Relational Database System Implementation

CS122 – Lecture 1

Winter Term, 2017-2018

Welcome!

- How do relational databases work?
 - Provide a *hands-on* opportunity to explore this topic
- This is a project course:
 - A sequence of programming assignments focusing on various areas of database system implementation
 - Also some reading and problem-solving, but not a lot
- No midterm, no final exam ©

Prerequisites

- You should be familiar with:
 - The SQL query language (DDL and DML)
 - The relational model and relational algebra
 - I will post a link to the CS121 slides
- Also, familiarity with:
 - Algorithms (e.g. sorting, searching), trees, graphs, etc.
 - Basic time and space complexity
- All programming is in Java SE 8+

Software Development

- Secondary focus of course is on software development
 - Automated build system: Ant
 - Documentation generation: Javadoc
 - Automated testing: TestNG (JaCoCo for test coverage)
 - Code linting / static analysis: FindBugs
 - Version control: Git
 - Integrated development environments (e.g. IntelliJ IDEA, Eclipse, etc.)
- You will work with all of these tools during the term

Software Development (2)

- Databases must be correct
 - A portion of each assignment's grade will depend on the correctness of your work
- All work must be clean and well-documented
 - Follow standard Java coding conventions
 - Use Javadoc to document the code you write
 - Clearly and concisely comment your code as well
 - Commit-logs must also include clear documentation of your changes
 - Failure to do these things will result in point deductions

Teams and Collaboration

- You must work in teams of 2-3 people
 - Need to decide team composition relatively quickly
 - First assignment hopefully out by Wednesday this week
- Each team's submission must be entirely its own work
- Feel free to help debug each other's programs, get tools or the debugger working, etc.
 - Follow the "50-foot rule" for helping other teams debug: help others with your brain, not your code.

Course Website

- Lectures, assignments, and other course details are available on the Caltech Moodle
 - https://courses.caltech.edu/course/view.php?id=2900
 - Enrollment key: writeahead
 - **Please enroll ASAP!** All course announcements are made through Moodle.
- Course policies, collaboration policy, contact info, etc.
 will all be posted there make sure to review it all!

Late Policy

- Late penalties will be applied to assignments:
 - Up to 24 hours late: -10%
 - Up to 48 hours late: -30%
 - Up to 72 hours late: -60%
 - After 72 hours: don't bother ☺
- Extensions are available for extenuating circumstances
 - Health center notes, extensions from Dean's office, or talk to me if these aren't appropriate
- Teams also have 4 tokens to use throughout the term
 - Each token worth a 24-hour extension, "no questions asked"
 - State in your submission how many tokens you are using

Course Overview

- This class focuses on the implementation of relational databases
- Tables (relations) populated with rows (tuples), manipulated with SQL queries
- Lots of other kinds of databases too, but (sadly) we won't discuss them this term
 - CS123 is a great venue to explore other data models, e.g.
 XML databases, graph databases, NoSQL, etc.

Relational DB Requirements (1)

- Need generalized query support
 - Use the SQL query language
- How to represent query plans internally?
- How to optimize query plans?
 - What plan transformations are allowed?
 - What data statistics do we need to guide this phase?
- How to execute query plans?
 - General issues: subqueries, correlated subqueries, inserts/updates/deletes, etc.
 - Advanced techniques (e.g. parallel execution)

Relational DB Requirements (2)

- Typically needs <u>persistent</u> storage of data
 - Some databases are in-memory only
 - (Makes things *much* simpler!)
- Problem: disks are slow
- How to improve data access performance?
 - Storage formats, data layouts, data access patterns
 - Alternate access paths (i.e. indexes)
 - Better hardware? (e.g. RAID, SSD)
- How do these improvements affect query planning and execution?

Relational DB Requirements (3)

- Generally, databases should provide transacted operations
 - Satisfy specific properties (ACID)
- Example: Durability
 - I <u>complete</u> some critical piece of work
 - i.e. the database reports the transaction as committed
 - Then the power fails!
 - At restart, database should ensure my work is still there...
- Example: Consistency and Atomicity
 - I am performing a multiple-step transaction...
 - Along the way, I violate a database constraint!
 - DB must roll back all other changes in the transaction

Relational DB Requirements (4)

- Databases often need to support concurrent access from multiple clients
- How to ensure that client operations are isolated from each other?
 - (And what do we mean by "isolated" anyway?)
 - How to govern access to shared tables/records
 - What techniques can make this fast and efficient?
- How does concurrent access affect query planning, optimization, and execution?

DB Architecture (1)

- Database data is stored in files on disks
 - Files are read and written in blocks to improve performance and simplify transaction processing
- The file manager exposes raw disk data to the DB
 - e.g. allows blocks or pages of data to be read from a file
 - e.g. allows files to be created or deleted as well

DB Architecture (2)

- The buffer manager caches disk pages in memory
 - Ensures that disk is only accessed when necessary
 - Allows very large data files to be managed by database
- Frequently, most widely used data pages remain cached in memory across many queries
 - e.g. schema definitions, critical indexes, etc.

filesystem

Data Dictionary Table Files

Index Files Transaction Logs

DB Architecture (3)

- The transaction manager provides transaction processing in the system
 - Must work closely with the buffer manager

filesystem

- Ensure pages are written back to disk in a way that also satisfies transaction properties
- Example:
 - Dirty pages cannot be written back to disk until transaction logs are properly updated

Data
Dictionary

Table
Files

Index
Files

Transaction
Logs

DB Architecture (4)

- These components collectively comprise the storage manager
- Provides access to schema information, table data, indexes, and statistics about table data
- Can also manipulate each of these kinds of data

filesystem

Data Dictionary

Table Files

Index Files Transaction Logs

DB Architecture (5)

- Data definition operations don't require sophisticated querying capabilities
- Many databases don't even have transacted DDL

DDL Parser

filesystem

Data Dictionary Table Files Index Files Transaction Logs

Data Definition

- Data definition operations require manipulation of data dictionary, table files, and index files
 - Create/alter/drop a table
 - Create/alter/drop an index
- The data dictionary holds all DB schema information
 - Most databases use another set of tables to store the data dictionary
 - Use same machinery to read/write tuples in data dictionary
 - Makes it easier to transact DDL operations too
 - Manipulation of these tables is performed more directly, without using query processing system

DB Architecture (6)

- Database queries can be very complex and time-consuming
- Query evaluator executes plans comprised of basic operations
 - Operations are loosely based on the relational algebra operators
 - Uses storage manager to access tables as a sequence of tuples

filesystem

Data Dictionary Table Files

Index Files Transaction Logs

DB Architecture (7)

- Query planner prepares a query for evaluation
- Translates the query into an optimized execution plan
 - Uses data statistics and educated guesses to optimize the plan
- Passes the plan to the query evaluator for execution

Index

Files

Transaction

Logs

Table

Files

Data

Dictionary

Introducing NanoDB

- Assignments and projects will be based on the NanoDB codebase
 - A simple Java database implementation
- Primary goal is to be understandable and extensible
 - When deciding between performance and clarity,
 NanoDB generally chooses clarity
 - (Most open-source database projects go the other way.)
- Definitely still a work in progress!
 - Plenty of opportunity to make a lasting contribution to this project, and to future iterations of this class

Database Files

- The database stores data in files, and manipulates data in memory...
 - ...this data is stored on physical devices in the computer
- Need to understand the characteristics of these devices to understand how to implement databases properly

Storage Hierarchy

- Wide variety of storage media available for use
- Can classify storage media based on:
 - Access speed
 - Cost per unit storage
 - Reliability
- Different media support different access patterns
 - Affects their usefulness for various tasks
- Examples:
 - Magnetic tapes are best suited to sequential access; random access is prohibitively slow
 - DRAM/flash memory are very good for random access

Storage Hierarchy (2)

- Primary storage:
 - Cache memory is usually very small, very fast
 - Main memory is much larger than cache, but usually still too small to hold an entire database
 - Supports random access (a.k.a. direct access)
 - Storage is *volatile*: data doesn't survive a power loss
- Secondary storage, a.k.a. online storage:
 - Much larger, cheaper, and slower than primary storage
 - Storage is persistent: data lasts through a power loss
 - Magnetic disks are most common form of secondary storage
 - Flash memory devices (Solid State Drives or SSD) are increasingly common, but are still smaller/more expensive

Storage Hierarchy (3)

- Tertiary storage, a.k.a. offline storage:
 - Optical storage (CDs, DVDs, etc.), tape storage
 - Primarily used for backup and archival storage
 - Access rates are very slow compared to primary and secondary storage
 - Tapes only support sequential access, not direct access
- Tapes/optical disks can be managed in a library
 - Robotic system to load specific tapes/disks into a drive
 - Called near-line storage
- Primary difference between offline & near-line storage:
 - A computer can access near-line storage and load it into online storage all by itself
 - A human being must make offline storage available

Internal vs. External Memory

- In database systems, primary storage is also often called internal memory
 - Memory the CPU can access quickly and efficiently
- Similarly, secondary storage (flash memory, magnetic disks) are called external memory
- Algorithms designed to work with data sets much larger than primary storage are called external memory algorithms
 - Must repeatedly load portions of data into internal memory, process them, then store them back to disk

Internal vs. External Memory (2)

- Data structures for organizing data on disk are called external memory structures
 - e.g. hash file organization also called external hashing
- Frequently encounter "external-memory (whatever)" in database literature
 - Simply means the algorithm/structure is designed to work with data stored on disk, not just in memory

Storage Hierarchy (4)

Magnetic Disks

- Magnetic disks are most widely used online storage medium in computers
 - Hard disk drives (HDD)
- Drive contains some number of platters mounted on a spindle
 - Platters spin at a constant rate of speed
 - 5400 RPM, up to 15000 RPM
- Read/write heads are suspended above platters on a disk arm
 - All heads move together as a unit

Magnetic Disks (2)

- Platters are divided into tracks
- Tracks are divided into sectors
 - Modern drives have more sectors towards edge of disk
- All heads are positioned by one assembly...
 - A cylinder is made up of the tracks on all platters at the same position
- To read a sector from disk:
 - Assembly seeks to the appropriate cylinder
 - Sector is read when it rotates under the disk head

Disk Performance Measures

- Access time is the time between a read/write request being issued, and the data being returned
 - Read/write heads must be moved to appropriate track
 - Sectors must rotate past the read/write heads
- First operation is called a seek
 - Average seek time of a disk is measured from a series of random seeks (uniform distribution)
 - Generally ranges from 3-15ms
 - Typical consumer drives are in the range of 9-12ms
- Seeking nearby tracks will obviously be faster
 - <u>Track-to-track</u> seek times in range of 0.2-0.8ms
- (SSDs have "seek times" in the 0.08-0.16ms range)

Disk Performance Measures (2)

- Rotational latency time is amount of time for sector to pass under read/write heads
 - Average rotational latency is ½ the time for a full rotation
 - 5,400 RPM: 5.6ms
 - 7,200 RPM: 4.2ms
 - 15,000 RPM: 2ms
- Disks can only read/write information so quickly
 - Data transfer rate specifies how fast data is read from/written to the disk
 - Current interfaces can support up to 600+ MB/sec
 - Actual transfer rate depends on several things:
 - The disk and its controller, motherboard chipset, etc.
 - The section of the disk being accessed

Disk-Access Optimizations

- Wide range of techniques used to improve hard disk performance
 - Implemented in the HDD itself, and/or in operating system
- Buffering
 - When data is read, store it in a memory buffer
 - If same data is requested again, provide it from the buffer
- Read-ahead
 - When a sector is read, read other sectors in the same track
 - If a program is scanning through a file, subsequent accesses can be satisfied immediately from cache

Disk-Access Optimizations (2)

- I/O Scheduling
 - The hard disk can queue up batches of read and write requests, then schedule them in a reasonable way
 - Goal: reduce the average seek time of accesses
 - Writes can be buffered in volatile memory to facilitate this (can cause problems if power fails before write is performed)
- Nonvolatile write buffers
 - Disk provides NV-RAM to cache disk writes
 - Data is saved in NV-RAM before being saved to disk
 - Data isn't written to disk until the disk is idle, or the NV-RAM buffer is full
 - If power fails, contents of NV-RAM are still intact!