
CS 11 Ocaml track: lecture 6 

n Today: 
n  Writing a computer language 
n  Parser generators 

n  lexers (ocamllex) 
n parsers (ocamlyacc) 

n  Abstract syntax trees 



Problem (1) 

n  We want to implement a computer 
language 

n  Very complex problem 
n  however, much similarity between 

implementations of different 
languages 

n  We can take advantage of this 



Problem (2) 

n  We will implement a (very, very) 
simplified version of the Scheme 
programming language 

n  hopefully familiar from CS 4 

n  We call our version of Scheme 
"bogoscheme" 

n  truth in advertising 
n  file names end in .bs 



Problem (3) 

n  Here is the Scheme program we want to 
be able to run: 

(define factorial 
   (lambda (n) 
      (if  (= n 0) 
           1 
           (* n (factorial (- n 1)))))) 
(print (factorial 10)) 

n  Result should be 3628800 



Problem (4) 

n  Two basic ways to implement 
languages: 

n  interpreter 
n  compiler 

n  Difference? 



Interpreters and compilers (1) 

n  A compiler takes a program (as a 
file or files of text) and generates a 
machine-language executable file 
(or files) from it 

n  An interpreter takes a program (as 
a file or files of text), converts it to 
some internal representation, and 
executes it immediately 



Interpreters and compilers (2) 

n  Some language processors are intermediate 
between interpreters and compilers 

n  e.g. Java 
n  Compiler converts source code to Java 

bytecode 
n  Interpreter interprets bytecode 
n  JIT compiler can compile bytecode to machine 

language "on the fly" 



Building a compiler 

n  Compilers have many stages 
n  Start with source code 

n  usually in text files 

n  Go through a number of 
transformations 

n  Eventually output machine code 
n  which can be executed directly 



Stages of a compiler 

n  Typical compiler stages: 
n  Lexer: converts input file (considered as 

a string) into a sequence of tokens 
n  Parser: converts sequence of tokens into 

an "abstract syntax tree" (AST) 
n  [many other stages] 
n  Code generator: emits machine 

language code 



Stages of a typical interpreter 

n  Typical interpreter stages: 
n  Lexer: converts input file (considered as 

a string) into a sequence of tokens 
n  Parser: converts sequence of tokens into 

an "abstract syntax tree" (AST) 
n  Evaluator: evaluates AST directly 



Stages of a Scheme interpreter 

n  Similar to typical interpreter, with one 
extra stage 

n  Lexer: converts input file (considered as 
a string) into a sequence of tokens 

n  Parser: converts sequence of tokens into  
sequence of "S-expressions" 

n  Convert S-expressions into AST 
n  Evaluator: evaluates AST directly 
n  This is subject of labs 5 and 6 



Stages of a simple interpreter 

n  Lexer: converts input file (considered as 
a string) into a sequence of tokens 

n  Parser: recognizes sequences of tokens 
and executes them directly 

n  Only useful for very simple languages 
e.g. calculators 

n  Will show an example later 



Lexer (1) 

n  A "lexer" ("lexical analyzer") is the first 
stage of interpretation or compilation 

n  Takes raw source code and recognizes 
syntactically meaningful "tokens" 

n  Also throws out unnecessary stuff 
n  comments 
n  whitespace 



Lexer (2) 

n  What is a token? 
n  Simple literal data values 

n  integers, booleans, etc. 

n  Punctuation 
n  e.g. left, right parentheses 

n  Identifiers 
n  names of functions, variables 

n  Keywords, operators (if any) 
n  we won't need this 



Lexer (3) 

n  Input: 
(define x 10) ; set x to 10 
n  Possible output of lexer 
TOK_LPAREN, TOK_ID("define"), TOK_ID("x"), 
TOK_INT(10), TOK_RPAREN 
n  NOTE: whitespace and comments are 

thrown away 
n  Sequence of tokens will be handed off to 

parser 



Lexer (4) 

n  How do we recognize tokens? 
n  Could write long, boring string-recognizing 

program by hand 
n  More modern approach: use regular expressions 

which match tokens of interest 
n  Each token type gets its own regular expression 

(also called a regexp) 



Regular expressions (1) 
n  Regexps are a way to identify a class of strings 
n  Simplest regexps: 

 "foo" à recognizes literal string "foo" only 
n  Or fixed characters: 

 '(' à recognizes left parenthesis only 
n  Or an arbitrary character: 

 _ à matches any single character 
n  Or the end-of-file character: 

 EOF à matches end-of-file character 



Regular expressions (2) 

n  Regexps can also match multiples of 
other regexps: 

regexp * à matches zero or more 
occurrences of regexp 

"foo" * à matches "", "foo", "foofoo", ... 
regexp + à matches one or more 

occurrences of regexp 
regexp? à matches zero or one occurrence 

of regexp 



Regular expressions (3) 

n  Regexps can also match a sequence of 
smaller regexps: 

regexp1 regexp2 à matches regexp1 
followed by regexp2 

n  Can also match any character in a set: 
['a' 'b' 'c'] à match any of 'a' 'b' 'c' 
['a' - 'z'] à match any char from 'a' to 'z' 
[^'a' 'b' 'c'] à match any char except 'a', 

'b', 'c' 



Regular expressions (4) 

n  "Or patterns": 
regexp1 | regexp2 à matches either regexp1 

or regexp2 
n  Some other regexp patterns as well 
n  See ocamllex manual for full list 
n  NOTE: regexp syntax varies between 

language implementations 
n  though you only need to know Ocaml version 



Lexer generators (1) 

n  Writing lexers by hand is boring 
n  Also easily automated 

n  Modern approach:  
n  describe lexer in a high-level 

specification in a special file 
n  use a special program to convert this 

lexer into code for the language 
needed 



Lexer generators (2) 

n  In Ocaml: 
n  Write lexer specification in a file ending 

in ".mll" (ML Lexer) 
n  this is NOT Ocaml code 
n  but it's fairly close 

n  The ocamllex program converts this 
into Ocaml code (file ending in ".ml")  

n  ".ml" file compiled normally 



Lexer generators (3) 

n  Will go through details of ocamllex 
file format when we go through the 
example 



Parsing Scheme (1) 

n  Most language implementations have a 
parser which 

n  takes input from output of lexer (i.e. 
sequence of tokens) 

n  converts into AST (abstract syntax tree) 

n  We will do it slightly differently 
n  Will generate "S-expressions" from tokens 
n  Will convert S-expressions into AST 



Parsing Scheme (2) 

n  Advantage of S-expressions 
n  Extremely easy to write the parser! 
n  Almost the simplest possible parser 

imaginable 
n  Can change AST without having to rewrite 

the parser 

n  Disadvantage of S-expressions 
n  Also have to write the converter from         

S-expressions to AST 



S-expressions (1) 

n  S-expression stands for "symbolic 
expression" 

n  Basically a nested list of symbols 
n  Simple, regular format 
n  Very easy to parse 



S-expressions (2) 

n  Definition of S-expression: 
n  An S-expression is either 

n  an atom 
n  a list of S-expressions 

n  Note the recursive definition! 
n  S-expressions defined in terms of 

themselves 
n  Similar to recursive data type defs in Ocaml 



Atoms 

n  An "atom" is a single indivisible syntactic 
entity 

n  Examples: 
n  a boolean 
n  an integer 
n  an identifier 

n  NOT the same as a token 
n  a "left parenthesis" is not an atom 



S-expressions (3) 

n  Example of S-expression: 
n  Source code: 
(define x 10) 
n  S-expression version: 
LIST[ ATOM["define"] ATOM["x"] ATOM[10] ] 



S-expressions (4) 

n  Better S-expression version: 
Expr_list(Expr_atom(Atom_id("define")), 
   Expr_atom(Atom_id("x")),  
   Expr_atom(Atom_int(10))) 
n  This version can be written as an Ocaml 

datatype 



S-expressions in Ocaml (1) 

n  In file sexpr.mli: 
type atom = 
   | Atom_unit 
   | Atom_bool of bool 
   | Atom_int of int 
   | Atom_id of string 



S-expressions in Ocaml (2) 

n  In file sexpr.mli: 
type expr = 
   | Expr_atom of atom 
   | Expr_list of expr list 
n  That's all there is to S-expressions! 
n  This is what parser has to generate from 

a sequence of tokens 



S-expr version of our program 

LIST[ ATOM["define"] ATOM["factorial"] 
  LIST[ ATOM["lambda"] LIST[ ATOM["n"] ] 
    LIST[ ATOM["if"] 
      LIST[ ATOM["="] ATOM["n"] ATOM[0] ]   
         ATOM[1] 
         LIST[ ATOM["*"] ATOM["n"] 
            LIST[ ATOM["factorial"] 
              LIST[ ATOM["-"] ATOM["n"] ATOM[1] ] ] ] ] ] ] 
LIST[ ATOM["print"] 
  LIST[ ATOM["factorial"] ATOM[10] ] ] 



Parser generators (1) 

n  Like lexers, can write parser by hand, but 
it's extremely boring and error-prone 

n  Instead, have programs called "parser 
generators" which can do this given a 
high-level specification of the parser 

n  Ocaml parser generator is called 
ocamlyacc 

n  yacc originally meant "yet another compiler 
compiler" 



Parser generators (2) 

n  Parser generator specification includes 
n  description of the different token types 

n  their names 
n  the type of any associated data 

n  description of the grammar of the language 
as a "context free grammar" 

n  Sometimes some other stuff 
n  e.g. operator precedence declarations 
n  We won't need this 



Parser generators (3) 

n  Parser generator specification is in a file 
ending with ".mly" 

n  Stands for "ML Yacc" file 
n  Similar to ocamllex file; has its own 

format which is different from Ocaml 
source code 

n  Will see example later 



Context-free grammars (1) 

n  High-level description of language syntax 
n  Two elements: 

n  terminals -- correspond to tokens 
n  nonterminals -- (usually) correspond to 

some kind of expression in the language 

n  One kind of "rule" called a "production" 
n  describes how each nonterminal 

corresponds to a sequence of other 
nonterminals and/or terminals 



Context-free grammars (2) 

n  There is also an entry point, which is a 
nonterminal which may represent 

n  an entire program (typical for compilers) 
n  an entire expression (typical for 

interpreters) 

n  Our entry point will be a single S-
expression, or None if EOF token is 
encountered 

n  type will be Sexpr.expr option 



Context-free grammars (3) 

n  Context-free grammars often very close 
to Ocaml type definitions 

n  which is one reason Ocaml is a nice 
language to write language interpreters/
compilers in 

n  Will see example of CFG/parser generator 
in the example later 



Abstract Syntax Trees (1) 
n  An Abstract Syntax Tree (AST) is the final 

goal of parsing 
n  An AST is a representation of the syntax of 

a program or expression as an Ocaml 
datatype 

n  Includes everything relevant to interpreting 
the program 

n  Does not include irrelevant stuff 
n  whitespace, comments, etc. 



Abstract Syntax Trees (2) 

n  Our AST is defined in ast.mli: 
type id = string 
type expr = 
   | Expr_unit 
   | Expr_bool      of bool 
   | Expr_int        of int 
   | Expr_id         of id 
   | Expr_define  of id * expr 
   | Expr_if         of expr * expr * expr 
   | Expr_lambda of id list * expr list 
   | Expr_apply    of expr * expr list 



Abstract Syntax Trees (3) 

n  The AST defines all valid expressions in 
the language 

n  First few cases represent expressions 
consisting of a single data value: 

type expr = 
   | Expr_unit                          (* unit value *) 
   | Expr_bool      of bool          (* boolean value *) 
   | Expr_int        of int             (* integer *) 
   | ... 

n  N.B. Expr_unit value is like the Ocaml unit value 



Abstract Syntax Trees (4) 

n  Identifiers are just strings: 
type id = string  (* id is a type alias for "string" *) 
type expr = 
   | ... 
   | Expr_id of id 
   | ... 

n  Expr_id expressions consist of a single identifier 
n  for instance, the name of a function 



Abstract Syntax Trees (5) 

n  "define" expressions: 
type expr = 
   | ... 
   | Expr_define of id * expr 
   | ... 

n  id represents the name being defined 
n  expr represents the thing it's defined to 

be 



Abstract Syntax Trees (6) 

n  "if" expressions: 
type expr = 
   | ... 
   | Expr_if  of expr * expr * expr 
   | ... 

n  if expression consists of three subexpressions 
n  test case  (always evaluated) 
n  "then" case (evaluated if test evaluates to true) 
n  "else" case (evaluated if test evaluates to false) 



Abstract Syntax Trees (7) 

n  "lambda" expressions 
type expr = 
   | ... 
   | Expr_lambda of id list * expr list 
   | ... 

n  lambda expressions represent an anonymous 
function 

n  id list is the list of formal parameters of the 
function 

n  expr list is the body of the function 



Abstract Syntax Trees (8) 

n  "apply" expressions represent function 
application 

type expr = 
   | ... 
   | Expr_apply of expr * expr list 

n  expr represents the function being applied 
n  could be an identifier 
n  could be a lambda expression 

n  expr list represents the arguments of the 
function application  



AST version of our program 

DEFINE["factorial" 
  LAMBDA[(ID["n"]) 
    IF[APPLY[ID["="] ID["n"] INT[0]] 
         INT[1] 
         APPLY[ID[ "*" ] ID["n"] 
           APPLY[ID["factorial"] 
             APPLY[ID["-"] ID["n"] INT[1]]]]]]] 
APPLY[ID["print"] APPLY[ID["factorial"] INT[10]]] 



Example -- calculator language 

n  We will walk through the "calculator" example 
from the ocamllex/ocamlyacc documentation 

n  In the process, will see the format of ocamllex/
ocamlyacc files 

n  This example is NOT a typical language 
n  we don't generate an AST 
n  instead, just execute code directly after parsing 
n  nevertheless, principles are the same 



parser.mly file, part 1 

%token <int> INT  
%token PLUS MINUS TIMES DIV  
%token LPAREN RPAREN  /* left, right parentheses */ 
%token EOL            /* end of line */ 
%left PLUS MINUS   /* lowest precedence */  
%left TIMES DIV      /* medium precedence */  
%nonassoc UMINUS /* highest precedence */ 
%start main            /* the entry point */  
%type <int> main  
%%  

token 
definitions 



parser.mly file, part 1 

%token <int> INT  
%token PLUS MINUS TIMES DIV  
%token LPAREN RPAREN  /* left, right parentheses */ 
%token EOL            /* end of line */ 
%left PLUS MINUS   /* lowest precedence */  
%left TIMES DIV      /* medium precedence */  
%nonassoc UMINUS /* highest precedence */ 
%start main            /* the entry point */  
%type <int> main  
%%  

operators and 
precedences 



parser.mly file, part 1 

%token <int> INT  
%token PLUS MINUS TIMES DIV  
%token LPAREN RPAREN  /* left, right parentheses */ 
%token EOL            /* end of line */ 
%left PLUS MINUS   /* lowest precedence */  
%left TIMES DIV      /* medium precedence */  
%nonassoc UMINUS /* highest precedence */ 
%start main            /* the entry point */  
%type <int> main  
%%  

entry point 



parser.mly file, part 1 

%token <int> INT  
%token PLUS MINUS TIMES DIV  
%token LPAREN RPAREN  /* left, right parentheses */ 
%token EOL            /* end of line */ 
%left PLUS MINUS   /* lowest precedence */  
%left TIMES DIV      /* medium precedence */  
%nonassoc UMINUS /* highest precedence */ 
%start main            /* the entry point */  
%type <int> main  
%%  type of entry point 



parser.mly file, part 1 

%token <int> INT  
%token PLUS MINUS TIMES DIV  
%token LPAREN RPAREN  /* left, right parentheses */ 
%token EOL            /* end of line */ 
%left PLUS MINUS   /* lowest precedence */  
%left TIMES DIV      /* medium precedence */  
%nonassoc UMINUS /* highest precedence */ 
%start main            /* the entry point */  
%type <int> main  
%%  

start of next section 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

entry point 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

nonterminals 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

terminals 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

productions 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

actions 



parser.mly file, part 2 

main:  expr EOL { $1 } ;  
expr:   INT { $1 }  
        | LPAREN expr RPAREN { $2 }  
        | expr PLUS expr { $1 + $3 }  
        | expr MINUS expr { $1 - $3 }  
        | expr TIMES expr { $1 * $3 }  
        | expr DIV expr { $1 / $3 }  

        | MINUS expr %prec UMINUS { - $2 } ;  

precedence specifier 



How parsing works 

n  Parser calls lexer to get tokens one at a 
time 

n  Parser checks to see if the left-hand side 
of a production (before the colon) can be 
matched 

n  if so, it executes the corresponding action 
(which is (almost) Ocaml code) 

n  if not, it pushes the token onto a stack 



Shifting and reducing (1) 

n  Two fundamental actions of the parser: 
shifting and reducing 

n  Shifting: 
n  putting a new token onto the stack 

n  Reducing:  
n  popping off all the tokens on the stack 

corresponding to the RHS of a given production 
n  pushing the LHS of the production onto the stack 

n  along with its associated value 

n  executing the action of that production 



Shifting and reducing (2) 

n  Can have cases where grammar is ambiguous  
n  Ambiguity à when rules allow 

n  more than one different reduction (called a 
reduce/reduce conflict) 

n  either a shift or a reduction (called a shift/reduce 
conflict) 

n  Shift/reduce conflicts are resolved by choosing 
the shift 

n  Reduce/reduce conflicts are unresolvable 
n  means grammar is completely broken 



Parsing actions 
n  Parsing actions are Ocaml code inside curly 

brackets 
n  $1, $2, $3 values represent the value 

associated with the corresponding location in 
the RHS of the production 

   expr PLUS expr  { $1 + $3 }  
n  Here, $1 represents the value of the first expr 
n  $3 represents the value of the second expr 
n  $2 would represent value of PLUS token 

n  meaningless (PLUS token has no value) 



Example: 2 + 2 = 4 

n  Input: 2 + 2 <return> 
n  Tokens: INT(2)  PLUS  INT(2)  EOL 
n  Parser 

n  shifts INT(2) 
n  reduces INT(2) to expr with value 2 
n  shifts PLUS 
n  shifts INT(2) 
n  reduces INT(2) to expr with value 2 
n  reduces expr PLUS expr to expr with value 4 
n  shifts EOL 
n  reduces expr EOL to main with value 4 



Note 
n  In more realistic language (like in lab 5) would 

not  compute results inside parser actions 
n  Instead, would generate AST 
n  For our example, might have e.g. 
   | expr PLUS expr  { Add_expr($1, $3) } 
n  (Assuming that Add_expr is one constructor for 

calculator AST) 
n  Could evaluate AST later 
n  Complex languages need AST to be interpreted 

correctly 



lexer.mll, part 1 

 
{  
    open Parser  
    exception Eof  
}  
 
(* Continued on next slide *) 
n  Header is just code that gets copied to the front of 

the .ml file that gets generated 
n  Usually just some declarations (can be empty) 

"Header" 



lexer.mll, part 2 

rule token = parse  
        [' ' '\t'] { token lexbuf } (* skip blanks *)  
      | ['\n' ]  { EOL }  
      | ['0'-'9']+ as lxm { INT(int_of_string lxm) }  
      | '+' { PLUS }  
      | '-'  { MINUS }  
      | '*'  { TIMES }  
      | '/'  { DIV }  
      | '('  { LPAREN }  
      | ')'  { RPAREN }  
      | eof { raise Eof }  

Name of lexer 



lexer.mll, part 2 

rule token = parse  
        [' ' '\t'] { token lexbuf } (* skip blanks *)  
      | ['\n' ]  { EOL }  
      | ['0'-'9']+ as lxm { INT(int_of_string lxm) }  
      | '+' { PLUS }  
      | '-'  { MINUS }  
      | '*'  { TIMES }  
      | '/'  { DIV }  
      | '('  { LPAREN }  
      | ')'  { RPAREN }  
      | eof { raise Eof }  

regular expressions 



lexer.mll, part 2 

rule token = parse  
        [' ' '\t'] { token lexbuf }  (* skip blanks *)  
      | ['\n' ]  { EOL }  
      | ['0'-'9']+ as lxm { INT(int_of_string lxm) }  
      | '+' { PLUS }  
      | '-'  { MINUS }  
      | '*'  { TIMES }  
      | '/'  { DIV }  
      | '('  { LPAREN }  
      | ')'  { RPAREN }  
      | eof { raise Eof }  

actions 



Strategy for writing lab 5 (1) 

n  Don't worry about S-expression to AST 
conversion at first 

n  Write parser with dummy actions 
n  make sure ocamlyacc doesn't give any errors 

n  Then write lexer (should be easy) 
n  make sure ocamllex doesn't give any errors 

n  Compile lexer_test and parser_test programs 
n  Test them on factorial.bs input file 



Strategy for writing lab 5 (2) 

n  Once parser is working, work on Sexpr to AST 
conversion (in file ast.ml) 

n  This is the hardest part of the lab 
n  have to handle lots of different cases 

n  USE PATTERN MATCHING! 
n  Code should work on ANY valid input, not just 

on factorial.bs file 



Next time 

n  We'll go over lab 6, which is the rest of the 
mini-Scheme language implementation 


