
CS 11 Ocaml track: lecture 3 

n  Today: 
n  A (large) variety of odds and ends 
n  Imperative programming in Ocaml 



Equality/inequality operators 

n  Two inequality operators: <> and != 
n  Two equality operators: = and == 
n  Usually want to use = and <> 
n  = means "structurally equal" 
n  <> means "structurally unequal" 
n  == means "the same exact object" 
n  != means "not the same exact object" 



Unit type 

n  The unit type is a type with only one 
member: () 
n  not a tuple with only one element! 
n  tuples must have at least two elements 

n  Seems useless, but 
n  all Ocaml functions must return a value 
n  return () when value is irrelevant 
n  i.e. when function called for side effects 



Option types 

type 'a option = 
  | None 
  | Some of 'a 
n  Built in to Ocaml 
n  Used for functions that can return a value 

but can also "fail" (return None) 
n  Alternative to raising exception on failure 



String accessing/mutating (1) 

n  Strings are not immutable 
n  Can treat as an array of chars 
n  To access a particular char: 

n  s.[i] 

n  To mutate a particular char: 
n  s.[i] <- 'a' 



String accessing/mutating (2) 
# let s = "some string" ;; 
val s : string = "some string" 
# s.[0] ;;  (* note weird syntax *) 
- : char = 's' 
# s.[0] <- 't' ;; 
- : unit = () 
# s ;; 
- : string = "tome string" 



String accessing/mutating (3) 
n  String mutation is a misfeature! 

n  only in the language because of historical reasons 
n  most new languages have immutable strings 

n  Ocaml is starting to move towards immutable 
strings by default 
n  with a "bytes" type for when you want a mutable 

string-like type 

n  The –safe-string option turns off the ability to 
mutate strings 



printf and friends (1) 
# Printf.printf "hello, world!\n" ;; 
hello, world! 
- : unit = () 
# open Printf ;; 
# printf "hello, world!\n" ;; 
hello, world! 
- : unit = () 



printf and friends (2) 
# printf "s = %s\tf = %f\ti = %d\n" 
"foo" 3.2 1 ;; 

s = foo f = 3.200000    i = 1 
- : unit = () 
n  printf has a weird type 

n  not really well-typed 
n  compiler "knows" about it and makes it work 

 



printf and friends (3) 
# fprintf stderr "Oops! An error occurred!\n" ;; 
- : unit = () 
# stderr ;; 
-  : out_channel = <abstr> 
 

n  Predefined I/O "channels": 
n  stdin : in_channel 
n  stdout : out_channel 
n  stderr : out_channel 



printf and friends (4) 
# sprintf "%d + %d = %d\n" 2 2 4 ;; 
- : string = "2 + 2 = 4\n" 

n  sprintf is "printing to a string" 
n  Very useful! 
 



File I/O (1) 

n  Files come in two flavors: input and output 
# open_in ;; 
- : string -> in_channel = <fun> 
# open_out ;; 
- : string -> out_channel = <fun> 
# close_in ;; 
- : in_channel -> unit = <fun> 
# close_out ;; 
- : out_channel -> unit = <fun> 



File I/O (2) 

n  Files come in two flavors: input and output 
n  let infile = open_in "foo" 

n  tries to open file named "foo" for input only 
n  binds file object to infile 

n  close_in infile 
n  closes the input file 



File I/O (3) 

n  Files come in two flavors: input and output 
n  let outfile = open_out "bar" 

n  tries to open file named "bar" for output only 
n  binds file object to outfile 

n  close_out outfile 
n  closes the output file 



File I/O (4) 
n  flush stdout 

n  forces an output file (here, stdout) to write its 
buffers to the disk 

n  input_line stdin 
n  gets a line of input from an input file (here, 
stdin) and returns a string 



begin/end and sequencing (1) 

n  With side effects, often want multiple 
statements inside a function: 

let print_and_square x = 
    Printf.printf "%d\n" x ; 
    x * x 

n  Single semicolon used to separate 
statements that execute one after another 



begin/end and sequencing (2) 

n  Sometimes want to say "these sequences 
should be treated as a single expression" 

n  Use begin/end for this: 
begin 
  Printf.printf "%d\n" x; 
  x * x 
end 

n  Can often leave out begin/end 



begin/end and sequencing (3) 

n  Sometimes can just use parentheses: 
(Printf.printf "%d\n" x ; 
  x * x) 

n  I advise against this 
n  Can make code hard to read 



begin/end and sequencing (4) 

n  Very often, when you get weird error 
messages it's because you should have put 
in a begin/end somewhere 

n  Commonly found in nested match 
expressions (Ocaml grammar is highly 
ambiguous!) 

n  When in doubt, add explicit begin/end 
statements everywhere you use sequencing 



assert 

n  Ocaml has an assert statement like most 
imperative languages 

n  Not a function! 
n  Takes one "argument", a boolean 
n  If it's false, raises Assert_failure 

exception 
n  Turn off assertions with -noassert 

compiler option 



On to... 

n  Imperative programming! 
n  We've already done imperative programming 
n  printf is a function called for side-effects 

only 
n  begin/end and sequencing only useful for 

side effecting operations 
n  Now want to cover the "core" of imperative 

programming 



Imperative programming 

n  Imperative data types: 
n  references 
n  records with mutable fields 
n  mutable arrays 

n  Imperative statements: 
n  for loop 
n  while loop 

n  Breaking out of loops 



References (1) 

n  A reference type is like a "box" that holds a 
single value: 

# let x = ref 0 ;; 
val x : int ref = {contents = 0} 
# !x ;; 
- : int = 0 



References (2) 
n  The ! operator fetches the value from the 

reference "box" 
n  The := operator assigns a new value to the 

reference 
# x := 10 ;; 
- : unit = () 
# x  ;; 
- : int ref = {contents = 10} 
n  LHS of := must be a reference, not a value! 



while loop 
n  while loop is basically like C/C++/Java while loop: 
while <condition> do 
   <stmt1>; 
   <stmt2>; 
   ... 
   <stmtn> 
done 
 



Example 
let factorial n = 
   let result = ref 1 in 
   let i = ref n in 
      while !i > 1 do 
          result := !result * !i; 
          i := !i - 1 
      done; 
   !result 
n  Very easy to accidentally omit ! operators 



Records with mutable fields (1) 

n  References are just a special case of records with 
mutable fields 

n  Recall record type declaration: 
type point = { x: int; y: int } 
n  This declares point as an immutable type 

n  x and y fields can't change after point created 
n  not always what you want 
 

 



Records with mutable fields (2) 

n  To get mutable fields: 
type point = { mutable x: int;  
               mutable y: int } 

n  Now can change x, y fields: 
let p = { x = 10; y = 20 } ;; 
val p : point = {x = 10; y = 20} 
# p.x <- 1000 ;; 
- : unit = () 
# p ;; 
- : point = {x = 1000; y = 20} 



Records with mutable fields (3) 

n  To get only some mutable fields: 
type point = { x: int; mutable y: int } 
n  Now can change only change y field: 
# let p = { x = 10; y = 20 } ;; 
val p : point = {x = 10; y = 20} 
# p.x <- 1000 ;; 
The record field label x is not mutable 

 



Records with mutable fields (4) 

n  The <- record mutation operator is not a 
true operator 

n  Just built-in syntax 

n  The ! and := reference operators are 
true operators: 

# (!) ;; 
- : 'a ref -> 'a = <fun> 
# (:=) ;; 
- : 'a ref -> 'a -> unit = <fun> 



Arrays 
n  Recall: literal arrays: 
# let arr = [| 10; 20; 30; 40; 50 |] ;; 

n  Arrays are always mutable: 
# arr.(0) ;; 
- : int = 10 
# arr.(0) <- 1000 ;;  (* same syntax as records *) 
- : unit = () 
# arr ;; 
- : int array = [| 1000; 20; 30; 40; 50 |] 



for loops 
# for i = 1 to 10 do 
    Printf.printf "%d " i 
done; 
Printf.printf "\n";; 
1 2 3 4 5 6 7 8 9 10 
- : unit = () 
n  Index variable i assigned values from 1 to 10, 

inclusive 
n  Don't need to use !i syntax to refer to i's value 



Breaking out of loops 
n  No break statement like in C/C++/Java 
n  Instead, raise an Exit exception and catch it: 
# try 
  for i = 1 to 10 do 
    if i = 5 then raise Exit  (* like a "break" *) 
    else Printf.printf "%d " i 
  done 
with Exit -> Printf.printf "\n";; 
1 2 3 4 
- : unit = () 



Next time 

n  Modules 

n  Functors 


