
CS 11 Ocaml track: lecture 6

n Today:
n  Writing a computer language
n  Parser generators

n  lexers (ocamllex)
n parsers (ocamlyacc)

n  Abstract syntax trees

Problem (1)

n  We want to implement a computer
language

n  Very complex problem
n  however, much similarity between

implementations of different
languages

n  We can take advantage of this

Problem (2)

n  We will implement a (very, very)
simplified version of the Scheme
programming language

n  hopefully familiar from CS 4

n  We call our version of Scheme
"bogoscheme"

n  truth in advertising
n  file names end in .bs

Problem (3)

n  Here is the Scheme program we want to
be able to run:

(define factorial
 (lambda (n)
 (if (= n 0)
 1
 (* n (factorial (- n 1))))))
(print (factorial 10))

n  Result should be 3628800

Problem (4)

n  Two basic ways to implement
languages:

n  interpreter
n  compiler

n  Difference?

Interpreters and compilers (1)

n  A compiler takes a program (as a
file or files of text) and generates a
machine-language executable file
(or files) from it

n  An interpreter takes a program (as
a file or files of text), converts it to
some internal representation, and
executes it immediately

Interpreters and compilers (2)

n  Some language processors are intermediate
between interpreters and compilers

n  e.g. Java
n  Compiler converts source code to Java

bytecode
n  Interpreter interprets bytecode
n  JIT compiler can compile bytecode to machine

language "on the fly"

Building a compiler

n  Compilers have many stages
n  Start with source code

n  usually in text files

n  Go through a number of
transformations

n  Eventually output machine code
n  which can be executed directly

Stages of a compiler

n  Typical compiler stages:
n  Lexer: converts input file (considered as

a string) into a sequence of tokens
n  Parser: converts sequence of tokens into

an "abstract syntax tree" (AST)
n  [many other stages]
n  Code generator: emits machine

language code

Stages of a typical interpreter

n  Typical interpreter stages:
n  Lexer: converts input file (considered as

a string) into a sequence of tokens
n  Parser: converts sequence of tokens into

an "abstract syntax tree" (AST)
n  Evaluator: evaluates AST directly

Stages of a Scheme interpreter

n  Similar to typical interpreter, with one
extra stage

n  Lexer: converts input file (considered as
a string) into a sequence of tokens

n  Parser: converts sequence of tokens into
sequence of "S-expressions"

n  Convert S-expressions into AST
n  Evaluator: evaluates AST directly
n  This is subject of labs 5 and 6

Stages of a simple interpreter

n  Lexer: converts input file (considered as
a string) into a sequence of tokens

n  Parser: recognizes sequences of tokens
and executes them directly

n  Only useful for very simple languages
e.g. calculators

n  Will show an example later

Lexer (1)

n  A "lexer" ("lexical analyzer") is the first
stage of interpretation or compilation

n  Takes raw source code and recognizes
syntactically meaningful "tokens"

n  Also throws out unnecessary stuff
n  comments
n  whitespace

Lexer (2)

n  What is a token?
n  Simple literal data values

n  integers, booleans, etc.

n  Punctuation
n  e.g. left, right parentheses

n  Identifiers
n  names of functions, variables

n  Keywords, operators (if any)
n  we won't need this

Lexer (3)

n  Input:
(define x 10) ; set x to 10
n  Possible output of lexer
TOK_LPAREN, TOK_ID("define"), TOK_ID("x"),
TOK_INT(10), TOK_RPAREN
n  NOTE: whitespace and comments are

thrown away
n  Sequence of tokens will be handed off to

parser

Lexer (4)

n  How do we recognize tokens?
n  Could write long, boring string-recognizing

program by hand
n  More modern approach: use regular expressions

which match tokens of interest
n  Each token type gets its own regular expression

(also called a regexp)

Regular expressions (1)
n  Regexps are a way to identify a class of strings
n  Simplest regexps:

 "foo" à recognizes literal string "foo" only
n  Or fixed characters:

 '(' à recognizes left parenthesis only
n  Or an arbitrary character:

 _ à matches any single character
n  Or the end-of-file character:

 EOF à matches end-of-file character

Regular expressions (2)

n  Regexps can also match multiples of
other regexps:

regexp * à matches zero or more
occurrences of regexp

"foo" * à matches "", "foo", "foofoo", ...
regexp + à matches one or more

occurrences of regexp
regexp? à matches zero or one occurrence

of regexp

Regular expressions (3)

n  Regexps can also match a sequence of
smaller regexps:

regexp1 regexp2 à matches regexp1
followed by regexp2

n  Can also match any character in a set:
['a' 'b' 'c'] à match any of 'a' 'b' 'c'
['a' - 'z'] à match any char from 'a' to 'z'
[^'a' 'b' 'c'] à match any char except 'a',

'b', 'c'

Regular expressions (4)

n  "Or patterns":
regexp1 | regexp2 à matches either regexp1

or regexp2
n  Some other regexp patterns as well
n  See ocamllex manual for full list
n  NOTE: regexp syntax varies between

language implementations
n  though you only need to know Ocaml version

Lexer generators (1)

n  Writing lexers by hand is boring
n  Also easily automated

n  Modern approach:
n  describe lexer in a high-level

specification in a special file
n  use a special program to convert this

lexer into code for the language
needed

Lexer generators (2)

n  In Ocaml:
n  Write lexer specification in a file ending

in ".mll" (ML Lexer)
n  this is NOT Ocaml code
n  but it's fairly close

n  The ocamllex program converts this
into Ocaml code (file ending in ".ml")

n  ".ml" file compiled normally

Lexer generators (3)

n  Will go through details of ocamllex
file format when we go through the
example

Parsing Scheme (1)

n  Most language implementations have a
parser which

n  takes input from output of lexer (i.e.
sequence of tokens)

n  converts into AST (abstract syntax tree)

n  We will do it slightly differently
n  Will generate "S-expressions" from tokens
n  Will convert S-expressions into AST

Parsing Scheme (2)

n  Advantage of S-expressions
n  Extremely easy to write the parser!
n  Almost the simplest possible parser

imaginable
n  Can change AST without having to rewrite

the parser

n  Disadvantage of S-expressions
n  Also have to write the converter from

S-expressions to AST

S-expressions (1)

n  S-expression stands for "symbolic
expression"

n  Basically a nested list of symbols
n  Simple, regular format
n  Very easy to parse

S-expressions (2)

n  Definition of S-expression:
n  An S-expression is either

n  an atom
n  a list of S-expressions

n  Note the recursive definition!
n  S-expressions defined in terms of

themselves
n  Similar to recursive data type defs in Ocaml

Atoms

n  An "atom" is a single indivisible syntactic
entity

n  Examples:
n  a boolean
n  an integer
n  an identifier

n  NOT the same as a token
n  a "left parenthesis" is not an atom

S-expressions (3)

n  Example of S-expression:
n  Source code:
(define x 10)
n  S-expression version:
LIST[ATOM["define"] ATOM["x"] ATOM[10]]

S-expressions (4)

n  Better S-expression version:
Expr_list(Expr_atom(Atom_id("define")),
 Expr_atom(Atom_id("x")),
 Expr_atom(Atom_int(10)))
n  This version can be written as an Ocaml

datatype

S-expressions in Ocaml (1)

n  In file sexpr.mli:
type atom =
 | Atom_unit
 | Atom_bool of bool
 | Atom_int of int
 | Atom_id of string

S-expressions in Ocaml (2)

n  In file sexpr.mli:
type expr =
 | Expr_atom of atom
 | Expr_list of expr list
n  That's all there is to S-expressions!
n  This is what parser has to generate from

a sequence of tokens

S-expr version of our program

LIST[ATOM["define"] ATOM["factorial"]
 LIST[ATOM["lambda"] LIST[ATOM["n"]]
 LIST[ATOM["if"]
 LIST[ATOM["="] ATOM["n"] ATOM[0]]
 ATOM[1]
 LIST[ATOM["*"] ATOM["n"]
 LIST[ATOM["factorial"]
 LIST[ATOM["-"] ATOM["n"] ATOM[1]]]]]]]
LIST[ATOM["print"]
 LIST[ATOM["factorial"] ATOM[10]]]

Parser generators (1)

n  Like lexers, can write parser by hand, but
it's extremely boring and error-prone

n  Instead, have programs called "parser
generators" which can do this given a
high-level specification of the parser

n  Ocaml parser generator is called
ocamlyacc

n  yacc originally meant "yet another compiler
compiler"

Parser generators (2)

n  Parser generator specification includes
n  description of the different token types

n  their names
n  the type of any associated data

n  description of the grammar of the language
as a "context free grammar"

n  Sometimes some other stuff
n  e.g. operator precedence declarations
n  We won't need this

Parser generators (3)

n  Parser generator specification is in a file
ending with ".mly"

n  Stands for "ML Yacc" file
n  Similar to ocamllex file; has its own

format which is different from Ocaml
source code

n  Will see example later

Context-free grammars (1)

n  High-level description of language syntax
n  Two elements:

n  terminals -- correspond to tokens
n  nonterminals -- (usually) correspond to

some kind of expression in the language

n  One kind of "rule" called a "production"
n  describes how each nonterminal

corresponds to a sequence of other
nonterminals and/or terminals

Context-free grammars (2)

n  There is also an entry point, which is a
nonterminal which may represent

n  an entire program (typical for compilers)
n  an entire expression (typical for

interpreters)

n  Our entry point will be a single S-
expression, or None if EOF token is
encountered

n  type will be Sexpr.expr option

Context-free grammars (3)

n  Context-free grammars often very close
to Ocaml type definitions

n  which is one reason Ocaml is a nice
language to write language interpreters/
compilers in

n  Will see example of CFG/parser generator
in the example later

Abstract Syntax Trees (1)
n  An Abstract Syntax Tree (AST) is the final

goal of parsing
n  An AST is a representation of the syntax of

a program or expression as an Ocaml
datatype

n  Includes everything relevant to interpreting
the program

n  Does not include irrelevant stuff
n  whitespace, comments, etc.

Abstract Syntax Trees (2)

n  Our AST is defined in ast.mli:
type id = string
type expr =
 | Expr_unit
 | Expr_bool of bool
 | Expr_int of int
 | Expr_id of id
 | Expr_define of id * expr
 | Expr_if of expr * expr * expr
 | Expr_lambda of id list * expr list
 | Expr_apply of expr * expr list

Abstract Syntax Trees (3)

n  The AST defines all valid expressions in
the language

n  First few cases represent expressions
consisting of a single data value:

type expr =
 | Expr_unit (* unit value *)
 | Expr_bool of bool (* boolean value *)
 | Expr_int of int (* integer *)
 | ...

n  N.B. Expr_unit value is like the Ocaml unit value

Abstract Syntax Trees (4)

n  Identifiers are just strings:
type id = string (* id is a type alias for "string" *)
type expr =
 | ...
 | Expr_id of id
 | ...

n  Expr_id expressions consist of a single identifier
n  for instance, the name of a function

Abstract Syntax Trees (5)

n  "define" expressions:
type expr =
 | ...
 | Expr_define of id * expr
 | ...

n  id represents the name being defined
n  expr represents the thing it's defined to

be

Abstract Syntax Trees (6)

n  "if" expressions:
type expr =
 | ...
 | Expr_if of expr * expr * expr
 | ...

n  if expression consists of three subexpressions
n  test case (always evaluated)
n  "then" case (evaluated if test evaluates to true)
n  "else" case (evaluated if test evaluates to false)

Abstract Syntax Trees (7)

n  "lambda" expressions
type expr =
 | ...
 | Expr_lambda of id list * expr list
 | ...

n  lambda expressions represent an anonymous
function

n  id list is the list of formal parameters of the
function

n  expr list is the body of the function

Abstract Syntax Trees (8)

n  "apply" expressions represent function
application

type expr =
 | ...
 | Expr_apply of expr * expr list

n  expr represents the function being applied
n  could be an identifier
n  could be a lambda expression

n  expr list represents the arguments of the
function application

AST version of our program

DEFINE["factorial"
 LAMBDA[(ID["n"])
 IF[APPLY[ID["="] ID["n"] INT[0]]
 INT[1]
 APPLY[ID["*"] ID["n"]
 APPLY[ID["factorial"]
 APPLY[ID["-"] ID["n"] INT[1]]]]]]]
APPLY[ID["print"] APPLY[ID["factorial"] INT[10]]]

Example -- calculator language

n  We will walk through the "calculator" example
from the ocamllex/ocamlyacc documentation

n  In the process, will see the format of ocamllex/
ocamlyacc files

n  This example is NOT a typical language
n  we don't generate an AST
n  instead, just execute code directly after parsing
n  nevertheless, principles are the same

parser.mly file, part 1

%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN /* left, right parentheses */
%token EOL /* end of line */
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%%

token
definitions

parser.mly file, part 1

%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN /* left, right parentheses */
%token EOL /* end of line */
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%%

operators and
precedences

parser.mly file, part 1

%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN /* left, right parentheses */
%token EOL /* end of line */
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%%

entry point

parser.mly file, part 1

%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN /* left, right parentheses */
%token EOL /* end of line */
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%% type of entry point

parser.mly file, part 1

%token <int> INT
%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN /* left, right parentheses */
%token EOL /* end of line */
%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */
%start main /* the entry point */
%type <int> main
%%

start of next section

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

entry point

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

nonterminals

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

terminals

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

productions

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

actions

parser.mly file, part 2

main: expr EOL { $1 } ;
expr: INT { $1 }
 | LPAREN expr RPAREN { $2 }
 | expr PLUS expr { $1 + $3 }
 | expr MINUS expr { $1 - $3 }
 | expr TIMES expr { $1 * $3 }
 | expr DIV expr { $1 / $3 }

 | MINUS expr %prec UMINUS { - $2 } ;

precedence specifier

How parsing works

n  Parser calls lexer to get tokens one at a
time

n  Parser checks to see if the left-hand side
of a production (before the colon) can be
matched

n  if so, it executes the corresponding action
(which is (almost) Ocaml code)

n  if not, it pushes the token onto a stack

Shifting and reducing (1)

n  Two fundamental actions of the parser:
shifting and reducing

n  Shifting:
n  putting a new token onto the stack

n  Reducing:
n  popping off all the tokens on the stack

corresponding to the RHS of a given production
n  pushing the LHS of the production onto the stack

n  along with its associated value

n  executing the action of that production

Shifting and reducing (2)

n  Can have cases where grammar is ambiguous
n  Ambiguity à when rules allow

n  more than one different reduction (called a
reduce/reduce conflict)

n  either a shift or a reduction (called a shift/reduce
conflict)

n  Shift/reduce conflicts are resolved by choosing
the shift

n  Reduce/reduce conflicts are unresolvable
n  means grammar is completely broken

Parsing actions
n  Parsing actions are Ocaml code inside curly

brackets
n  $1, $2, $3 values represent the value

associated with the corresponding location in
the RHS of the production

 expr PLUS expr { $1 + $3 }
n  Here, $1 represents the value of the first expr
n  $3 represents the value of the second expr
n  $2 would represent value of PLUS token

n  meaningless (PLUS token has no value)

Example: 2 + 2 = 4

n  Input: 2 + 2 <return>
n  Tokens: INT(2) PLUS INT(2) EOL
n  Parser

n  shifts INT(2)
n  reduces INT(2) to expr with value 2
n  shifts PLUS
n  shifts INT(2)
n  reduces INT(2) to expr with value 2
n  reduces expr PLUS expr to expr with value 4
n  shifts EOL
n  reduces expr EOL to main with value 4

Note
n  In more realistic language (like in lab 5) would

not compute results inside parser actions
n  Instead, would generate AST
n  For our example, might have e.g.
 | expr PLUS expr { Add_expr($1, $3) }
n  (Assuming that Add_expr is one constructor for

calculator AST)
n  Could evaluate AST later
n  Complex languages need AST to be interpreted

correctly

lexer.mll, part 1

{
 open Parser
 exception Eof
}

(* Continued on next slide *)
n  Header is just code that gets copied to the front of

the .ml file that gets generated
n  Usually just some declarations (can be empty)

"Header"

lexer.mll, part 2

rule token = parse
 [' ' '\t'] { token lexbuf } (* skip blanks *)
 | ['\n'] { EOL }
 | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
 | '+' { PLUS }
 | '-' { MINUS }
 | '*' { TIMES }
 | '/' { DIV }
 | '(' { LPAREN }
 | ')' { RPAREN }
 | eof { raise Eof }

Name of lexer

lexer.mll, part 2

rule token = parse
 [' ' '\t'] { token lexbuf } (* skip blanks *)
 | ['\n'] { EOL }
 | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
 | '+' { PLUS }
 | '-' { MINUS }
 | '*' { TIMES }
 | '/' { DIV }
 | '(' { LPAREN }
 | ')' { RPAREN }
 | eof { raise Eof }

regular expressions

lexer.mll, part 2

rule token = parse
 [' ' '\t'] { token lexbuf } (* skip blanks *)
 | ['\n'] { EOL }
 | ['0'-'9']+ as lxm { INT(int_of_string lxm) }
 | '+' { PLUS }
 | '-' { MINUS }
 | '*' { TIMES }
 | '/' { DIV }
 | '(' { LPAREN }
 | ')' { RPAREN }
 | eof { raise Eof }

actions

Strategy for writing lab 5 (1)

n  Don't worry about S-expression to AST
conversion at first

n  Write parser with dummy actions
n  make sure ocamlyacc doesn't give any errors

n  Then write lexer (should be easy)
n  make sure ocamllex doesn't give any errors

n  Compile lexer_test and parser_test programs
n  Test them on factorial.bs input file

Strategy for writing lab 5 (2)

n  Once parser is working, work on Sexpr to AST
conversion (in file ast.ml)

n  This is the hardest part of the lab
n  have to handle lots of different cases

n  USE PATTERN MATCHING!
n  Code should work on ANY valid input, not just

on factorial.bs file

Next time

n  We'll go over lab 6, which is the rest of the
mini-Scheme language implementation

