
CS 11 Ocaml track: lecture 5

Today:
functors

The idea of functors (1)

Often have a situation like this:
You want a module type
It should be parameterized around some
other type or types
But not every type or types

In other words, want a restricted kind of
polymorphism

The idea of functors (2)

In other words, want a restricted kind of
polymorphism
The notion of "restricted polymorphism"
doesn't exist as such in ocaml

for that, see Haskell (type classes)

However, can "fake it" using functors

The idea of functors (3)

Consider polymorphic types as being like a
"function" on types

Example: type 'a list means "give me a type
'a, and I'll give you a type 'a list"

Similarly, imagine a "function" on modules
Give me a module representing the type that
varies (analogous to 'a) and I'll give you a
module representing the type that uses it
(analogous to 'a list)

The idea of functors (4)

Similarly, imagine a "function" on modules
Give me a module representing the type that
varies and I'll give you a module representing
the type that uses it

These "functions on modules" are called
functors in ocaml
The name "functor" comes from category
theory (not important why)

Example

Consider the Set module we developed last
lecture
Some set implementations require set elements
to be orderable (i.e. notion of "less than",
"equal", "greater than" is meaningful)
Why would you want this?

Sets with orderable elements

Can get better efficiency with Set
implementation if know that elements are
orderable
Example: Set implementation: ordered binary
tree

left subtree: all elems < node elem
right subtree: all elems >= node elem

member function now O(log n) instead of O(n)
HUGE win!

OrderedSet (1)

We will call our set that can only work with
orderable elements OrderedSet
A large variety of types can work with
OrderedSet

set of numbers
set of strings
set of chars

But not every type
set of functions? (no ordering)

OrderedSet (2)

Since cannot use any type as the element of an
OrderedSet, cannot have a polymorphic type as
the set element

i.e. can't use PolySet as defined last lecture

Could just define a whole new OrderedSet for
each type we want to make a set of

OrderedSetInt
OrderedSetString

But wasteful, since code is nearly identical

OrderedSet elements (1)

How do we characterize the essential nature of
types that can be elements of our OrderedSet?
We define a module type:

type comparison = Less | Equal | Greater
module type ORDERED_TYPE =

sig
type t (* type of elements *)
val compare: t -> t -> comparison

end

OrderedSet elements (2)

Example of a module compatible with
ORDERED_TYPE:

module OrderedString =
struct

type t = string
let compare x y =

if x = y then Equal
else if x < y then Less
else Greater

end

(Recall) SET module type

module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

OrderedSet functor (1)

Now, the question becomes:
Given a module compatible with the module
type ORDERED_TYPE,
How do I create a module that is compatible
with the module type SET?
Answer: define a functor:

"function" that takes in a module compatible with
module type ORDERED_TYPE, and
creates a new module, compatible with module
type SET

OrderedSet functor (2)

Advantage of functor: any time need a new
ORDERED_SET for a new kind of orderable
type:

Define a new module for that type compatible with
ORDERED_TYPE (easy)
Apply functor to the module, get new set module

Disadvantage of functor:
One extra level of indirection
Therefore somewhat slower than definition without
functor

OK, but how do we define functors?

There are several different ways to define
functors
All described (poorly) in Ocaml manual
All basically equivalent
IMO very messy syntactically (like rest of ocaml)
I will show you one way that will work

be aware that this can be done other ways
see ocaml manual and Jason's book for those

Defining a functor (skeleton)

module MakeOrderedSet(Elt: ORDERED_TYPE) :
(SET with type element = Elt.t) =

struct
(* details omitted for now *)

end

Like a function:
input: a module Elt that conforms to ORDERED_TYPE
output: a module that conforms to SET with the type
element the same as the type Elt.t

Defining a functor (alternative)

module MakeOrderedSet(Elt: ORDERED_TYPE) =
struct

(* details omitted for now *)
end

Here we've omitted the "result module type"
Will still work correctly
However, resulting module will not be abstract

internals of module will be publicly visible (usually bad)
We'll stick with abstract version

Using a functor

module OrderedStringSet = MakeOrderedSet(OrderedString);;
module OrderedStringSet :
sig

type element = OrderedString.t
type set = MakeOrderedSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

let set1 = OrderedStringSet.add "gee" OrderedStringSet.empty;;
val set1 : OrderedStringSet.set = <abstr>

Defining a functor (details) (1)

To simplify code, we'll define our Set
functor not in terms of ordered binary
trees but in terms of ordered lists
This will not be nearly as efficient

e.g. member will still be O(N)
but functor concepts will be just as clear

Binary tree version left as exercise

Defining a functor (details) (2)

module MakeOrderedSet(Elt: ORDERED_TYPE) :
(SET with type element = Elt.t) =

struct
type element = Elt.t (* note code duplication *)
type set = element list
let empty = []
(* continued on next slide *)

Defining a functor (details) (3)

(* continued from previous slide *)
let rec add x s =

match s with
| [] -> [x]
| hd :: tl ->

match Elt.compare x hd with
| Equal -> s
| Less -> x :: s
| Greater -> hd :: add x tl

(* continued on next slide *)

Defining a functor (details) (4)

(* continued from previous slide *)
let rec member x s =

match s with
| [] -> false
| hd :: tl ->

match Elt.compare x hd with
| Equal -> true
| Less -> false
| Greater -> member x tl

end (* of struct *)

Other functor stuff

It's possible to define multi-parameter
functors

i.e. functors with several module inputs

Syntax is gnarly (surprise, surprise)
Probably won't need to do that

Next time

Building a language, part 1

Parser generators

ocamllex

ocamlyacc

	CS 11 Ocaml track: lecture 5
	The idea of functors (1)
	The idea of functors (2)
	The idea of functors (3)
	The idea of functors (4)
	Example
	Sets with orderable elements
	OrderedSet (1)
	OrderedSet (2)
	OrderedSet elements (1)
	OrderedSet elements (2)
	(Recall) SET module type
	OrderedSet functor (1)
	OrderedSet functor (2)
	OK, but how do we define functors?
	Defining a functor (skeleton)
	Defining a functor (alternative)
	Using a functor
	Defining a functor (details) (1)
	Defining a functor (details) (2)
	Defining a functor (details) (3)
	Defining a functor (details) (4)
	Other functor stuff
	Next time

