
CS 11 Ocaml track: lecture 7

Today:
Writing a computer language, part 2

Evaluating the AST
Environments and scoping

Where we're at

We've implemented the first part of a
language interpreter

source code tokens (lexing)
tokens S-expressions (parsing)
S-expressions abstract syntax trees
(ASTs) (also part of parsing)

This is the boring (routine) part of
writing an interpreter

Where we're going
Today, we'll look at the process of
evaluating the ASTs produced by the
lexing/parsing process
Our programs will go through the
parser and will be transformed into a
sequence of AST expressions
We will write an evaluator that can
generate a value for any AST
expression

Overview (1)
Program [parsing] sequence of AST
expressions
For each AST expression,

evaluate the AST expression to give a value
That's all there is for a simple interpreter!
More complex interpreters/compilers may
transform the AST into simpler representations
(often called intermediate representations or
IRs)

compilers may go all the way to machine language

Overview (2)
Type signature of evaluator (in eval.mli):

val eval : Ast.expr Env.env Env.value

This says: take an AST expression and
an "environment" and produce a "value"
What are environments?
What are values?

Environments and values (1)

Values are the possible legal values that
AST expressions can evaluate to
Environments are a data structure that
stores the mappings (bindings) between
identifiers in the language and their
values

Environments and values (2)
Values and environments are mutually-
recursive types:

type id = string (* identifiers *)
type value = (* values *)

| Val_unit
| Val_bool of bool
| Val_int of int
| Val_prim of (value list -> value)
| Val_lambda of env * id list * Ast.expr list

and env = (* environments *)
{ parent: env option;

bindings: (id, value) Hashtbl.t }

Values (1)
Values represent the different possible
results of a computation:
Val_unit -- unit value (#u)
Val_bool -- boolean value (#t or #f)
Val_int -- integer value
Val_prim -- built-in (primitive) function
Val_lambda -- user-defined function

Values (2)
Val_prim of (value list -> value)

Represents built-in functions:
+, -, *, /, <, >, etc.

Built-in functions take a list of values
(evaluated arguments) and return a
single value

Values (3)
Val_lambda (lambda expression) is
particularly interesting:

Val_lambda of env * id list * Ast.expr list

Ast.expr list is just a list of Scheme
expressions in the body of the lambda

usually just one expression
if more than one, evaluate them in order

id list is the list of identifiers making up the
formal argument list of the function
env ...

Values (3)
Val_lambda (lambda expression) is
particularly interesting:
env is the environment in which the lambda
expression was defined
lambda expressions "carry their own
environments around with them"
This is called lexical scoping and has many
uses

Lexical scoping (example)
(define adder

(lambda (n)
(lambda (i) (+ n i)))

(define add3 (adder 3))

Here, add3 is bound to the lambda expression
(lambda (i) (+ n i))

This wouldn't make sense unless there is an
environment that maps n to something
That environment is the one that was active when
(lambda (i) (+ n i)) was defined

Environments (1)
Recall:

and env =
{ parent: env option;
bindings: (id, value) Hashtbl.t }

Environments bind names (identifiers, id) to
values (value)

here, we use an Ocaml hash table in the
implementation

Environments may have a "parent environment"
here, we use an env option type

Environments (2)
Environments are used to store bindings
between identifiers and values and to look up
the value corresponding to a given identifier
How to look up a value in an environment:
1) Look it up in the bindings hash table
2) If it's found there, return the corresponding value
3) If it isn't found there, search the parent environment
4) If there is no parent environment, signal an error

(raise an exception)

Environments (3)
Ocaml hash tables are a data structure in the
Ocaml standard library
Look up hash tables in the Ocaml documentation
Hash tables are not a functional data structure

they are imperative
In lab 6, the only part of the code that cares about
hash tables is inside the file env.ml
env.mli has the interface to the env type, which
doesn't mention hash tables at all

env is an abstract data type

Writing the evaluator (1)
Type of the evaluator function (from eval.mli):

val eval : Ast.expr -> Env.env -> Env.value

Ast.expr is the expression to be evaluated
Env.env is the environment in which the
expression is evaluated

This provides bindings for any free (unbound) variables
Evaluation only makes sense in the context of some
environment! We call this the "current environment"

Env.value is the result of evaluating the
expression

Writing the evaluator (2)
Type of AST expressions:

type id = string
type expr =
| Expr_unit
| Expr_bool of bool
| Expr_int of int
| Expr_id of id
| Expr_define of id * expr
| Expr_if of expr * expr * expr
| Expr_lambda of id list * expr list
| Expr_apply of expr * expr list

Writing the evaluator (3)
Literal expressions:
| Expr_unit
| Expr_bool of bool
| Expr_int of int

These are easy to evaluate
Expr_unit always evaluates to Val_unit
Expr_bool evaluates to corresponding Val_bool
Expr_int evaluates to corresponding Val_int
These expressions don't depend on the
environment

Writing the evaluator (4)
id and define expressions do depend on the
environment

| Expr_id of id
| Expr_define of id * expr

To evaluate an Expr_id expression:
look up the identifier (id) in the current environment
and return the value
if the identifier isn't found, an exception will be raised

Writing the evaluator (5)
id and define expressions do depend on the
environment

| Expr_id of id
| Expr_define of id * expr

To evaluate an Expr_define expression:
evaluate expr in the current environment to get a value
add a binding between the identifier id and this value
in the environment
return a unit value (Val_unit)

Writing the evaluator (6)
id and define expressions do depend on the
environment

| Expr_id of id
| Expr_define of id * expr

NOTE:
The evaluator doesn't contain any code for
searching environments or adding new bindings to
environments
That code is in env.ml and env.mli
The evaluator code simply calls those functions

Writing the evaluator (7)
| Expr_if of expr * expr * expr

To evaluate an Expr_if expression:
evaluate the first expr (which should evaluate to a
boolean (Val_bool) value)
if the first expr evaluated to Val_bool true, evaluate
the second expr; that value is the value of the entire
Expr_if expression
if the first expr evaluated to Val_bool false,
evaluate the third expression; that value is the value of
the entire Expr_if expression
Never evaluate both the second and third exprs!

Writing the evaluator (8)
| Expr_lambda of id list * expr list

To evaluate an Expr_lambda expression:
create a Val_lambda value with the same id list,
the same expr list, and the current environment as
the environment (env) part
That's all!

Writing the evaluator (9)
| Expr_apply of expr * expr list

This represents a function application (applying a
function to its arguments)
This is by far the most complex case
expr represents the function, which is either a
built-in function or a lambda expression
expr list represents the arguments to the
function

Writing the evaluator (10)
| Expr_apply of expr * expr list

First step: evaluate the expr list by evaluating
each expr in the current environment and making
a list of the results in the same order as the exprs
The result will be a list of values
This is called strict evaluation: all function
arguments are evaluated before applying the
function to its arguments, even if the function
doesn't need all of the values

Writing the evaluator (11)
| Expr_apply of expr * expr list

Second step: evaluate the expr
The result will be either

a built-in function (Val_prim)
a lambda value (Val_lambda)
some other value

If the result is anything other than a Val_prim or a
Val_lambda, it's an error and a Type_error
exception should be raised

Writing the evaluator (12)
| Expr_apply of expr * expr list

If the expr evaluates to a Val_prim :
recall that Val_prim values have the function type
value list value
the result of evaluating the expr list is a list of
values (value list)
so just apply the Val_prim function to the
value list to get the value (the result)

Writing the evaluator (13)
| Expr_apply of expr * expr list

If the expr evaluates to a Val_lambda :
create a new environment with these attributes:

the parent environment is the env of the
Val_lambda (not the current environment!)
the bindings consist of the identifiers in the id list
of the Val_lambda bound to the list of values from
the evaluated arguments to the function
(so, if the id list is x, y, and z and the values are
1, 2, and 3 then the bindings would be
x 1, y 2, and z 3)

Writing the evaluator (14)
| Expr_apply of expr * expr list

If the expr evaluates to a Val_lambda :
evaluate the expr list of the Val_lambda in the
context of the new environment you just created
return the value of the last expr in the expr list

That's all!

Lab 6

Lab 6 is basically identical to the material in
this lecture
A lot of code is provided for you, as in lab 5
You'll need to copy your working parser from
lab 5 into your lab 6 submission
Other than that, there's only about 40 lines of
code to write, in two files

	CS 11 Ocaml track: lecture 7
	Where we're at
	Where we're going
	Overview (1)
	Overview (2)
	Environments and values (1)
	Environments and values (2)
	Values (1)
	Values (2)
	Values (3)
	Values (3)
	Lexical scoping (example)
	Environments (1)
	Environments (2)
	Environments (3)
	Writing the evaluator (1)
	Writing the evaluator (2)
	Writing the evaluator (3)
	Writing the evaluator (4)
	Writing the evaluator (5)
	Writing the evaluator (6)
	Writing the evaluator (7)
	Writing the evaluator (8)
	Writing the evaluator (9)
	Writing the evaluator (10)
	Writing the evaluator (11)
	Writing the evaluator (12)
	Writing the evaluator (13)
	Writing the evaluator (14)
	Lab 6

