drives	or	SSD)	are	
increasingly	common,	but	are	still	smaller/more	expensive
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Storage	Hierarchy	(3)
� Tertiary	storage,	a.k.a.	offline	storage:

� Optical	storage	(CDs,	DVDs,	etc.),	tape	storage
� Primarily	used	for	backup	and	archival	storage
� Access	rates	are	very slow	compared	to	primary	and	
secondary	storage

� Tapes	only	support	sequential	access,	not	direct	access
� Tapes/optical	disks	can	be	managed	in	a	library

� Robotic	system	to	load	specific	tapes/disks	into	a	drive
� Called	near-line	storage

� Primary	difference	between	offline	&	near-line	storage:
� A	computer	can	access	near-line	storage	and	load	it	into	
online	storage	all	by	itself

� A	human	being	must	make	offline	storage	available
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Internal	vs.	External	Memory
� In	database	systems,	primary	storage	is	also	often	
called	internal	memory
� Memory	the	CPU	can	access	quickly	and	efficiently

� Similarly,	secondary	storage	(flash	memory,	magnetic	
disks)	are	called	external	memory

� Algorithms	designed	to	work	with	data	sets	much	
larger	than	primary	storage	are	called	external	memory	
algorithms
� Must	repeatedly	load	portions	of	data	into	internal	
memory,	process	them,	then	store	them	back	to	disk
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Internal	vs.	External	Memory	(2)
� Data	structures	for	organizing	data	on	disk	are	called	
external	memory	structures
� e.g.	hash	file	organization	also	called	external	hashing

� Frequently	encounter	“external-memory	(whatever)”	
in	database	literature
� Simply	means	the	algorithm/structure	is	designed	to	
work	with	data	stored	on	disk,	not	just	in	memory
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Storage	Hierarchy	(4)
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Magnetic	Disks
� Magnetic	disks	are	most	widely	used	online	storage	
medium	in	computers
� Hard	disk	drives	(HDD)

� Drive	contains	some	number	of
plattersmounted	on	a	spindle
� Platters	spin	at	a	constant
rate	of	speed

� 5400	RPM,	up	to	15000	RPM
� Read/write	heads	are	suspended
above	platters	on	a	disk	arm
� All	heads	move	together	as	a	unit
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Magnetic	Disks	(2)
� Platters	are	divided	into	tracks
� Tracks	are	divided	into	sectors

� Modern	drives	have	more	sectors	towards	edge	of	disk
� All	heads	are	positioned	by	one	assembly…

� A	cylinder is	made	up	of	the
tracks	on	all	platters	at
the	same	position

� To	read	a	sector	from	disk:
� Assembly	seeks to	the
appropriate	cylinder

� Sector	is	read	when	it	rotates
under	the	disk	head

cylinder

tracks

sectors
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Disk	Performance	Measures
� Access	time is	the	time	between	a	read/write	request	
being	issued,	and	the	data	being	returned
� Read/write	heads	must	be	moved	to	appropriate	track
� Sectors	must	rotate	past	the	read/write	heads

� First	operation	is	called	a	seek
� Average	seek	time of	a	disk	is	measured	from	a	series	of	
random	seeks	(uniform	distribution)

� Generally	ranges	from	3-15ms
� Typical	consumer	drives	are	in	the	range	of	9-12ms

� Seeking	nearby	tracks	will	obviously	be	faster
� Track-to-track seek	times	in	range	of	0.2-0.8ms

� (SSDs	have	“seek	times”	in	the	0.08-0.16ms	range)
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Disk	Performance	Measures	(2)
� Rotational	latency	time is	amount	of	time	for	sector	to	
pass	under	read/write	heads
� Average	rotational	latency is	½	the	time	for	a	full	rotation
� 5,400	RPM:		5.6ms
� 7,200	RPM:		4.2ms
� 15,000	RPM:		2ms

� Disks	can	only	read/write	information	so	quickly
� Data	transfer	rate specifies	how	fast	data	is	read	from/written	
to	the	disk

� Current	interfaces	can	support	up	to	600+	MB/sec
� Actual	transfer	rate	depends	on	several	things:

� The	disk	and	its	controller,	motherboard	chipset,	etc.
� The	section	of	the	disk	being	accessed
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Disk-Access	Optimizations
� Wide	range	of	techniques	used	to	improve	hard	disk	
performance
� Implemented	in	the	HDD	itself,	and/or	in	operating	system

� Buffering
� When	data	is	read,	store	it	in	a	memory	buffer
� If	same	data	is	requested	again,	provide	it	from	the	buffer

� Read-ahead
� When	a	sector	is	read,	read	other	sectors	in	the	same	track
� If	a	program	is	scanning	through	a	file,	subsequent	accesses	
can	be	satisfied	immediately	from	cache
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Disk-Access	Optimizations	(2)
� I/O	Scheduling

� The	hard	disk	can	queue	up	batches	of	read	and	write	
requests,	then	schedule	them	in	a	reasonable	way

� Goal:		reduce	the	average	seek	time	of	accesses
� Writes	can	be	buffered	in	volatile	memory	to	facilitate	this	
(can	cause	problems	if	power	fails	before	write	is	performed)

� Nonvolatile	write	buffers
� Disk	provides	NV-RAM	to	cache	disk	writes
� Data is	saved	in	NV-RAM	before	being	saved	to	disk
� Data	isn’t	written	to	disk	until the	disk	is	idle,	or	the	NV-RAM	
buffer	is	full

� If	power	fails,	contents	of	NV-RAM	are	still	intact!
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