
CS 11 Ocaml track: lecture 4

Today:
modules

The idea of modules

What's the idea behind a "module"?
Package up code so other
people/programs can use it
Control what parts of code are

part of the interface
part of the implementation only

and hide the implementation part

Implementation hiding

Why hide the implementation?
Might want to change later

change fundamental data structures
different efficiency tradeoffs

Don't want all code that uses
module to require major changes

or, ideally, any changes

Interface vs. implementation

In Ocaml:
interface goes into .mli files
implementation goes into .ml files

Simple example: lists
We'll create our own list module
Call it Newlist

Interface of Newlist module
In newlist.mli
Must specify:

publicly visible types
publicly visible functions
publicly visible exceptions

Don't have to define any of these!
Except: need to define types if want users to
pattern-match on them

newlist.mli (types)

type 'a newlist =
| Nil
| Cons of 'a * 'a newlist
If didn't need ability to pattern-match,
could do just

type 'a newlist
This would be an abstract type

newlist.mli (exceptions)

exception List_error of string

newlist.mli (functions)

val hd : 'a newlist -> 'a
val tl : 'a newlist -> 'a newlist
val append : 'a newlist -> 'a newlist -> 'a newlist
val (@@) : 'a newlist -> 'a newlist -> 'a newlist
val length : 'a newlist -> int

Just the signature of the functions
Any functions not mentioned here are hidden
Note: operator @@ is exported

Implementation of Newlist

In newlist.ml
Must define:

all types
all functions
all exceptions

whether exported by module or not

Copying of code from .mli file sometimes
unavoidable

newlist.ml (types)

type 'a newlist =
| Nil
| Cons of 'a * 'a newlist

Here, had to copy code in newlist.mli
No way to avoid this!

newlist.ml (exceptions)

exception List_error of string

Again, had to copy code in newlist.mli

newlist.ml (functions) (1)

let hd nl =
match nl with

| Nil -> raise (List_error "head of empty list")
| Cons (h, _) -> h

let tl nl =
match nl with

| Nil -> raise (List_error "tail of empty list")
| Cons (_, t) -> t

newlist.ml (functions) (2)

let rec append nl1 nl2 =
match nl1, nl2 with

| Nil, _ -> nl2
| Cons (h, t), _ -> Cons (h, append t nl2)

let (@@) = append

newlist.ml (functions) (3)

let rec length nl =
match nl with

| Nil -> 0
| Cons (_, t) -> 1 + length t

Compiling Newlist files (1)
To compile the .mli file, just do:

ocamlc -c newlist.mli
This will give a compiled interface file
(.cmi file)
The .cmi file is required to compile any
file that uses the Newlist module
The same .cmi file can be used for both
bytecode and native-code compilation

Compiling Newlist files (2)

To compile the .ml file, just do:
ocamlc -c newlist.ml

(for bytecode compilation), or:
ocamlopt.opt -c newlist.ml

(for native-code compilation)
We'll mostly use the bytecode compiler

Compiling Newlist files (3)

To compile an .ml file that uses the Newlist
module, just do:

ocamlc -c foobar.ml (* bytecode compilation *)

Note that don't have to put .cmi file in
command line

compiler searches for it automatically

Using the Newlist module

In a file named e.g. testlist.ml:

open Newlist
let test1 = Cons (1,

Cons (2, Cons (3, Cons (4, Nil))))
let test2 = Cons (11,

Cons (12, Cons (13, Cons (14, Nil))))

Using the Newlist module

Without the open declaration:
let test1 = Newlist.Cons (1,

Newlist.Cons (2,
Newlist.Cons (3,
Newlist.Cons (4,
Newlist.Nil))))

(* etc. *)

Making lists abstract
Define a new module called Newlist2

files: newlist2.ml, newlist2.mli

We make one change: want the type to
be completely abstract
Downside: can't pattern-match on values
of new list type
Upside: can change implementation
without affecting code that uses it

BIG win!

newlist2.mli
exception List_error of string
type 'a t (* abstract type *)
val empty : 'a t (* the empty list *)
val cons : 'a -> 'a t -> 'a t
val hd : 'a t -> 'a
val tl : 'a t -> 'a t
val append : 'a t -> 'a t -> 'a t
val (@@) : 'a t -> 'a t -> 'a t
val length : 'a t -> int

type 'a t ????
Abstract types often given names like "t"
(for "type")
Makes sense when using fully-qualified
type name: Newlist2.t
Means "the type t defined in the Newlist2
module"
More concise than e.g. Newlist2.newlist

newlist2.mli (new interface)

exception List_error of string
type 'a t (* abstract type *)
val empty : 'a t (* the empty list *)
val cons : 'a -> 'a t -> 'a t
val hd : 'a t -> 'a
val tl : 'a t -> 'a t
val append : 'a t -> 'a t -> 'a t
val (@@) : 'a t -> 'a t -> 'a t
val length : 'a t -> int

newlist2.mli (new interface)

val empty : 'a t (* the empty list *)
val cons : 'a -> 'a t -> 'a t
val hd : 'a t -> 'a
val tl : 'a t -> 'a t

These values/functions used instead of pattern
matching and type constructors
Can create and pick apart Newlist2.t values
Much like lists in Scheme
All vals are functions except for empty value

More modules

What we've seen is the most common way to
use modules
Module is implicitly defined by .ml and .mli files
It's also possible to explicitly define module
types (interfaces) and module implementations
inside a body of ocaml code
That's what we'll look at next

Will lead us to functors (next week)

A simple Set module

What are the characteristics of a set?
collection of elements

no duplicates

there is an empty set value
can add elements to set
can test whether elements are in set (set
membership)
other operations (union, intersection etc.)

we'll ignore these

A simple Set "signature"

Types:
type of elements of the set
type of the set itself

Values:
empty: an empty set value

Functions:
add: adds item to the set
member: test for membership

A simple Set "signature" in Ocaml

Use a module type form:
module type Set =

sig
type elem
type t
val empty : t
val add : elem -> t -> t
val member : elem -> t -> bool

end

A simple Set "signature" in ocaml

This defines a Set "type" as a module type
sig means "signature"
Can contain

type definitions (abstract or not)
exceptions
val declarations (value or function signatures)

No actual definitions
of values
or of functions

A simple Set "signature" in ocaml

In our case, mostly obvious except for:
type t
type elem

These are abstract type defintions
type t is?

type of the set itself

type elem is?
type of the elements of the set

Set implementation (1)

To use Set, must provide an implementation
To do this, use a module form:

module IntListSet =
struct

(* implementation goes here *)
end
Note: this is more specific than Set
A set of integers implemented using lists

Set implementation (2)

module IntListSet =
struct

(* Specify the types. *)

type elem = int

type t = int list

(* continued on next slide *)

Set implementation (3)

(* continued from previous slide *)
let empty = [] (* empty set *)
let add el s = el :: s (* allows duplicates *)
let rec member el s =

match s with
| [] -> false
| x :: xs when x = el -> true
| _ :: xs -> member el xs

end

Using the Set implementation

(We'll assume we're still in the same file)
(* Create a set. *)
let set = IntListSet.empty

(* Add an element. This generates a new set. *)
let set2 = IntListSet.add 1 set1;;

(* Test for membership. *)
IntListSet.member 1 set2;;
- : bool = true

Note

You can use IntListSet without having defined
Set
In that case, all
types/exceptions/functions/values inside
IntListSet exported
Not necessarily what you want!

Problem

As written, the IntListSet module exports
everything inside it

and exposes its internal implementation
not what we usually want

Example (in interactive interpreter):
IntListSet.empty;;

- : 'a list = []
Know that empty is an empty list

breaks abstraction boundary

Solution

Note also that the IntListSet module conforms
to the Set module type
We can use these two facts to restrict the
visible part of the IntListSet to the entities
specified in the Set module type

First try (broken)

You'd think it would be as easy as writing
module IntListSet : Set =

struct
(* same as before *)

end

But nooooooo !
This will compile, but will be unusable
Anybody guess what the problem might be?

hint: types inside Set

Problem with first try (1)

Two types defined in Set module type:
type t (* type of Set as a whole *)
type elem (* type of Set elements *)

type t is OK -- anyone know why?
... because always use type t as an abstract
type

cannot use a raw list as a Set
can only use t values returned from functions in Set
(or the empty value to start with)

Problem with first try (2)

Two types defined in Set module type:
type t (* type of Set as a whole *)
type elem (* type of Set elements *)

type elem is not OK -- anyone know why?
Need to pass in int values as arguments to Set
functions e.g. member
member expects arguments of type elem, not
type int

Problem with first try (3)

Might expect that compiler could figure out that
type elem = type int in IntListSet module from
module definition
Unfortunately, this isn't the case
Have to tell the compiler explicitly

lame

Which leads us to...

Second try (working)

module IntListSet : Set with type elem = int =
struct

(* same as before *)
end

Problems with modules (and functors!)
are very often some variation of this
Can be a real pain in the ass

Using IntListSet

Same as before, except...
Cannot access anything inside IntListSet except
those things defined inside Set module type
Example (in interactive interpreter):

IntListSet.empty;;
- : IntListSet.t = <abstr>

Internal implementation is hidden
type t implementation no longer visible

Abstraction boundary is maintained

Modules with polymorphic types

Many modules use polymorphic types
Example: Newlist
Set could also use polymorphic type for
elem
Will have to change our set type and
implementation to make this work
Call the new set PolySet

Interface

(* Polymorphic set type. *)
module type PolySet =

sig
type 'a t (* NOTE: no elem type *)
val empty : 'a t
val add : 'a -> 'a t -> 'a t
val member : 'a -> 'a t -> bool

end

Implementation
module PolyListSet : PolySet =

struct
type 'a t = 'a list
let empty = []
let add el s = el :: s (* allows duplicates *)
let rec member el s =

match s with
| [] -> false
| x :: xs when x = el -> true
| _ :: xs -> member el xs

end

Notice anything odd?

Didn't have to use funky "with type elem = "
syntax
Why not?
Polyset will work with any element type
Ironically, this makes module syntax simpler

Yay polymorphism!

However...

Polymorphism is not the cure for all your
module problems
Sometimes want a data structure (like a set)
which can take a wide variety of data types as
elements, but not any data type
Example: some set implementations require
elements to be orderable (i.e. notion of "less
than", "equal", "greater than" is meaningful)
Why would you want this?

Sets with orderable elements

Can get better efficiency with set
implementation if know that elements are
orderable
Example: set implementation: ordered binary
tree

left subtree: all elems < node elem
right subtree: all elems >= node elem

member function now O(log n) instead of O(n)
HUGE win!

(Preview)

How do we express the notion of "set whose
elements have to be orderable"?
In ocaml, use functors
Basic idea:

you give me an orderable type
I compute a module that uses that orderable type
in a set implementation

Like a "function on modules"
Subject of next week's lecture

Next time

On to functors!

	CS 11 Ocaml track: lecture 4
	The idea of modules
	Implementation hiding
	Interface vs. implementation
	Interface of Newlist module
	newlist.mli (types)
	newlist.mli (exceptions)
	newlist.mli (functions)
	Implementation of Newlist
	newlist.ml (types)
	newlist.ml (exceptions)
	newlist.ml (functions) (1)
	newlist.ml (functions) (2)
	newlist.ml (functions) (3)
	Compiling Newlist files (1)
	Compiling Newlist files (2)
	Compiling Newlist files (3)
	Using the Newlist module
	Using the Newlist module
	Making lists abstract
	newlist2.mli
	type 'a t ????
	newlist2.mli (new interface)
	newlist2.mli (new interface)
	More modules
	A simple Set module
	A simple Set "signature"
	A simple Set "signature" in Ocaml
	A simple Set "signature" in ocaml
	A simple Set "signature" in ocaml
	Set implementation (1)
	Set implementation (2)
	Set implementation (3)
	Using the Set implementation
	Note
	Problem
	Solution
	First try (broken)
	Problem with first try (1)
	Problem with first try (2)
	Problem with first try (3)
	Second try (working)
	Using IntListSet
	Modules with polymorphic types
	Interface
	Implementation
	Notice anything odd?
	However...
	Sets with orderable elements
	(Preview)
	Next time

